人参皂苷Rg1调控Nrf2在SD大鼠脑缺血再灌注损伤后的抗氧化作用
The Anti-antioxidant Role of Ginsenoside Rg1 Regulating Nrf2 on Focal Cerebral Ischemia Reperfusion SD Rats
-
摘要: 目的 探讨人参皂苷Rg1在大鼠脑缺血再灌注损伤中的抗氧化作用及机制.方法 SPF级健康成年雄性SD大鼠120只, 随机分为空白对照组、假手术组、模型组、不同浓度的Rg1治疗组.线栓法构建大鼠大脑中动脉栓塞 (middle cerebral artery occlusion, MCAO) 缺血再灌注损伤模型, 各治疗组采用人参皂苷Rg1进行预处理, 假手术组仅分离血管而不闭塞.采用Longa标准进行神经行为学评分;Western blot检测Nrf2和HO-1蛋白表达情况;比色法测定SOD和MDA含量变化.结果 模型组大鼠行为学评分显著高于空白对照组, 不同浓度的Rg1治疗组评分明显低于模型组 (P<0.05) ;与空白对照组或假手术组相比, 模型组Nrf2和HO-1的表达有所增加, SOD的含量显著降低, 而MDA的含量明显增加 (P<0.05) ;与模型组相比, 各治疗组Nrf2和HO-1的表达、SOD的含量均增加, 而MDA的含量则不同程度的减少 (P<0.05) .结论 人参皂苷Rg1上调Nrf2和HO-1蛋白表达, 增加SOD、降低MDA的含量, 改善SD大鼠脑缺血再灌注损伤后行为学表现, 发挥保护作用.Abstract: Objective To study antioxidant role and mechanism of Rg1 in rats with cerebral ischemia reperfusion injury (IRI) .Me thods One hundred and twenty healthy male rats were randomly divided into six groups: control group, sham operation group, model group, different concentration (30, 60, 90 mg/kg) of Rg1 treatment group.MCAO SD rats model was established by suture-occluded method;the Rg1 treatment groups were given Rg1 i.p. in advance, after 24 hours of reperfusion, neurobehavioral scores of all groups were examined by Longa's standard;The expression of Nrf2 and HO-1 were analyzed by western blot;The content of SOD and MDA was detected by kit.Re s ults The score of model group rats are significantly higher than control group, compared with the model group, the score of different concentration of Rg1 treatment group was decreased (P<0.05) . The Nrf2 and HO-1 expression in model group was mildly higher than the control or sham group (P <0.05) . Both of them in every Rg1 treatment group was higher than model group. Compared with control or sham group, SOD content was observably depressed but MDA content was dramatically increased in model group, interestingly, SOD contentwas enhanced, MDA content was attenuated in different concentration of Rg1 treatment group (P <0.05) .Conclusion Rg1 increases Nrf2 and HO-1 protein expression and SOD content, reduces MDA content, improves neurofunctional performance of rats after MCAO, and alleviates cerebral cerebral IRI.
-
头颈部癌症是人类第6大常见癌症,约占总癌症种类的3%,这其中48%属于口腔癌。全世界每年约有30万例新发口腔鳞状细胞癌病例,中国口腔癌的发病率约为5~6人/10万[1]。口腔癌具有进展快、浸润广、预后差的特点,尽管目前手术及放化疗等治疗技术在不断提高,但是远未达到理想效果,口腔癌的长期生存率仍然低于50%[1-2]。若能深入阐明其发病的分子机制,综合多项分子靶点进行预测或治疗,则有望在口腔癌的早期诊断、治疗方面有所突破。
SOX5(SRY-related high-mobility-group box 5)属于SOX转录因子家族的成员。近年的研究发现,SOX5在软骨组织分化、性别决定中起到重要的作用,并可促进多种肿瘤的发展与转移。而目前关于SOX5在口腔癌中的表达情况以及其在口腔癌中的可能作用还不清楚。小分子RNA(miRNA)是一类长度为17~25 个核苷酸的非编码单链RNA分子,它们在转录后基因表达调控中起着重要的作用。越来越多的研究表明,miRNA参与口腔癌的发生与发展过程,对口腔癌中miRNA的表达变化以及其调控基因的研究,有助于推进我们对口腔癌发生发展分子机制的认识。最近的研究表明,miR-219-5p做为新的癌症相关miRNA,可抑制包括结直肠癌、胃癌、卵巢癌及胶质瘤癌等多种癌细胞的增殖、迁移和侵袭过程,miR-219-5p在这些癌组织中的表达下调。但目前关于miR-219-5p在口腔癌中的表达和作用尚不清楚。
根据生物学软件的预测,以及对SOX5基因3’-UTR(非编码区域)的分析,作者发现SOX5 是miR-219-5p的一个潜在靶基因,那么SOX5和miR-219-5p是否参与到口腔癌的发生进展中呢?如果是,miR-219-5p是否通过对SOX5的靶调控参与了口腔癌的发生进展呢?为了解决以上问题,本研究拟对miR-219-5p / SOX5在口腔癌中的作用做一初探,拟为临床治疗提供全新的药物治疗靶点依据。
1. 材料与方法
1.1 实验材料
人舌鳞癌细胞株SCC4、SCC9和人正常皮肤成纤维细胞(HF)购自中国科学院上海细胞库。SCC4和SCC9细胞由中国科学院上海细胞库进行STR验证。本研究中没有使用错误识别和/或污染的细胞系。
miR-219-5p模拟物、miR-219-5p抑制剂、miRNA模拟物阴性对照(miR-NC)和siRNA阴性对照(miR-219-5p抑制剂,NC)由中国广州瑞博生物有限公司提供。用Lipofectamine 3000试剂盒(Invitrogen;Thermo Fisher Scientific,Inc.)进行细胞转染实验。
TRIzol® (Invitrogen;Thermo Fisher Scientific,Inc.)及miRNeasy mini kit (Qiagen AB)用于总RNA的提取,All-in-OneTM miRNA 定量RT-PCR检测试剂盒(GeneCopoeia公司)用于miR-219-5p 的RT-qPCR分析。用于miRNAhsa-miR-219-5p及U6 (内参基因) RT-PCR分析的引物购自Applied Biosystems及 Thermo Fisher Scientific公司。采用Moloney Murine Leukemia Virus Reverse Transcriptase (Takara Bio,Inc.) 及2× Mix SYBR Green I (Takara Bio,Inc.) 检测样本中SOX5 mRNA的表达水平。采用BCA试剂盒(北京生物技术公司)检测蛋白浓度。
1.2 细胞分组
细胞在制备好的培养基中经过第12代传代培养,该培养基成分为:Dulbecco’s Modified Eagle’s Medium (DMEM)/F12(DMEM)/F12 (ThermoFisher,上海,中国)、2 mmol/L谷氨酰胺、10%胎牛血清、100 U/mL青霉素和100 mg/mL链霉素(ThermoFisher科学,上海,中国)。在提供5% CO2、恒温37 ℃的培养箱中培养。
将1.5 μL miR-219-5p模拟物(3 μmol/L)、5 μL miR-219-5p抑制剂(2.5 μmol/L)或等量的Lipofectamine 3000试剂盒中的空白对照剂加入SCC4和SCC9细胞系进行瞬时转染。所使用的miRNA的序列描述如下:miR-219-5p 模拟物,UGAUUGUCCAAACGCAAUUCU;miR-219-5p模拟物空白对照(miR-NC),UGGAUUCCUUAACUUCCCAA;miR-219-5p 抑制剂,UUCAACCAGGAAAAG- UUGGGAAU;miR-219-5p 抑制剂空白对照(miR-219 inhibitor NC),AUGGCACGUGUACUCCUACAUAC。将浓度为1×106的各细胞系接种在培养皿中,按照制造商的说明书建议,在37 ℃下用上述试剂共培养48 h。随后,收集处理过的细胞进行进一步的分析,包括逆转录定量PCR (RT-qPCR)及Western blot实验等。
1.3 miR-219-5p靶向SOX5基因及其结合区域的验证
根据miRMine (http://www.microrna.org)在线网站的计算,预测SOX5 mRNA的3′-UTR序列中miR-219-5p的结合位点为5′-GGACCAAA-3′,据此,设计验证实验中相应突变位点序列为5′-GCAGGCCA-3′。
应用荧光素酶报告基因检测验证口腔癌细胞中miR-219-5p靶向调控SOX5基因。通过分子克隆实验将野生型(wt)和突变型(mut)序列插入pmirGLO载体(购自Promega公司)。在荧光素酶活性测定实验中,miR-219-5p模拟物或抑制剂分别用wt-SOX5和mut-SOX5或对照报告质粒转染口腔癌细胞。转染48 h后,使用双荧光素酶报告分析系统(Promega,Madison,WI)测量萤火虫(firefly)和海肾(Renilla)的荧光素酶活性,设定海肾荧光素酶活性作为内部对照。萤火虫的荧光素酶活性以海肾Renilla的荧光素酶活性为准做标准化处理。所有实验均重复进行3次。
1.4 RT-qPCR
按发表文献的方法描述、运用RT-qPCR检测各细胞株中miR-219-5p和SOX5的相对表达水平[3]。参照样本中U6的表达水平对miR-219-5p的相对表达量参照进行标准化[4]。引物设计并购自Invitrogen (Thermo Fisher Scientific,Inc.),所用引物序列描述如下,hsa-miR-219-5p:正向, 5′-UAUCCACUUGAUCG-GCCUAC-3′;反向5′-GCUCCGCTGUAGACCUAUCUGCA-3′;GAPDH,正向5′-CGAGATCCCTCCAAAATCAA-3′,反向5′-TTCACACCCATGACGAACAT-3′;SOX5,正向5′-CGTAACGAGCCTATGCAAT-3′,反向5′-TACCGGAAGCTA-CAATGCA-3′。每个PCR反应由两部分组成,包括95 ℃初始变性3 min,多次循环扩增(36个循环,95 ℃ 10 s,56.5 ℃ 20 s,75 ℃ 30 s),随后95 ℃变性15 s,65 ℃退火10 s,最终95 ℃延伸10 s GAPDH 作为内参基因。用2-ΔΔCq法评价各基因的相对表达水平[5]。
1.5 Western blot 分析
Western blot检测SOX5蛋白在个样本中的表达水平。按BCA检测试剂盒说明书检测蛋白浓度。取蛋白质样品(40 μg)用10% SDS-PAGE分离,转移到硝化纤维素膜上(中国碧云天生物)。用5%的脱脂牛奶封闭纤维素膜2 h,随后,加入一抗SOX5 (1∶1000;cat.no.sc-293215;Santa Cruz 生物技术公司)和GAPDH (1∶500;cat.no.sc-47724;Santa Cruz 生物技术公司),4 ℃下孵育过夜。0.01 mol/L PBS漂洗3次,每次5 min;HRP标记的二抗IgG(1∶2000;cat. no. sc-516102)在20~24 ℃孵育2 h。用增强的化学发光试剂(EMD,Millipore)观察纤维膜上免疫印迹信号。以GAPDH作为蛋白表达的参考。蛋白质的印迹结果采用Bio-Rad化学发光凝胶成像系统(Bio-Rad,美国)显影,印迹的条带采用Image J软件(V1.8.0.172,美国)进行光密度值的分析。
1.6 统计学处理
运用SPSS 软件(SPSS inc.,version21.0,美国) 对数据进行统计分析。采用方差分析(ANOVA)和Student-Newman-Keuls检验(Student-Newman-Keuls test)测定各组间mRNA和蛋白表达水平是否具有显著性差异。计量数据表述方式采用均数±标准差 (standard deviation,SD),P < 0.05为差异有统计学意义。用Pearson相关系数分析miR-219-5p与SOX5的表达水平是否具有相关性。
2. 结果
2.1 在口腔癌细胞株中miR-219-5p 表达下调、SOX5表达上调
RT-qPCR及Western blot的检测结果显示:在人口腔癌细胞株SCC4及SCC9中,miR-219-5p 的表达下调(图1A),与正常细胞株HF相比有统计学差异(P < 0.05);而SOX5的基因(图1B)及蛋白(图1C)表达水平显著增加,与正常细胞株HF相比有统计学差异(P < 0.05);Pearson相关系数分析合并后各组数据结果显示,人口腔癌细胞株中miR-219-5p 及SOX5的表达水平r = -0.869,绝对值接近1,说明miR-219-5p 的表达水平和SOX5的表达水平呈现负性相关。
2.2 miR-219-5p通过靶向3′- UTR区域调控口腔癌细胞中SOX5的表达
miR-219-5p通过靶向3′-UTR区域调控口腔癌细胞中SOX5的表达见图2。
图 2 miR-219-5p靶向3’-UTR特异性序列调控SOX5A:miRMine预测人SOX5 mRNA序列中miR-219-5p可能的结合位点,红色标注的为miR-219-5p与SOX5 mRNA靶向结合的潜在位点;B:根据预测结果设计的miR-219-5p与SOX5 mRNA靶向结合潜在位点的突变序列(黄色标示);3’UTR,3’非编码区;C:SCC4细胞的双荧光素酶报告实验结果;D:SCC9细胞的双荧光素酶报告实验结果。SOX5 3'UTR-wt,SOX5 3'UTR结合位点野生型组(未突变组);SOX5 3'UTR-mut,SOX5 3'UTR结合位点突变组;miR-NC,miR-219-5p空白对照剂转染;miR-219-5p,miR-219-5p转染。Figure 2. miR-219-5p regulates SOX5 by binding to specific sites in 3’-UTR由于SOX5和miR-219-5p在口腔癌细胞中表达趋势相反,呈现负性相关,笔者推测miR-219-5p可能通过特定的“种子”区域靶向调控SOX5 mRNA表达。为了验证这一推测,我们使用miRMine来预测SOX5 mRNA中miR-219-5p可能的结合位点。结果表明,SOX5 mRNA的3′- UTR上确实存在miR-219-5p的结合位点,SOX5是miR-219-5p的潜在靶基因(图2A,红色标注的为miR-219-5p与SOX5 mRNA靶向结合的潜在位点)。根据此结合位点,笔者设计验证实验中相应突变位点序列为5′-GCAGGCCA-3′(图2B,黄色标示的为突变后的序列)。
接下来的双荧光素酶报告实验揭示:与相应对照组(SOX5 3′UTR-wt+miR-NC)相比,未经突变处理的野生型SOX5 3′UTR-wt与miR-219-5p模拟物 (SOX5 3′UTR-wt+miR-219-5p)联合转染可显著降低SCC4与SCC9的荧光素酶活性(P < 0.05,图2C-D)。而在SOX5种子序列区做了突变处理即SOX53′-UTR-mut载体转染后的细胞中,miR-219-5p处理均不能诱导SCC4或SCC9细胞中荧光素酶活性降低 (SOX5 3′UTR-mut+miR-NC vs. SOX5 3′UTR-mut+miR-219-5,P > 0.05,图2C-D)。
为了进一步确定在口腔癌细胞中miR-219-5p是否靶向调节SOX5的表达水平,笔者用miR-219-5p模拟物或抑制剂处理SCC4和SCC9细胞,随后检测SOX5的表达水平。结果显示,miR-219-5p模拟物处理后显著抑制了SOX5表达,而miR-219-5p抑制剂处理显著恢复了SCC4 (图3A~B) 和SCC9 (图3C~D) 细胞中SOX5的表达水平,与各自的对照组相比具有统计学差异(P < 0.05)。这些结果验证了在口腔癌细胞中miR-219-5p通过与SOX5 mRNA3′-UTR中特定的序列结合而靶向调控SOX5的表达。
图 3 在口腔癌细胞SCC4及SCC9中miR-219-5p靶向调控SOX5的表达A:miR-219-5p在SCC4细胞中对SOX5 mRNA水平的表达调控; B:miR-219-5p在SCC9细胞中对SOX5 mRNA水平的表达调控;C:miR-219-5p在SCC4细胞中对SOX5蛋白水平的表达调控,上方为Western blot检测的蛋白印迹图,GAPDH为内对照,下方SOX5蛋白水平的定量统计直方图;D:miR-219-5p在SCC9细胞中对SOX5蛋白水平的表达调控,上方为Western blot检测的蛋白印迹图,GAPDH为内对照,下方SOX5蛋白水平的定量统计直方图。Figure 3. miR-219-5p regulates the expression of SOX5 in SCC4 and SCC93. 讨论
作为SOX转录因子家族的成员,SOX5除了在软骨组织分化、性别决定中起到重要的作用,也是许多疾病的易感基因,可促进鼻咽癌[6]、舌癌[3]、肝癌[7]、乳腺癌[8]和前列腺癌[9]等多种肿瘤的发展与转移。Huang等发现SOX5通过调控SPARC的表达下降来促进鼻咽癌的进展,同时SOX5在鼻咽癌组织中的过表达与临床低生存率成正相关性[6];在肝癌及乳腺癌中,SOX5通过Smad3-Sox5-Twist1信号通路促进上皮-间质转化及肿瘤细胞的入侵[7-8];在前列腺癌中,SOX5通过调控Twist1的表达来调节TGF-β诱导的上皮-间质转化过程[9]。而本研究发现SOX5在人口腔癌组织以及细胞中表达异常增加,且其表达水平上调与患者的组织分型、临床表现及生存率呈现正相关。本研究首次揭示了SOX5在人口腔癌肿瘤组织中的表达,并与患者的临床表现呈现出恶性相关,即SOX5的表达水平增加可能导致了人口腔癌的恶化与预后不良。
为了检测SOX5表达水平改变的上游调控机制,笔者把研究目标转向了miRNA水平。miRNA通过与靶基因mRNA的3′-非翻译区(3′-UTR)互补结合从而诱导靶基因mRNA的直接降解,进而导致靶蛋白表达下降。目前的研究发现,超过30%的人类基因受miRNA调控,而同一种miRNA可以调控数百种mRNA的降解[10]。miRNA通过调节靶向基因的表达来参与细胞增殖与分化、发育、细胞凋亡、炎症及肿瘤发生与转移等过程[10-11]。研究表明,miRNA可以做为原癌基因或肿瘤抑制物来调节靶基因表达及旗下有信号通路的传导[12]。越来越多的研究表明正常组织与癌组织中的miRNA表达谱是不一样的。研究发现,不同类型的组织或细胞中都有特异表达的miRNA,不同癌组织中的特异miRNA表达谱可为临床诊断与治疗提供重要的信息。miRNA参与口腔癌的发生与发展过程,越来越多的研究表明,针对特异miRNA,如miR-196a-5p和miR-145,具有抑制口腔鳞状细胞癌的潜在作用[13-14],因此,对口腔癌中miRNA的表达变化以及其调控基因的研究,有助于推进笔者对口腔癌发生发展分子机制的认识;同时miRNA介导的治疗为临床治疗提供了全新的药物治疗靶点依据。而本研究发现miR-219-5p通过特异性与SOX5基因的3′-UTR区互补结合,在转录水平实现了对SOX5的表达沉默,在人口腔癌中靶向调控了SOX5的表达。
值得注意的是,miR-219-5p做为新的肿瘤相关miRNA被证实参与了多种肿瘤的发生与进展。miR-219-5p在包括卵巢癌、胃癌以及结直肠癌等癌组织中的表达下调[15-19]。miR-219-5p通过调节Twist/Wnt/β-catenin信号通路来抑制表皮卵巢癌细胞的增殖、迁移和侵袭过程[15];而在胃癌中,miR-219-5p通过调节LRH-1/Wnt/β-catenin信号通路来抑制胃癌细胞的增殖、迁移和侵袭过程[16];在结直肠癌中,miR-219-5p通过下调calcyphosin和PDGF受体的表达来抑制癌细胞的增殖和侵袭过程[17-18],同时可以通过下调LEBF1的表达来抑制结直肠癌上皮-间质转化及癌细胞转移过程[19]。
结合本研究结果,miR-219-5p在人口腔癌细胞株中的表达水平显著下降、而SOX5的表达增加,miR-219-5p表达水平下降与SOX5的表达水平增加呈现负相关,miR-219-5p模拟物处理后可诱导人口腔癌细胞中SOX5的表达增加,而将SOX5 mRNA上miR-219-5p靶向调控的潜在区域进行突变处理后可以消除miR-219-5p对SOX5的表达调控。这些结果提示miR-219-5p可能通过特异性靶向结合SOX5基因的3′非编码区调控了SOX5的表达;在口腔癌中miR-219-5p的表达缺失,导致SOX5表达失控而异常增加,可能与口腔癌的发生发展密切相关。本研究结果为口腔癌靶点基因的甄选及开展临床靶向治疗奠定了基础。
-
[1]崔海月, 王庆国.缺血性脑血管病发病机制的新进展[J].长春中医药大学学报, 2009, 25 (2) :291-292. [2]彭智远, 刘旺华, 曹雯.脑缺血再灌注损伤细胞凋亡机制的研究进展[J].中华中医药学刊, 2017, 35 (8) :1957-1961. [3] [3]RODRIGO J, FERNANDEZ AP, SERRANO J.The role of free radicals in cerebral hypoxia and ischemia[J].Free Radic Biol Med, 2005, 39 (1) :26-50. [4]黄小平, 邓常清, 邱咏园, 等.黄芪甲苷和三七的三种有效成分配伍对小鼠脑缺血/再灌注后氧化应激和Nrf2/HO-1途径的影响[J].中国药理学通报, 2013, 29 (11) :1596-1601. [5]吴露, 黄小平, 邓常清, 等.人参皂苷Rg1对小鼠脑缺血再灌注组织伤及Nrf2/HO-1途径的影响[J].中国病理生理杂志, 2013, 29 (11) :2066-2071. [6]鲁婵婵, 戴彦成, 王蓓, 等.人参皂苷对脑缺血保护作用的研究进展[J].上海医药, 2015, 36 (3) :69-71, 75. [7] [7]LONGA EZ, WEINSTEIN PR, CARLSON S.Reversible middle cerebral artery occlusion without craniectomy in rats[J].Stroke, 1989, 20 (1) :84-91. [8]胡文涛, 闫秋月, 方瑜, 等.人参皂苷Rg1参与诱导小鼠多潜能干细胞的研究[J].神经损伤与功能重建, , 2014, 9 (3) :184-186. [9] [9]SUN C, LAI X, HUANG X, et al.Protective effects of ginsenoside Rg1 on astrocytes and cerebral ischemic-reperfusion mice[J].Biol Pharm Bull, 2014, 37 (12) :1891-1898. [10] [10]AMARO S, LLULL L, RENU A, et al.Uricacid improves glucose-driven oxidative stress in human is chemic stroke[J].Ann Neurol, 2015, 77 (5) :775-783. [11] [11]ZHANG T Z, ZHOU J, JIN Q, et al.Protective effects of remifentanil preconditioning on cerebral injury duing pump-assisted coronary artery bypass graft[J].Genet Mol Res, 2014, 13 (3) :7658-7665. [12] [12]LIU B, QIAN J M.Cytoprotective role of heme oxygenase-1in liver ischemia reperfusion injury[J].Int J Clin Exp Med, 2015, 8 (11) :19867-19873. [13] [13]SHEN M, FAN D, ZANG Y, et al.Neuroprotective effects of methane-rich saline on experimental acute carbon monoxide toxicity[J].J Neurol Sci, 2016, 369:361-367. [14] [14]CHEN S H, LIN M T, CHANG C P.Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke[J].Curr Neuropharmacol, 2013, 11 (2) :129-140. [15] [15]CHOUCRY MA, KHALIL MN A, EIAEDAN S A.Protective action of Crateva nurvala Buch.Ham extracts against renal ischaemia reperfusion injury in rats via antioxidant and anti-inflammatory activities[J].J Ethnopharmacol, 2017, 214:47-57. [16]黄娟, 廖君, 彭熙炜, 等.脑泰方对脑缺血/再灌注大鼠海马区Nrf2、HO-1和膜铁转运辅助蛋白表达的影响[J].中国药理学通报, 2017, 33 (10) :1467-1472. -

计量
- 文章访问数: 3626
- HTML全文浏览量: 1654
- PDF下载量: 312
- 被引次数: 0