-
摘要: 血栓性疾病是指因血液在血管内异常凝固形成血栓,从而引起一系列临床症状的疾病总称,包括下肢深静脉血栓形成、脑卒中、动脉粥样硬化、糖尿病等疾病。血栓形成是一个复杂的、循序渐进的过程,大致可概括为血管内皮损伤暴露、内源性凝血系统启动、血小板黏附聚集、纤维蛋白网生成、血细胞淤积等过程。在此过程中,巨噬细胞发挥了重要作用。它们通过参与局部的炎症反应,调控血栓的形成和消退。巨噬细胞极化是近年来的研究热点,它主要指巨噬细胞在不同环境刺激下发生形态和功能上的变化。巨噬细胞极化可分为经典型(M1型)、替代型(M2型)以及一些特殊的极化状态。巨噬细胞极化状态的转变在免疫应答、病原体感染、肿瘤免疫和自身免疫等过程中具有重要作用。综述巨噬细胞极化在血栓性疾病中的调控关系,为血栓性疾病的治疗提供新的方向。Abstract: Thrombotic diseases refer to a group of conditions characterized by abnormal blood coagulation within blood vessels, leading to the formation of blood clots and a series of clinical symptoms. This includes diseases such as deep vein thrombosis in the lower extremities, stroke, atherosclerosis, and diabetes. Thrombosis is a complex, progressive process that can be broadly summarized as the exposure of vascular endothelial damage, activation of the intrinsic coagulation system, platelet adhesion and aggregation, fibrin network formation, blood cell stasis. Macrophages play an important role in this process. They are involved in local inflammatory responses, regulating both the formation and resolution of thrombi. Macrophage polarization is a hot research topic in recent years, which mainly refers to the morphological and functional changes of macrophages in response different environmental stimuli. Macrophage polarization can be classified into classical (M1) and alternative (M2) types, as well as several specialized polarization states. The transition of macrophage polarization states plays an important role in immune responses, pathogen infections, tumor immunity, and autoimmune processes. This review discusses the regulatory relationship of macrophage polarization in thrombotic diseases, providing new directions for the treatment of these conditions.
-
Key words:
- Thrombotic diseases /
- Deep vein thrombosis /
- Macrophages /
- Macrophage polarization
-
表 1 部分疾病巨噬细胞调控及相关通路
Table 1. Regulation of macrophages and rRelated Pathways in certain diseases
疾病 相关通路 巨噬细胞调控 动脉粥样硬化 NF-κB相关通路,
Notch 信号通路,
PI3K/Akt通路,
KLF-4-Ch25h/LXR通路,
STAT相关通路等M1:LPS,IFN- γ,粒细胞-巨噬细胞集落刺激因子(GM-CSF),C反应蛋白CRP,螺旋B表面肽(HBSP)(*)等 M2: IL-4、10、13,蛋白激酶A( PKA),高密度脂蛋( HDL),HBSP,KLF-4等 高血压 STAT相关通路,
TLR4/NF-κB通路等M1:骨桥蛋白(*),缺氧诱导因子-1(HIF-1),血红素加氧酶(HO)(*) 等 M2:A型清道夫受体(SR-A)、血管紧张素II(AngII)、骨桥蛋白、HO等 糖尿病 JNK通路,
STAT相关通路,
miR-330-5p /Tim-3 通路,
Wnt 信号通路等M1:TNF-α,IL-6 NO,MiR-657,MCP-1,活性维生素D(*) 等
M2: miR-330-5p等肿瘤或癌症 AMPK相关通路,
Wnt /β-catenin信号通路,
IL-6 / STAT3通路等M1:IFN-γ,胎盘生长因子(PLGF),铜绿假单胞菌( 绿脓杆菌) 甘露糖敏感血凝菌毛株(PA-MSHA)等
M2:Wnt配体,miR-21-5p, lncRNA cox-2(*)等(*)为负向调控,未特别说明即为正向调控。 -
[1] Kadri A N,Alrawashdeh R,Soufi M K,et al. Mechanical support in high-risk pulmonary embolism: Review article[J]. Journal of Clinical Medicine,2024,13(9):2468. doi: 10.3390/jcm13092468 [2] Liang X,Xiu C,Liu M,et al. Platelet-neutrophil interaction aggravates vascular inflammation and promotes the progression of atherosclerosis by activating the TLR4/NF-κB pathway[J]. Journal of Cellular Biochemistry,2019,120(4):5612-5619. doi: 10.1002/jcb.27844 [3] 傲然·马合沙提,哈力·哈布力汗,杨毅,等. D-二聚体联合其他指标检测对脊柱退行性变术后下肢深静脉血栓形成的预测价值[J]. 实用骨科杂志,2021,27(9):774-778. [4] Taylor J B,Malone-Povolny M J,Merricks E P,et al. Mechanisms of foreign body response mitigation by nitric oxide release[J]. International Journal of Molecular Sciences,2022,23(19):11635. doi: 10.3390/ijms231911635 [5] Zhi L,Feng W,Liang J,et al. The effect of common variants in SLC44A2 on the contribution to the risk of deep vein thrombosis after orthopedic surgery[J]. Atheroscler Thromb,2021,28(3):293-303 doi: 10.5551/jat.56333 [6] Poredoš P,Spirkoska A,Ježovnik MK. In patients with superficial vein thrombosis the inflammatory response is increased and related to the recanalization rate[J]. Archives of Medical Science : AMS,2019,15(2):393-401. doi: 10.5114/aoms.2019.83292 [7] Yao Y,Li J,Zhou Y,et al. Macrophage/microglia polarization for the treatment of diabetic retinopathy[J]. Frontiers in Endocrinology,2023,14:1276225. doi: 10.3389/fendo.2023.1276225 [8] Yk C,Xm J,Jp G. Recombinant human granulocyte colony-stimulating factor enhanced the resolution of venous thrombi[J]. Journal of Vascular Surgery,2008,47(5):1058-1065. doi: 10.1016/j.jvs.2007.12.042 [9] Link V M,Duttke S H,Chun H B,et al. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function[J]. Cell,2018,173(7): 1796-1809. e17. [10] 吴嘉麒,刘鑫,王宁,等. 抑制内质网钙离子释放在诱导巨噬细胞自噬及逆转LPS耐受中的作用[J]. 免疫学杂志,2020(1):11-16. [11] Charkes N D,Dugan M A,Malmud L S,et al. Letter: Labelled leucocytes in thrombi[J]. Lancet (London,England),1974,2(7880):600. [12] Huang M,Hu J,Chen Y,et al. Mesencephalic astrocyte-derived neurotrophic factor inhibits cervical cancer progression via regulating macrophage phenotype[J]. Molecular Biology Reports,2024,51(1):654. doi: 10.1007/s11033-024-09602-6 [13] Zhao Y,Peng F,He J,et al. SOCS1 peptidomimetic alleviates glomerular inflammation in MsPGN by inhibiting macrophage M1 polarization[J]. Inflammation,2023,46(6):2402-2414. doi: 10.1007/s10753-023-01886-3 [14] Ciesielska A,Matyjek M,Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cellular and Molecular Life Sciences: CMLS,2021,78(4):1233-1261. doi: 10.1007/s00018-020-03656-y [15] 谢栩硕,朱汉平,卓超,等. 柴胡颗粒对发热大鼠体温、M1/M2型巨噬细胞极化及TLR4/NF-κB蛋白的作用机制[J]. 中国老年学杂志,2024,44(9):2167-2172. doi: 10.3969/j.issn.1005-9202.2024.09.031 [16] Kotlyarov S,Kotlyarova A. Participation of krüppel-like factors in atherogenesis[J]. Metabolites,2023,13(3):448. doi: 10.3390/metabo13030448 [17] Li J,Wang R,Shi W,et al. Epigenetic regulation in radiation-induced pulmonary fibrosis[J]. International Journal of Radiation Biology,2023,99(3):384-395. doi: 10.1080/09553002.2022.2089365 [18] Li T,Li L,Peng R,et al. Abrocitinib attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting the JAK1/STAT1/NF-κB pathway[J]. Cells,2022,11(22):3588. doi: 10.3390/cells11223588 [19] Zhang Q,Mao Z,Sun J. NF-κB inhibitor,BAY11-7082,suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-κB/Snail signaling in bladder cancer cells[J]. Gene,2019,710:91-97. doi: 10.1016/j.gene.2019.04.039 [20] Chen J,Chang R. Association of TGF-β canonical signaling-related core genes with aortic aneurysms and aortic dissections[J]. Frontiers in Pharmacology,2022,13:888563. doi: 10.3389/fphar.2022.888563 [21] Wu W,Wang X,Yu X,et al. Smad3 signatures in renal inflammation and fibrosis[J]. International Journal of Biological Sciences,2022,18(7):2795-2806. doi: 10.7150/ijbs.71595 [22] Marty P,Chatelain B,Lihoreau T,et al. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,2021,135:111182. [23] Guha Ray A,Odum O P,Wiseman D,et al. The diverse roles of macrophages in metabolic inflammation and its resolution[J]. Frontiers in Cell and Developmental Biology,2023,11:1147434. doi: 10.3389/fcell.2023.1147434 [24] Eni-Aganga I,Lanaghan Z M,Ismail F,et al. KLF6 activates Sp1-mediated prolidase transcription during TGF-β1 signaling[J]. The Journal of Biological Chemistry,2024,300(2):105605. doi: 10.1016/j.jbc.2023.105605 [25] Wang Q,Ni S,Ling L,et al. Ginkgolide B blocks vascular remodeling after vascular injury via regulating Tgfβ1/Smad signaling pathway[J]. Cardiovascular Therapeutics,2023,2023:8848808. [26] Gallenstein N,Tichy L,Weigand M A,et al. Notch signaling in acute inflammation and sepsis[J]. International Journal of Molecular Sciences,2023,24(4):3458. doi: 10.3390/ijms24043458 [27] Zhang Y,Liu J,Jia W,et al. AGEs/RAGE blockade downregulates Endothenin-1 (ET-1),mitigating human umbilical vein endothelial cells (HUVEC) injury in deep vein thrombosis (DVT)[J]. Bioengineered,2021,12(1):1360-1368. doi: 10.1080/21655979.2021.1917980 [28] Hu F D,Miao Y,Yu B,et al. Analysis of immune cells and risk factors related to lower limb deep vein thrombosis in patients with cerebral infarction[J]. American Journal of Clinical and Experimental Immunology,2024,13(3):133-139. doi: 10.62347/DRPN1199 [29] Gkana A,Papadopoulou A,Mermiri M,et al. Contemporary biomarkers in pulmonary embolism diagnosis: Moving beyond D-Dimers[J]. Journal of Personalized Medicine,2022,12(10):1604. doi: 10.3390/jpm12101604 [30] Yao M,Fang C,Wang Z,et al. miR-328-3p targets TLR2 to ameliorate oxygen-glucose deprivation injury and neutrophil extracellular trap formation in HUVECs via inhibition of the NF-κB signaling pathway[J]. PloS One,2024,19(2):e0299382. doi: 10.1371/journal.pone.0299382 [31] Funes S C,Rios M,Escobar-Vera J,et al. Implications of macrophage polarization in autoimmunity[J]. Immunology,2018,154(2):186-195. doi: 10.1111/imm.12910 [32] Locati M,Curtale G,Mantovani A. Diversity,mechanisms,and significance of macrophage plasticity[J]. Annual Review of Pathology,2020,15:123-147. doi: 10.1146/annurev-pathmechdis-012418-012718 [33] Barrett T J. Macrophages in atherosclerosis regression[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2020,40(1):20-33. doi: 10.1161/ATVBAHA.119.312802 [34] Cutolo M,Campitiello R,Gotelli E,et al. The role of M1/M2 macrophage polarization in rheumatoid arthritis synovitis[J]. Frontiers in Immunology,2022,13:867260. doi: 10.3389/fimmu.2022.867260 [35] Bulut G B,Alencar G F,Owsiany K M,et al. KLF4 (kruppel-like factor 4)-dependent perivascular plasticity contributes to adipose tissue inflammation[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2021,41(1):284-301. doi: 10.1161/ATVBAHA.120.314703 [36] Taddeo J R,Wilson N,Kowal A,et al. PPARα exacerbates salmonella typhimurium infection by modulating the immunometabolism and macrophage polarization[J]. Gut Microbes,2024,16(1):2419567. doi: 10.1080/19490976.2024.2419567 [37] Shirai T,Nazarewicz R R,Wallis B B,et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease[J]. The Journal of Experimental Medicine,2016,213(3):337-354. doi: 10.1084/jem.20150900 [38] Aarup A,Pedersen T X,Junker N,et al. Hypoxia-inducible factor-1α expression in macrophages promotes development of atherosclerosis[J]. Arteriosclerosis,Thrombosis,and Vascular Biology,2016,36(9):1782-1790. doi: 10.1161/ATVBAHA.116.307830 [39] Bekkering S,van den Munckhof I,Nielen T,et al. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo[J]. Atherosclerosis,2016,254:228-236. doi: 10.1016/j.atherosclerosis.2016.10.019 [40] Tomas L,Edsfeldt A,Mollet I G,et al. Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques[J]. European Heart Journal,2018,39(24):2301-2310. doi: 10.1093/eurheartj/ehy124 [41] Yao M,Ma J,Wu D,et al. Neutrophil extracellular traps mediate deep vein thrombosis: From mechanism to therapy[J]. Frontiers in Immunology,2023,14:1198952. doi: 10.3389/fimmu.2023.1198952 [42] Han Z,Liu Q,Li H,et al. The role of monocytes in thrombotic diseases: A review[J]. Frontiers in Cardiovascular Medicine,2023,10:1113827. doi: 10.3389/fcvm.2023.1113827 [43] 陈云飞. 人脂肪间充质干细胞来源的外泌体通过抑制小胶质细胞/巨噬细胞活化促进创伤性脑损伤大鼠神经功能的恢复[D]. 北京: 北京协和医学院,2021. [44] 柳正,王朝晖,周春亭. MFGE8在缺血性脑损伤中表达及对巨噬细胞极化的调控作用[J]. 中风与神经疾病杂志,2021(10):1065-1069. [45] Ototake Y,Yamaguchi Y,Asami M,et al. Downregulated IRF8 in monocytes and macrophages of patients with systemic sclerosis may aggravate the fibrotic phenotype[J]. The Journal of Investigative Dermatology,2021,141(8):1954-1963. doi: 10.1016/j.jid.2021.02.015 [46] Chen X,Tang J,Shuai W,et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J]. Inflammation Research: Official Journal of the European Histamine Research Society,2020,69(9):883-895. [47] 马丽莎. Study on macrophage polarization pathway and related diseases[J]. Advances in Clinical Medicine,2024,14(3):276-283. [48] Liu Y,Liu X,Hua W,et al. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis[J]. International Immunopharmacology,2018,57:121-131. doi: 10.1016/j.intimp.2018.01.049 [49] Zhou Z,Deng T,Tao M,et al. Snail-inspired AFG/GelMA hydrogel accelerates diabetic wound healing via inflammatory cytokines suppression and macrophage polarization[J]. Biomaterials,2023,299:122141. doi: 10.1016/j.biomaterials.2023.122141