留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基因沉默策略及其应用研究进展

周晓楠 宋雪兰 杨媛 马琛婧 何芳雁

周晓楠, 宋雪兰, 杨媛, 马琛婧, 何芳雁. 基因沉默策略及其应用研究进展[J]. 昆明医科大学学报, 2018, 39(01): 131-135.
引用本文: 周晓楠, 宋雪兰, 杨媛, 马琛婧, 何芳雁. 基因沉默策略及其应用研究进展[J]. 昆明医科大学学报, 2018, 39(01): 131-135.
Zhou Xiao Nan , Song Xue Lan , Yang Yuan , Ma Chen Jing , He Fang Yan . Advances and Applications in Gene Silencing[J]. Journal of Kunming Medical University, 2018, 39(01): 131-135.
Citation: Zhou Xiao Nan , Song Xue Lan , Yang Yuan , Ma Chen Jing , He Fang Yan . Advances and Applications in Gene Silencing[J]. Journal of Kunming Medical University, 2018, 39(01): 131-135.

基因沉默策略及其应用研究进展

基金项目: 

基金: 国家自然科学基金资助项目 (81560664, 81660677);

Advances and Applications in Gene Silencing

Funds: 

基金: 国家自然科学基金资助项目 (81560664, 81660677);

  • 摘要: 基因沉默 (Gene silencing) 是生物体中特定基因由于各种原因不表达或表达减少的现象, 是通过表观遗传控制基因表达的重要机制, 通过基因沉默技术探索疑难疾病的治疗方法是当下的研究热点.随着基因工程的迅速发展, 基因沉默技术不断有新技术出现取代已有的技术.对基因沉默技术所包括的核酶技术、反义寡核酸技术、基因敲除、RNA干扰技术及其应用进行介绍.
  • [1] [1]CECH T R, BASS B L.Biological catalysis by RNA[J].Annual Review of Biochemistry, 1986, 55 (1) :599.
    [2] [2]ALTMAN S.Enzymatic cleavage of RNA by RNA (Nobel Lecture) [J].Angewandte Chemie International Edition in English, 1990, 10 (4) :317-337.
    [3] [3]KILPATRICK M W, PHYLACTOU L A, GODFREY M, et al.Delivery of a hammerhead ribozyme specifically down-regulates the production of fibrillin-1 by cultured dermal fibroblasts[J].Human Molecular Genetics, 1996, 5 (12) :1939.
    [4] [4]LIEBER A, KAY M A.Adenovirus-mediated expression of ribozymes in mice[J].Journal of Virology, 1996, 70 (5) :3153.
    [5] [5]CORBEAU P, WONG-STAAL F.Anti-HIV Effects of HIV Vectors[J].Virology, 1998, 243 (2) :268.
    [6] [6]LIMA W F, WU H, CROOKE S T.Human RNases H[J].Methods in Enzymology, 2001, 341 (341) :430-440.
    [7] [7]PAN W H, CLAWSON G A.Identifying accessible sites in RNA:the first step in designing antisense reagents[J].Current Medicinal Chemistry, 2006, 13 (25) :3083-3103.
    [8] [8]VICKERS T A, KOOS, BENNETTCT, et al.Efficient reduction oftarget RNAs by small interfering RNA and RNase H-dependentantisense agents[J].J Biol Chem, 2003, 278 (9) :7108-7118.
    [9] [9]BALDOCCHIRA, GLYNNERJ, CHINK, et al.Design considerations for array CGH to oligonucleotide arrays[J].Cytometry A, 2005, 67 (2) :129-136.
    [10] [10]HAHNKEK, JACOBSENM, GRUETZKAUA, et al.Striptease on glass:validation of an improved stripping procedure for in situ microarrays[J].Journal of Biotechnology, 2007, 128 (1) :1-13.
    [11] [11]COBAUGH C W, CANNONE J J, DOSHI K J, et al.Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction[J].Bmc Bioinformatics, 2004, 5 (1) :1-22.
    [12] 张剑, 杨晓梅, 高建刚.小鼠基因敲除的研究进展[J].山东大学学报 (理学版) , 2011, 46 (10) :183-196.
    [13] [13]JASON MORTON, M.WAYNE DAVIS, ERIK M.JORGENSEN, et al.Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells[J].Proc Natl Acad Sci USA, 2006, 103 (44) :16370-16375.
    [14] [14]PA GAMMAGE, J RORBACH, AI VINCENT, et al.Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations[J].Embo Molecular Medicine, 2014, 6 (4) :6863-6869.
    [15] [15]CL RAMIREZ, MT CERTO, C MUSSOLINO, et al.Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects[J].Nucleic Acids Research, 2012, 40 (12) :5560-5568.
    [16] [16]PORTEUS M H, CARROLL D.Gene targeting using zinc finger nucleases[J].Nat Biotechnol, 2005, 23 (8) :967-973.
    [17] [17]GEURTS A M, COST G J, FREYVERT Y, et al.Knockout rats via embryo microinjection of zinc-finger nucleases[J].Science, 2009, 325 (5939) :433.
    [18] [18]CERMAK1 T, DOYLE E L, CHRISTIAN M, et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J].Nucl Acids Res, 2011, 39 (12) :82.
    [19] [19]VM BEDELL, Y WANG, JM CAMPBELl, et al.In vivo genome editing using a high-efficiency TALEN system[J].Nature, 2012, 491 (7422) :114-118.
    [20] [20]DING Q, LEE Y K, SCHAEFER E K, et al.A TALEN genome-editing system for generating human stem cell-based disease models[J].Cell Stem Cell, 2012, 12 (2) :238-251.
    [21] [21]RODOLPHEBARRANGOU.RNA-mediated programmable DNA cleavage[J].Nat Biotechnol, 2012, 30 (9) :836-838.
    [22] [22]MUSSOLINO C, CATHOMEN T.RNA guides genome engineering[J].Nat Biotechnol, 2013, 31 (3) :208-209.
    [23] [23]CONG L, ANN RAN F, COX D, et al.Multiplex genome engineering using CRISPR/cas systems[J].Science, 2013, 339 (6121) :819-823.
    [24]张中华, 侯永泰.si RNA制备技术的研究进展[J].生命科学, 2004, 16 (4) :231-234.
    [25] [25]SOMAYEH S M, EHSAN A, VAHID S, et al.Potential si RNA molecules for nucleoprotein and M2/L overlapping region of respiratory syncytial virus:In silico design[J].Jundishapur Journal of Microbiology, 2016, 9 (4) :e34304.
    [26] [26]FAKHR E, ZARE F, TEIMOORITOOLABI L.Precise and efficient si RNA design:a key point in competent gene silencing[J].Cancer Gene Therapy, 2016, 23 (4) :73.
    [27]李泽豪, 任小元, 王世兵, 等.介导si RNA传递的非病毒载体及其研究进展[J].生命科学, 2014, 26 (4) :392-399.
    [28] [28]AMSALEM O, NASSAR T, BENHAMRON S, et al.Solid nano-in-nanoparticles for potential delivery of si RNA[J].Journal of Controlled Release, 2017, 10 (257) :144-155.
    [29] [29]DAHLMAN J E, CBARNES, OFKHAN, et al.In vivo endothelial si RNA delivery using polymeric nanoparticles with low molecular weight[J].Nature Nanotechnology, 2014, 9 (8) :648-655.
    [30] [30]HUSSER L, ALVES M P, RUGGLI N, et al.Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA virusesin porcine epithelial cells using lentivirus-driven, RNA interference[J].Virus Res, 2011, 159 (1) :9-16.
    [31] [31]SUMIMOTO H, Y KAWAKAMI.Lentiviral vector-mediated RNAi and its use for cancer research[J].Future Oncology, 2016, 3 (6) :655-664.
    [32] [32]COHEN Z R, RAMISHETTI S, PESHES-YALOZ N, et al.Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronangrafted lipid-based nanoparticles[J].Acs Nano, 2015, 9 (2) :1581-1591.
  • [1] 沈蓝, 陈朝明, 代建能, 普伦庆, 王天瑞, 马刚.  快速康复技术配合损伤控制外科技术在多发伤患者中的运用效果及影响因素分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240516
    [2] 赵丽珠, 董莹, 邓玥, 杨丽华.  基于单细胞测序技术分析上皮细胞相关基因与卵巢癌患者预后的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240402
    [3] 梁桂丽, 李灿美, 邢成锋, 董运龙, 王娟, 雷梓, 缪应雷, 兰丹凤.  GC-C-/-小鼠在DSS诱导下肠道炎症损伤的变化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220712
    [4] 李欢, 徐秋月, 王云娟, 苏洋, 唐睿珠.  利用逆转录环介导恒温扩增技术建立新型冠状病毒核酸快速检测方法, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210904
    [5] 廖婧, 许长俊, 孙春意, 潘景, 周红林, 刘洋.  hTERC基因检测与HC2、SPR技术检测HPV在宫颈病变中的诊断价值, 昆明医科大学学报.
    [6] 张楠, 胡欣瑜, 董鲜祥, 段为钢, 云宇.  高尿酸血症动物模型的研究进展, 昆明医科大学学报.
    [7] 刘洋, 黄娅娟, 廖婧, 孙春意, 翟淑娟, 周红林.  宫颈病变中应用FISH技术检测C-MYC基因及HC2技术、SPR技术检测HPV结果的相关性, 昆明医科大学学报.
    [8] 罗云, 罗钰辉, 刘孝东, 崔庆鹏.  大鼠CaSR基因的慢病毒高表达细胞系和RNA干扰质粒的构建及鉴定, 昆明医科大学学报.
    [9] 刘渤.  应用组织芯片技术对FHIT基因在90例生存期肝癌的表达, 昆明医科大学学报.
    [10] 蒙俊.  大肠杆菌qseC基因敲除及其缺陷株运动能力研究, 昆明医科大学学报.
    [11] 吴晶晶.  肺动脉CT成像的技术优化及其临床价值, 昆明医科大学学报.
    [12] 周婷婷.  关于定量PCR技术中模板使用浓度的研究, 昆明医科大学学报.
    [13] 吴岩.  DSCT双能量头颅CTA检查技术的探讨, 昆明医科大学学报.
    [14] 陈智豫.  心脏外科技术进展, 昆明医科大学学报.
    [15] 陈绍春.  用慢病毒转染技术实现Gnaq基因在SH-SY5Y细胞中持续稳定高表, 昆明医科大学学报.
    [16] 曹映华.  微创技术在剖宫产瘢痕妊娠诊治中的应用, 昆明医科大学学报.
    [17] 李绍祥.  RNA干扰的途径和机制, 昆明医科大学学报.
    [18] 黄云超.  肺癌诊疗技术新进展, 昆明医科大学学报.
    [19] 病人自控镇痛技术在结肠镜检查中的临床应用, 昆明医科大学学报.
    [20] 皮肤牵张技术在骨筋膜室减压后伤口闭合中的应用, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3149
  • HTML全文浏览量:  1020
  • PDF下载量:  1136
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-06

目录

    /

    返回文章
    返回