留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CEACAM1源性荧光多肽底物Site 84对MMP-2、-7、-9、-12酶活性检测的研究

万雯 叶雨佳 杨晓娜 杨理宏 王华炜 董玲 陈丽星 孟照辉

万雯, 叶雨佳, 杨晓娜, 杨理宏, 王华炜, 董玲, 陈丽星, 孟照辉. CEACAM1源性荧光多肽底物Site 84对MMP-2、-7、-9、-12酶活性检测的研究[J]. 昆明医科大学学报.
引用本文: 万雯, 叶雨佳, 杨晓娜, 杨理宏, 王华炜, 董玲, 陈丽星, 孟照辉. CEACAM1源性荧光多肽底物Site 84对MMP-2、-7、-9、-12酶活性检测的研究[J]. 昆明医科大学学报.
Wen WAN, Yujia YE, Xiaona YANG, Lihong YANG, Huawei WANG, Ling DONG, Lixing CHEN, Zhaohui MENG. Study on the Detection of MMP-2,-7,-9,and -12 Enzymatic Activity Using CEACAM1-Derived Fluorescent Peptide Substrate Site 84[J]. Journal of Kunming Medical University.
Citation: Wen WAN, Yujia YE, Xiaona YANG, Lihong YANG, Huawei WANG, Ling DONG, Lixing CHEN, Zhaohui MENG. Study on the Detection of MMP-2,-7,-9,and -12 Enzymatic Activity Using CEACAM1-Derived Fluorescent Peptide Substrate Site 84[J]. Journal of Kunming Medical University.

CEACAM1源性荧光多肽底物Site 84对MMP-2、-7、-9、-12酶活性检测的研究

基金项目: 国家自然科学基金(82360077),云南省基础研究计划昆医联合专项-面上项目(202201AY070001-082),云南省基础研究计划青年项目(202201AU070063),昆明医科大学第一附属“535”高层次人才(2024535Q03)
详细信息
    作者简介:

    万雯(1991~),女,江西南昌人,医学博士,主治医师,主要从事心血管疾病的临床及基础研究工作

    通讯作者:

    孟照辉,E-mail:zhhmeng@aliyun.com

  • 中图分类号: R541.4

Study on the Detection of MMP-2,-7,-9,and -12 Enzymatic Activity Using CEACAM1-Derived Fluorescent Peptide Substrate Site 84

  • 摘要:   目的  探索CEACAM1 源性多肽合成的荧光底物Site 84 对MMP-2,-7,-9,-12 酶活性的检测,并进一步探索荧光多肽底物Site 84在区分同属于MMPs明胶酶谱中MMP-2和MMP-9的应用。  方法  采用荧光酶学法观察荧光多肽底物Site 84 对MMP-2,-7,-9,-12 酶活性的检测;进一步观察底物Site 84对明胶酶谱中MMP-2和MMP-9酶活性的敏感性和特异性;获得底物Site 84与MMP-2的酶促反应的动力学参数Km、Kcat  结果  以Site 84 为底物,可获得MMP-12、-7、-2 的酶活力曲线,但未获得MMP-9的酶活力曲线;此外,以Site 84 为底物,可特异性检测明胶酶谱中MMP-2 的酶活性,其可检测低浓度(0.6 μM)MMP-2 的酶活性,然而对高浓度(6 μM)MMP-9 未见明显酶促反应;最后,MMP-2 和底物 Site 84的酶促反应动力学参数:Km = 315 μM,Kcat/Km = 2565 / MS。  结论   以CEACAM1源性底物 Site 84作为新型的荧光多肽底物,可获得MMP-12、-7、-2 的酶活力曲线,且可特异性检测MMPs明胶酶谱中MMP-2的酶活性。
  • 图  1  Site84的高效液相色谱(HPLC)分析图和质谱分析图

    A:HPLC纯化图,波峰即为Site 84;B:图A中波峰的二次质谱图

    Figure  1.  HPLC analysis and mass spectrometry analysis of Site 84

    图  2  rhMMPs酶活性位点滴定

    Figure  2.  Titration of enzymatic activity sites of rhMMPs

    图  3  MMP-2/-7/-9/-12 与荧光多肽底物Site 84的酶促反应

    Figure  3.  Enzymatic reactions of MMP-2/-7/-9/-12 with fluorescent peptide substrate Site 84

    图  4  明胶酶(MMP-2 及 MMP-9)与荧光多肽底物 Site 84的酶促反应

    Figure  4.  Enzymatic reactions of gelatinases (MMP-2 and MMP-9) with fluorescent peptide substrate Site 84

    图  5  MMP-2与荧光多肽底物Site 84的酶促反应

    A:荧光多肽底物 Site 84对MMP-2酶活性的检测;B:MMP-2 和荧光多肽底物 Site 84 的酶促反应动力学参数 Km 和 Kcat/ Km

    Figure  5.  Enzymatic reaction of MMP-2 with fluorescent peptide substrate Site 84

  • [1] Wang X,Khalil R A. Matrix metalloproteinases,vascular remodeling,and vascular disease[J]. Advances in Pharmacology (San Diego,Calif).,2018,81:241-330.
    [2] Kampoli A M,Tousoulis D,Papageorgiou N,et al. Matrix metalloproteinases in acute coronary syndromes: current perspectives[J]. Current Topics in Medicinal Chemistry,2012,12(10):1192-205. doi: 10.2174/1568026611208011192
    [3] Wang J,Tan G J,Han L N,et al. Novel biomarkers for cardiovascular risk prediction[J]. Journal of Geriatric Cardiology: JGC,2017,14(2):135-50.
    [4] Dabek J,Kulach A,Gasior Z. The role of matrix metalloproteinases in acute coronary syndromes[J]. European Journal of Internal Medicine.,2007,18(6):463-466. doi: 10.1016/j.ejim.2007.01.007
    [5] Ye Y,Wan W,Wang J,et al. The CEACAM1-derived peptide QLSN impairs collagen-induced human platelet activation through glycoprotein VI[J]. Bioscience,Biotechnology,and Biochemistry.,2020,84(1):85-94.
    [6] Wang J,Ye Y,Wei G,et al. Matrix metalloproteinase12 facilitated platelet activation by shedding carcinoembryonic antigen related cell adhesion molecule1[J]. Biochemical and Biophysical Research Communications.,2017,486(4):1103-9. doi: 10.1016/j.bbrc.2017.04.001
    [7] Stryer L. Fluorescence energy transfer as a spectroscopic ruler[J]. Annual Review of Biochemistry.,1978,47:819-46. doi: 10.1146/annurev.bi.47.070178.004131
    [8] 孟照辉,叶雨佳,谢月辉,等. 一种检测人基质金属蛋白酶-12活性的荧光多肽底物[P]. 中国专利: 201410450501. X. 2015-07-22.
    [9] Kuzmič P. DynaFit--a software package for enzymology[J]. Methods in Enzymology. 2009,467: 247-80.
    [10] Santos-Martínez M J,Medina C,Jurasz P,et al. Role of metalloproteinases in platelet function[J]. Thrombosis Research.,2008,121(4):535-42. doi: 10.1016/j.thromres.2007.06.002
    [11] Gresele P,Falcinelli E,Sebastiano M,et al. Matrix metalloproteinases and platelet function[J]. Progress in Molecular Biology and Translational Science.,2017,147:133-65.
    [12] Seizer P,May A E. Platelets and matrix metalloproteinases[J]. Thrombosis and Haemostasis.,2013,110(5):903-9.
    [13] Visse R,Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure,function,and biochemistry[J]. Circulation Research.,2003,92(8):827-39. doi: 10.1161/01.RES.0000070112.80711.3D
    [14] Creemers E E,Cleutjens J P,Smits J F,et al. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure?[J]. Circulation Research.,2001,89(3):201-10. doi: 10.1161/hh1501.094396
    [15] Lindsey M L,Escobar G P,Mukherjee R,et al. Matrix metalloproteinase-7 affects connexin-43 levels,electrical conduction,and survival after myocardial infarction[J]. Circulation. 2006: 2919-28.
    [16] Johnson J L,George S J,Newby A C,et al. Divergent effects of matrix metalloproteinases 3,7,9,and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries[J]. Proceedings of the National Academy of Sciences of the United States of America.,2005,102(43):15575-80.
    [17] L. N,L. J,J. N,et al. Increased plasma concentration of matrix metalloproteinase-7 in patients with coronary artery disease[J]. Clinical Chemistry. 2006(No. 8): 1522-7.
    [18] Morgan A R,Rerkasem K,Gallagher P J,et al. Differences in matrix metalloproteinase-1 and matrix metalloproteinase-12 transcript levels among carotid atherosclerotic plaques with different histopathological characteristics[J]. Stroke.,2004,35(6):1310-5. doi: 10.1161/01.STR.0000126822.01756.99
    [19] Y. -B. Z,W. L,L Q. Y,et al. Expression changes and roles of matrix metalloproteinases in a rat model of traumatic deep vein thrombosis[J]. Chinese Journal of Traumatology - English Edition. 2010(No. 3): 188-92.
    [20] Bergers G,Brekken R,McMahon G,et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis[J]. Nature Cell Biology.,2000,2(10):737-44. doi: 10.1038/35036374
    [21] O'Reilly M S,Wiederschain D,Stetler-Stevenson W G,et al. Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance[J]. The Journal of Biological Chemistry.,1999,274(41):29568-71. doi: 10.1074/jbc.274.41.29568
    [22] Hannocks M J,Zhang X,Gerwien H,et al. The gelatinases,MMP-2 and MMP-9,as fine tuners of neuroinflammatory processes[J]. Matrix Biology: Journal of the International Society for Matrix Biology.,2019,75-76:102-13. doi: 10.1016/j.matbio.2017.11.007
    [23] Kurzepa J,Kurzepa J,Golab P,et al. The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke[J]. The International Journal of Neuroscience.,2014,124(10):707-16. doi: 10.3109/00207454.2013.872102
    [24] Shevchenko A V,Golovanova O V,Konenkov V I,et al. Analysis of the gene polymorphism of matrix metalloproteinase-2 and -9 in patients with coronary heart disease[J]. Terapevticheskii Arkhiv.,2010,82(1):31-4.
    [25] Trivedi V,Boire A,Tchernychev B,et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site[J]. Cell.,2009,137(2):332-43. doi: 10.1016/j.cell.2009.02.018
    [26] Sebastiano M,Momi S,Falcinelli E,et al. A novel mechanism regulating human platelet activation by MMP-2-mediated PAR1 biased signaling[J]. Blood.,2017,129(7):883-95. doi: 10.1182/blood-2016-06-724245
    [27] Gresele P,Falcinelli E,Loffredo F,et al. Platelets release matrix metalloproteinase-2 in the coronary circulation of patients with acute coronary syndromes: possible role in sustained platelet activation[J]. European Heart Journal.,2011(No.3):316-25.
    [28] Martinez A,Salas E,Radomski A,et al. Matrix metalloproteinase-2 in platelet adhesion to fibrinogen: interactions with nitric oxide[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical research.,2001(No.4):646-51.
    [29] Sanchis L,Andrea R,Falces C,et al. Prognosis of new-onset heart failure outpatients and collagen biomarkers[J]. European Journal of Clinical Investigation.,2015,45(8):842-9. doi: 10.1111/eci.12479
    [30] Sheu JR,Fong TH,Liu CM,et al. Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies[J]. British Journal of Pharmacology.,2004,143(1):193-201. doi: 10.1038/sj.bjp.0705917
    [31] Fernandez-Patron C,Martinez-Cuesta MA,Salas E,et al. Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2[J]. Thrombosis and Haemostasis.,1999,82(6):1730-5.
    [32] Dini FL,Buralli S,Bajraktari G,et al. Plasma matrix metalloproteinase-9 better predicts outcome than N-terminal protype-B natriuretic peptide in patients with systolic heart failure and a high prevalence of coronary artery disease[J]. Biomedicine & Pharmacotherapy.,2010,64(5):339-42.
    [33] Wagner DR,Delagardelle C,Ernens I,et al. Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction[J]. Journal of Cardiac Failure.,2006,12(1):66-72. doi: 10.1016/j.cardfail.2005.08.002
    [34] Kelly D,Khan SQ,Thompson M,et al. Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9: novel indicators of left ventricular remodeling and prognosis after acute myocardial infarction[J]. Eur Heart J.,2008,29(17):2116-24. doi: 10.1093/eurheartj/ehn315
  • [1] 云丽媛, 王竣凤, 郭宁, 丁瑞美, 李海朋, 张雪萍.  GM1注射液联合巴曲酶治疗突发性耳聋患者的疗效及安全性, 昆明医科大学学报. 2024, 45(6): 140-144. doi: 10.12259/j.issn.2095-610X.S20240619
    [2] 李丹, 万绪莲, 李律宇, 云宇, 罗光云, 刘韦兵, 林公府, 李宁, 黎勇坤, 段为钢.  尿酸酶缺失大鼠肠道菌群的变化, 昆明医科大学学报. 2023, 44(2): 27-32. doi: 10.12259/j.issn.2095-610X.S20230205
    [3] 郭欣, 赖薇, 李艳华, 陈韵如, 叶傲然, 唐顺松, 罗静.  磷脂酶Cε1在1型糖尿病大鼠病理性神经痛中的作用初探, 昆明医科大学学报. 2021, 42(2): 23-28. doi: 10.12259/j.issn.2095-610X.S20210206
    [4] 李柳, 张晓婵, 茹琪, 王硕, 戚国庆, 赵红亮.  四氢叶酸还原酶基因多态性与冠心病严重程度的相关性, 昆明医科大学学报. 2021, 42(5): 138-142. doi: 10.12259/j.issn.2095-610X.S20210525
    [5] 王娟娟, 陈雨青, 邓茜, 高健.  心肌酶谱与儿童1型糖尿病酮症酸中毒严重程度的相关性, 昆明医科大学学报. 2021, 42(1): 147-151. doi: 10.12259/j.issn.2095-610X.S20210129
    [6] 李蓝江, 许冰莹, 杨春艳, 赵川, 田心.  基质金属蛋白酶1在云南汉族口腔鳞癌发病风险中的相关性, 昆明医科大学学报. 2017, 38(07): 73-75.
    [7] 王胜虎.  全自动酶联免疫分析仪与手工酶联免疫法的检测结果比较, 昆明医科大学学报. 2016, 37(10): -.
    [8] 王祝君.  β-烯醇化酶基因多态性与COPD骨骼肌萎缩的相关性, 昆明医科大学学报. 2014, 35(12): -1.
    [9] 王南.  百草枯中毒鼠肺组织损伤及血红素氧合酶-1的表达, 昆明医科大学学报. 2014, 35(08): -1.
    [10] 郑红梅.  65例皮肌炎患者血清肌酶变化与年龄、性别相关性分析, 昆明医科大学学报. 2014, 35(03): -.
    [11] 任晓丽.  蛋氨酸酶基因重组腺病毒载体构建, 昆明医科大学学报. 2013, 34(06): -.
    [12] 谷万港.  HIV-1 整合酶真核表达载体的构建及在Hela细胞中的表达和定位, 昆明医科大学学报. 2013, 34(09): -.
    [13] 林雁.  内皮素-1与基质金属蛋白酶-2在喉癌中的表达与浸润的相关性研究, 昆明医科大学学报. 2013, 34(06): -.
    [14] 谷万港.  基于结构的HIV-1蛋白酶抑制剂的虚拟筛选, 昆明医科大学学报. 2013, 34(08): -.
    [15] 谷万港.  基于结构的HIV-1蛋白酶抑制剂的虚拟筛选, 昆明医科大学学报. 2013, 34(08): -.
    [16] 缪玉兰.  凝血酶敏感蛋白-1介导脓毒症肝损伤中ERK通路的作用研究, 昆明医科大学学报. 2012, 33(05): -.
    [17] 何颖红.  磷脂酶Cγ2对自身反应性B细胞的调控作用, 昆明医科大学学报. 2012, 33(06): -.
    [18] 缪玉兰.  凝血酶敏感蛋白-1对脓毒症肝损伤影响的实验研究, 昆明医科大学学报. 2012, 33(04): -.
    [19] 木云珍.  树鼩全血胆碱酯酶活性测定分析, 昆明医科大学学报. 2012, 33(05): -.
    [20] 谷胱甘肽硫转移酶基因GSTM1与宣威肺癌易感性关系的研究, 昆明医科大学学报. 2011, 32(06): -.
  • 加载中
图(5)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-12

目录

    /

    返回文章
    返回