留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

根尖牙乳头干细胞成骨分化的研究进展

钱石兵 史会萍 李艳秋 杨镕羽 段开文

赵珊, 高赛, 李堂春, 赵钟鸣, 吴亚婷, 郑敏. 云南省孕产妇死亡率预测模型的构建与评估[J]. 昆明医科大学学报, 2025, 46(2): 110-117. doi: 10.12259/j.issn.2095-610X.S20250216
引用本文: 钱石兵, 史会萍, 李艳秋, 杨镕羽, 段开文. 根尖牙乳头干细胞成骨分化的研究进展[J]. 昆明医科大学学报, 2024, 45(9): 168-173. doi: 10.12259/j.issn.2095-610X.S20240926
Shan ZHAO, Sai GAO, Tangchun LI, Zhongming ZHAO, Yating WU, Min ZHENG. Construction and Evaluation of Maternal Mortality Prediction Model in Yunnan Province[J]. Journal of Kunming Medical University, 2025, 46(2): 110-117. doi: 10.12259/j.issn.2095-610X.S20250216
Citation: Shibing QIAN, Huiping SHI, Yanqiu LI, Rongyu YANG, Kaiwen DUAN. Research Progress on Osteogenic Differentiation of Apical Papilla Stem Cells[J]. Journal of Kunming Medical University, 2024, 45(9): 168-173. doi: 10.12259/j.issn.2095-610X.S20240926

根尖牙乳头干细胞成骨分化的研究进展

doi: 10.12259/j.issn.2095-610X.S20240926
基金项目: 国家自然科学基金资助项目(81160135);云南省生物医药重大科技专项基金(202102AA100007);云南省教育厅科学研究基金教师类项目(2024J1609)
详细信息
    作者简介:

    钱石兵(1996~),男,云南曲靖人,医学硕士,助教,主要从事牙周病和口腔黏膜疾病的防治工作

    通讯作者:

    段开文,E-mail:kwduan@aliyun.com

  • 中图分类号: R78

Research Progress on Osteogenic Differentiation of Apical Papilla Stem Cells

  • 摘要: 根尖牙乳头干细胞(stem cells from apical papilla,SCAP)具有很强的多系分化潜能,其中成骨分化可以应用于骨组织再生,为口腔颌骨缺损治疗提供新思路。成骨分化是个复杂的网络调控过程,诸如各种细胞因子、表观遗传物质、各种信号分子和信号通路等内源性物质均可产生不同程度的影响。这些因素相互作用可以促进SCAP的增殖、迁移和成骨分化,但其在SCAP成骨分化的不同进程中的具体机制和内在联系各不相同。对近年来有关促进SCAP成骨分化的各种因素及其可能的调控机制研究文献进行综述,以期为其进一步的应用研究提供新信息。
  • 孕产妇死亡率(maternal mortality rate,MMR)是反映国家或地区经济、教育、卫生等社会因素的敏感指标,也是衡量母婴安全、妇女健康状况和生存质量的重要尺度[1],也被列入联合国千年发展目标(Millennium Development Goals,MDGs)和可持续发展目标(Sustainable Development Goals,SDGs)的具体指标之一[2]。我国政府高度重视孕产妇死亡控制工作,先后颁布的《“健康中国2030”规划纲要》《中国妇女发展纲要(2021—2030年)》对孕产妇健康提出高要求[3]。云南省政府颁布《云南妇女发展规划(2021—2030年)》提出“2030年全省MMR下降至9/10万”的目标[4]

    通过构建统计模型来预测事物的发生发展趋势是认识事物发展规律及制定决策的一个重要手段和措施[5]。国内学者使用不同预测模型对全国或部分省份的孕产妇死亡率进行了预测及模型评估,其中,差分自回归移动平均模型(auto regressive integrated moving average model,ARIMA)和灰色预测模型GM(1,1)适用于短、中长或长期时间序列数据预测。ARIMA模型作为一个经典的时间序列预测模型,经验证对MMR的预测精度较好[6-7]。GM(1,1)模型是较为常见、且比较成熟的时间序列预测模型,因模型构建过程简单,只需要历史数据即可进行建模预测,可行性较高。两类模型均被广泛应用于疾病发病率和死亡率预测、妇幼保健指标预测、卫生人力资源和卫生费用预测、药品价格预测、门诊量预测等医疗卫生领域,为医疗决策的有效制定提供了科学依据[8]

    孕产妇死亡率影响因素多、地区差异大,不同预测模型对不同地区的预测效果可能不同。尚无学者对云南省孕产妇死亡率预测模型构建和模型预测效果比较的相关研究报道,本研究基于1994—2023年云南省MMR,构建ARIMA和GM(1,1)模型,并对模型拟合效果进行比较,选择最优模型对2024—2030年云南省MMR进行预测,为我省卫生行政部门制定年度MMR控制目标和实现2030年MMR目标保障政策提供参考依据。

    本研究数据来源于云南省妇幼卫生年报(1994—2023年),收集1994—2023年共30年云南省MMR数据。

    灰色预测模型(GM(1,1)) GM(1,1)的理论步骤[911],见图1

    图  1  GM(1,1)模型建立流程图
    Figure  1.  Flowchart for the establishment of the GM(1,1) model

    ARIMA模型ARIMA(p,d,q)模型由3个主要参数决定,q为滑动平均系数,表示误差项滞后q阶。q参数由偏自相关函数(partial auto correlation function,PACF)决定,p参数由自相关函数(auto correlation function,ACF)决定。参数d指的是实现平稳性所需的差异,根据数据的性质来确定的。运用SPSS 26.0软件进行ARIMA模型构建,确定时间序列的性质是否平稳,如果时间序列不平稳,则进行差分处理,直到序列平稳;通过Ljung-BoxQ检验判断数据是否为白噪声序列。根据ACF和PACF的图形走向,确定自回归项和移动平均项的阶数;建立ARIMA模型,进行参数估计和模型检验。

    经过计算不同模型的平均绝对误差(mean absolute error,MAE)、均方误差(mean squared error,MSE)和均方根误差(root mean squared error,RMSE)来进行模型间的比较,误差越小拟合数据越好[9]

    $$\tag{8} {\mathrm{MAE}} = \frac{{\displaystyle\sum\nolimits_{i = 1}^n {\left| {{y_i} - {x_i}} \right|} }}{N} $$ (1)
    $$\tag{9} {\mathrm{MSE}} = \frac{{\displaystyle\sum\nolimits_{i = 1}^n {{{({y_i} - {x_i})}^2}} }}{N} $$ (2)
    $$ \tag{10} {\mathrm{RMSE}} = \sqrt {\frac{{\displaystyle\sum\nolimits_{i = 1}^n {{{({y_{^i}} - {x_i})}^2}} }}{N}} $$ (3)

    其中,$ {y_i} $为真实数据,$ {x_i} $为预测数据,n为数据个数。

    用趋势卡方检验分析近30年云南省MMR变化趋势,α取0.05。用R 4.3.1软件建立GM(1,1)模型并进行拟合精度检验。用SPSS 26.0软件进行ARIMA模型建立、预测和分析拟合效果。

    云南省MMR从1994年的149.19/10万下降到2023年的9.70/10万,下降了139.49/10万,降幅为93.5%,整体呈持续下降趋势(χ2 = 50170.0P < 0.05),见图2

    图  2  1994—2023云南省孕产妇死亡率变化趋势
    Figure  2.  Trend of maternal mortality in Yunnan Province from 1994 to 2023

    1994—2023年云南省MMR的GM(1,1)预测结果计算得ɑ = 0.094,u = 172.865。所以GM(1,1)为:

    $$ x(1)(t + 1) = -1697.96e^{-0.094t}+1847.15 $$

    发展系数-a < 0.3,说明模型适用于中长期预测。经拟合优度检验,后验差比值C = 0.079,小概率误差P = 1,预测精确度为1级,模型可进行外推。据数据分布散点图判断,其拟合效果较为接近真实值,但1997、2001和2006年预测值与真实值之间偏差分别为8.19/10万、8.37/10万和9.84/10万,其他年份偏差则均小于5/10万,见图3

    图  3  GM(1,1)预测值与真实值的散点图分布
    Figure  3.  Scatter plot distribution of GM (1,1) predicted values and the actual values
    2.3.1   平稳性检验

    通过原始时序图4可知序列有长期递减趋势,进行ACF、PACF图检验,可判定原始时间序列为非平稳序列,见图5图6

    图  4  原始时间序列
    Figure  4.  Original time series
    图  5  原始时间序列ACF图
    Figure  5.  ACF plot of the original time series
    图  6  原始时间序列偏ACF图
    Figure  6.  Partial ACF plot of the original time series
    2.3.2   ARIMA模型构建

    模型识别因1994—2023年云南省MMR的时间序列是非平稳序列,需要对原始序列差分消除趋势性影响。经过一次差分后,时间序列没有达到平稳化进行两次差分,在两次差分后,时间序列达到了平稳化,见图7

    图  7  二阶差分序列
    Figure  7.  Second-order difference sequence

    进行ACF和PACF图检验,观察截尾性,可以看到二阶差分后的ACF和PACF呈现不规则变化,回归系数p = 1,移动平均值q = 1,见图8图9

    图  8  二阶差分序列ACF图
    Figure  8.  ACF plot of the second-order difference sequence
    图  9  二阶差分序列PACF图
    Figure  9.  PACF plot of the second-order difference sequence

    根据确定的p,d,q3个参数确定ARIMA(1,2,1)Ljung-BoxQ(LBQ) = 22.087,P = 0.14 > 0.05,差异无统计学意义,残差序列不存在自相关。构建的ARIMA(1,2,1)为最优模型,拟合后的残差项为白噪声序列,无须继续建模,见图10。最终拟合效果显示:ARIMA模型拟合值与实际值之间存在一定偏差,2005年前较为明显,见图11

    图  10  白噪声检验图
    Figure  10.  White noise test plot
    图  11  ARIMA拟合效果
    Figure  11.  ARIMA fitting results

    从两个模型对比来看,GM(1,1)灰色预测模型的整体偏差率低于ARIMA(1,2,1)模型 ,模型预测效果更好,见表1

    表  1  两种模型预测结果
    Table  1.  Prediction results of the two models
    年份 GM(1,1)
    偏差率(%)
    平均偏
    差值(%)
    ARIMA
    (1,2,1)
    偏差率(%)
    平均偏
    差值(%)
    1994 / 4.15 / 6.01
    1995 −2.14 /
    1996 −0.84 −12.81
    1997 8.19 −0.45
    1998 1.93 −9.79
    1999 −2.94 −9.39
    2000 0.30 6.38
    2001 −8.37 −3.99
    2002 −5.18 4.73
    2003 −2.47 8.62
    2004 0.03 3.59
    2005 3.82 3.18
    2006 9.84 4.71
    2007 1.05 −11.31
    2008 4.47 0.13
    2009 0.61 −0.26
    2010 0.00 −0.53
    2011 0.77 3.16
    2012 −2.90 −2.29
    2013 −1.41 1.97
    2014 −3.49 0.11
    2015 0.29 4.02
    2016 2.01 2.71
    2017 0.29 −3.5
    2018 0.27 −1.57
    2019 −1.58 −1.58
    2020 −2.20 −0.45
    2021 −1.41 1.8
    2022 0.15 2.12
    2023 −1.34 −1.93
    下载: 导出CSV 
    | 显示表格

    经模型构建,GM(1,1)和ARIMA预测拟合效果不同,见图12

    图  12  两种模型的预测效果趋势
    Figure  12.  Trend of prediction effects of the two models

    经过构建预测效果比较,GM(1,1)的MAE、MSE、RMSE均比ARIMA小,可以说明GM(1,1)比ARIMA预测效果好,见表2

    表  2  两种模型的指标数据值比较
    Table  2.  Comparison of indicator data values between the two models
    模型 指标数据值比较
    MAE MSE RMSE
    GM(1,1) 2.4238 12.39 3.52
    ARIMA 3.9659 27.65 5.25
      MAE,平均绝对误差;MSE,均方误差;RMSE,均方根误差。
    下载: 导出CSV 
    | 显示表格

    选用GM(1,1)对云南省2024—2030年MMR进行预测,结果显示2024—2030年的孕产妇死亡率依然呈下降趋势,见图13

    图  13  2024—2030年云南省孕产妇死亡率预测值(1/10万)
    Figure  13.  Predicted maternal mortality rate in Yunnan province in 2024—2030 (1/100000

    自2000年MDGs提出“2015年MMR较1990年降低3/4,实现普遍享有生殖保健”以来,全球孕产妇死亡率呈明显下降趋势。我国2014年MMR下降至21.7/10万,较1990年88.8/10万相比,下降了75.6%,提前1年实现MDGs[12]。2015年9月联合国可持续发展峰会上193个成员国正式通过的SDGs中,第3项提出“2030年将全球MMR降至70/10万,所有国家MMR均不超过全球平均水平的2倍(140/10万)。2010年420/10万及以下的国家2030年MMR较2010年下降2/3”[13]。但全球各地孕产妇死亡下降情况各异,不同发达地区MMR也各不相同,2010—2020年高收入国家MMR的平均水平为12.3/10万,中高收入国家的平均水平为44.1/10万。发达国家中42个国家孕产妇死亡率呈现不同程度下降,下降速度最快的是塞舌尔(年平均变化速度8.6%)。发展中国家中35个国家MMR呈现不同程度下降,下降最快的是白俄罗斯(年平均变化速度为8.0%),2个国家几乎没有变化,14个国家呈上升趋势[14]。2020年,我国MMR为16.9/10万,比2010年降低43.7%,指标水平居全球中高收入国家前列,被世界卫生组织评定为“全球十个妇幼健康高绩效国家之一”[1517]。1991—2021年我国MMR呈现明显的下降趋势,年平均下降速度为5.00%,平均下降速度明显高于世界及中高等收入国家的平均水平[1819]

    1994—2023年云南省MMR从149.19/10万下降至9.7/10万,年平均下降速率为8.86%,高于我国1991—2021年MMR年平均下降速率5.00%,也高于海南省2003—2022年MMR年平均下降速率4.13%[20]。2023年,云南省MMR低于全国平均水平,母婴安全核心指标创云南最优水平[21]。云南省在国家母婴安全工作总体部署下,结合本省实际,加强顶层设计,巩固完善制度,优化资源配置,出台有关制度规范持续推进孕产妇健康管理和危重救治服务网络建设,提升服务质量,促进了云南省MMR持续降低。同时,提示云南省MMR在经过快速下降后,当前已到达低位,随着生育政策调整,云南省MMR保持低位且稳中有降面临较大挑战,要进一步下降难度可能有所增加,仍需继续加强孕产妇健康管理工作。

    MMR受经济社会发展状况、居民健康意识、医疗资源分配、服务公平性、可及性和服务质量等因素影响,而不同地区的影响因素各不相同。因此,不同预测模型在不同地区的预测效果可能存在不同。本研究显示GM(1,1)对云南省MMR的预测效果较好,与张亚慧[22]对中国孕产死亡率预测和张彬等[23]对我国农村预测结果相同。可能由于GM(1,1)模型精度较高,运算简便,建模所需信息少,对原始数据资料的限制较少,运用比较灵活,可被广泛运用于短期预测[10]。用该模型预测云南省2030年MMR为5.73/10万,可达到《健康中国“2030”规划纲要》《中国妇女发展纲要(2021—2030年)》《健康云南“2030”规划纲要》中的MMR控制目标。

    本研究发现,GM(1,1)对云南省MMR的预测拟合优度较好,可进一步将该统计模型应用于婴儿死亡率、5岁以下儿童死亡率等妇幼健康核心指标,为该省2030年实现可持续发展目标中的妇幼健康指标控制目标提供对策与建议。本次构建的GM(1,1)中仅有3个年份预测值与真实值之间差异略高,提示单一的时间趋势预测模型难以对波动较大的时间点进行更精准的预测,后续研究可加入更多孕产妇死亡率影响因素进行预测模型的构建。

    综上所述,统计模型在MMR变化趋势和预测应用具有良好的效果和较强的现实意义,可为卫生健康行政部门判断妇幼健康政策效果,为未来妇幼健康指标发展趋势提供理论依据。

  • [1] Morsczeck C. Dental stem cells for tooth regeneration: how far have we come and where next?[J]. Expert Opin Biol Ther,2023,23(6):527-537. doi: 10.1080/14712598.2023.2208268
    [2] Sonoyama W,Liu Y,Fang D,et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine[J]. PLoS One,2006,1(1):e79-86. doi: 10.1371/journal.pone.0000079
    [3] Liu Q,Gao Y,He J. Stem cells from the apical papilla (SCAPs): past,present,prospects,and challenges[J]. Biomedicines,2023,11(7):2047-2059. doi: 10.3390/biomedicines11072047
    [4] Bakopoulou A,Leyhausen G,Volk J,et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP)[J]. Arch Oral Biol,2011,56(7):709-721. doi: 10.1016/j.archoralbio.2010.12.008
    [5] Chen K,Xiong H,Huang Y,et al. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs)[J]. Arch Oral Biol,2013,58(8):997-1006. doi: 10.1016/j.archoralbio.2013.02.010
    [6] Chang H H,Chang M C,Wu I H,et al. Role of ALK5/Smad2/3 and MEK1/ERK signaling in transforming growth factor beta 1-modulated growth,collagen turnover,and differentiation of stem cells from apical papilla of human tooth[J]. J Endod,2015,41(8):1272-1280. doi: 10.1016/j.joen.2015.03.022
    [7] Li J,Ge L,Zhao Y,et al. TGF-beta2 and TGF-beta1 differentially regulate the odontogenic and osteogenic differentiation of mesenchymal stem cells[J]. Arch Oral Biol,2022,64(3):105357.
    [8] Yu S,Li J,Zhao Y,et al. Comparative secretome analysis of mesenchymal stem cells from dental apical papilla and bone marrow during early odonto/osteogenic differentiation: potential role of transforming growth factor-beta2[J]. Front Physiol,2020,11(3):41-53.
    [9] Zhang W,Zhang X,Ling J,et al. Proliferation and odontogenic differentiation of BMP2 genetransfected stem cells from human tooth apical papilla: an in vitro study[J]. Int J Mol Med,2014,34(4):1004-1012. doi: 10.3892/ijmm.2014.1862
    [10] Zhang W,Zhang X,Li J,et al. Foxc2 and BMP2 induce osteogenic/odontogenic differentiation and mineralization of human stem cells from apical papilla[J]. Stem Cells Int,2018,9(7):2363917.
    [11] Zhang W,Zhang X,Ling J,et al. Osteo-/odontogenic differentiation of BMP2 and VEGF gene-co-transfected human stem cells from apical papilla[J]. Mol Med Rep,2016,13(5):3747-3754. doi: 10.3892/mmr.2016.4993
    [12] Press T,Viale-Bouroncle S,Felthaus O,et al. EGR1 supports the osteogenic differentiation of dental stem cells[J]. Int Endod J,2015,48(2):185-192. doi: 10.1111/iej.12299
    [13] Wang J,Zhang H,Zhang W,et al. Bone morphogenetic protein-9 effectively induces osteo/odontoblastic differentiation of the reversibly immortalized stem cells of dental apical papilla[J]. Stem Cells Dev,2014,23(12):1405-1416. doi: 10.1089/scd.2013.0580
    [14] Wang F,Jiang Y,Huang X,et al. Pro-Inflammatory cytokine TNF-alpha attenuates BMP9-induced osteo/ odontoblastic differentiation of the stem cells of dental apical papilla (SCAPs)[J]. Cell Physiol Biochem,2017,41(5):1725-1735. doi: 10.1159/000471865
    [15] Zhang H,Wang J,Deng F,et al. Canonical Wnt signaling acts synergistically on BMP9-induced osteo/odontoblastic differentiation of stem cells of dental apical papilla (SCAPs)[J]. Biomaterials,2015,39(1):145-154.
    [16] Zhu X Y,Diao S,Yang D M,et al. The Mechanism of GREM1's effect on osteogenic/odontogenic differentiation of stem cells from apical papilla[J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2021,52(3):409-415.
    [17] Wang S,Mu J,Fan Z,et al. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla[J]. Stem Cell Res,2012,8(3):346-356. doi: 10.1016/j.scr.2011.12.005
    [18] Wang Y,Pang X,Wu J,et al. MicroRNA hsa-let-7b suppresses the odonto/osteogenic differentiation capacity of stem cells from apical papilla by targeting MMP1[J]. J Cell Biochem,2018,119(8):6545-6554. doi: 10.1002/jcb.26737
    [19] Ma S,Liu G,Jin L,et al. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla[J]. Sci Rep,2016,6(11):36922-36933.
    [20] Cao Y,Xia D S,Qi S R,et al. Epiregulin can promote proliferation of stem cells from the dental apical papilla via MEK/Erk and JNK signalling pathways[J]. Cell Prolif,2013,46(4):447-456. doi: 10.1111/cpr.12039
    [21] Li Y,Yan M,Wang Z,et al. 17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway[J]. Stem Cell Res Ther,2014,5(6):125-149. doi: 10.1186/scrt515
    [22] Wang Y,Lu Y,Li Z,et al. Oestrogen receptor alpha regulates the odonto/osteogenic differentiation of stem cells from apical papilla via ERK and JNK MAPK pathways[J]. Cell Prolif,2018,51(6):e12485-12494. doi: 10.1111/cpr.12485
    [23] Pang X,Zhuang Y,Li Z,et al. Intermittent administration of parathyroid hormone enhances odonto/osteogenic differentiation of stem cells from the apical papilla via JNK and P38 MAPK pathways[J]. Stem Cells Int,2020,11(2):5128128.
    [24] Zhang J,Zhao I S,Yu O Y,et al. Layer-by-layer self-assembly polyelectrolytes loaded with cyclic adenosine monophosphate enhances the osteo/odontogenic differentiation of stem cells from apical papilla[J]. J Biomed Mater Res A,2021,109(2):207-218. doi: 10.1002/jbm.a.37017
    [25] Su S,Zhu Y,Li S,et al. The transcription factor cyclic adenosine 3',5'-monophosphate response element-binding protein enhances the odonto/osteogenic differentiation of stem cells from the apical papilla[J]. Int Endod J,2017,50(9):885-894. doi: 10.1111/iej.12709
    [26] Zhang Y,Yuan L,Meng L,et al. Guanine and nucleotide binding protein 3 promotes odonto/osteogenic differentiation of apical papilla stem cells via JNK and ERK signaling pathways[J]. Int J Mol Med,2019,43(1):382-392.
    [27] Xiao M,Yao B,Zhang B D,et al. Stromal-derived Factor-1alpha signaling is involved in bone morphogenetic protein-2-induced odontogenic differentiation of stem cells from apical papilla via the Smad and Erk signaling pathways[J]. Exp Cell Res,2019,381(1):39-49. doi: 10.1016/j.yexcr.2019.04.036
    [28] Liu J,Wang X,Song M,et al. MiR-497-5p regulates osteo/odontogenic differentiation of stem cells from apical papilla via the smad signaling pathway by targeting smurf2[J]. Front Genet,2020,11(10):582366.
    [29] Li Z,Ge X,Lu J,et al. MiR-141-3p regulates proliferation and senescence of stem cells from apical papilla by targeting YAP[J]. Exp Cell Res,2019,383(2):111562. doi: 10.1016/j.yexcr.2019.111562
    [30] Xiao Y,Chen L,Xu Y,et al. Circ-ZNF236 mediates stem cells from apical papilla differentiation by regulating LGR4-induced autophagy[J]. Int Endod J,2024,57(4):431-450. doi: 10.1111/iej.14021
    [31] Jia Q,Chen X,Jiang W,et al. The regulatory effects of long noncoding RNA-ANCR on dental tissue-derived stem cells[J]. Stem Cells Int,2016,7(8):3146805.
    [32] Wang L,Yang H,Lin X,et al. KDM1A regulated the osteo/dentinogenic differentiation process of the stem cells of the apical papilla via binding with PLOD2[J]. Cell Prolif,2018,51(4):e12459-12467. doi: 10.1111/cpr.12459
    [33] Diao S,Yang D M,Dong R,et al. Enriched trimethylation of lysine 4 of histone H3 of WDR63 enhanced osteogenic differentiation potentials of stem cells from apical papilla[J]. J Endod,2015,41(2):205-211. doi: 10.1016/j.joen.2014.09.027
    [34] Gao R,Dong R,Du J,et al. Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15INK4B and p27Kip1[J]. Mol Cell Biochem,2013,379(1-2):115-122. doi: 10.1007/s11010-013-1633-7
    [35] Su X,Yang H,Shi R,et al. Depletion of SNRNP200 inhibits the osteo-/dentinogenic differentiation and cell proliferation potential of stem cells from the apical papilla[J]. BMC Dev Biol,2020,20(1):22-32. doi: 10.1186/s12861-020-00228-y
    [36] Xu J,Yu B,Hong C,et al. KDM6B epigenetically regulates odontogenic differentiation of dental mesenchymal stem cells[J]. Int J Oral Sci,2013,5(4):200-205. doi: 10.1038/ijos.2013.77
    [37] Li W,Lin X,Yang H,et al. Depletion of HOXA5 inhibits the osteogenic differentiation and proliferation potential of stem cells from the apical papilla[J]. Cell Biol Int,2018,42(1):45-52. doi: 10.1002/cbin.10860
    [38] Gao R T,Zhan L P,Meng C,et al. Homeobox B7 promotes the osteogenic differentiation potential of mesenchymal stem cells by activating RUNX2 and transcript of BSP[J]. Int J Clin Exp Med,2015,8(7):10459-10470.
    [39] Yang H,Liang Y,Cao Y,et al. Homeobox C8 inhibited the osteo-/dentinogenic differentiation and migration ability of stem cells of the apical papilla via activating KDM1A[J]. J Cell Physiol,2020,235(11):8432-8445. doi: 10.1002/jcp.29687
    [40] Wu Z,Wang J,Dong R,et al. Depletion of MEIS2 inhibits osteogenic differentiation potential of human dental stem cells[J]. Int J Clin Exp Med,2015,8(5):7220-7230.
    [41] Yang H,Fan J,Cao Y,et al. Distal-less homeobox 5 promotes the osteo-/dentinogenic differentiation potential of stem cells from apical papilla by activating histone demethylase KDM4B through a positive feedback mechanism[J]. Exp Cell Res,2019,374(1):221-230. doi: 10.1016/j.yexcr.2018.11.027
    [42] Yang H,Cao Y,Zhang J,et al. DLX5 and HOXC8 enhance the chondrogenic differentiation potential of stem cells from apical papilla via LINC01013[J]. Stem Cell Res Ther,2020,11(1):271-286. doi: 10.1186/s13287-020-01791-8
    [43] Wan F,Gao L,Lu Y,et al. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study[J]. Biochem Biophys Res Commun,2016,469(3):599-605. doi: 10.1016/j.bbrc.2015.11.135
    [44] Zhang J,Wang Z,Jiang Y,et al. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro[J]. Exp Cell Res,2015,332(2):259-266. doi: 10.1016/j.yexcr.2015.01.020
    [45] Wang H,Cao Y. WIF1 enhanced dentinogenic differentiation in stem cells from apical papilla[J]. BMC Oral Health,2019,19(1):25-32. doi: 10.1186/s12903-018-0700-6
    [46] Jin L,Cao Y,Yu G,et al. SFRP2 enhances the osteogenic differentiation of apical papilla stem cells by antagonizing the canonical WNT pathway[J]. Cell Mol Biol Lett,2017,22(8):14-27.
    [47] Yang H,Li G,Han N,et al. Secreted frizzled-related protein 2 promotes the osteo/odontogenic differentiation and paracrine potentials of stem cells from apical papilla under inflammation and hypoxia conditions[J]. Cell Prolif,2020,53(1):e12694-12704. doi: 10.1111/cpr.12694
    [48] Zhou M,Guo S,Yuan L,et al. Blockade of LGR4 inhibits proliferation and odonto/osteogenic differentiation of stem cells from apical papillae[J]. J Mol Histol,2017,48(5-6):389-401. doi: 10.1007/s10735-017-9737-0
    [49] Cheng Q,Zeng K,Kang Q,et al. The antimicrobial peptide LL-37 promotes migration and odonto/osteogenic differentiation of stem cells from the apical papilla through the Akt/Wnt/beta-catenin signaling pathway[J]. J Endod,2020,46(7):964-972. doi: 10.1016/j.joen.2020.03.013
    [50] Liu J,Du J,Chen X,et al. The effects of mitogen-activated protein kinase signaling pathways on lipopolysaccharide-mediated osteo/odontogenic differentiation of stem cells from the apical papilla[J]. J Endod,2019,45(2):161-167. doi: 10.1016/j.joen.2018.10.009
  • [1] 蒲龙, 周旋然, 江陈榕, 李云轩, 袁勇.  抑制PPARγ表达对BMSCs成骨分化的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240903
    [2] 李芬, 赵婕, 张海溪, 张琳, 辜学忠.  噬血细胞综合征患者的铁代谢指标、细胞因子和肝功能的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241115
    [3] 徐云容, 唐梓闻, 何飞.  骨修复材料促成骨作用的分子机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231007
    [4] 钱石兵, 张凌鹏, 殷凌云, 李昌全, 李虎, 于鸿滨.  不同浓度的牙髓干细胞成骨能力的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230214
    [5] 徐倩, 崔玉梅, 马思明, 林云红, 熊依菁, 宋子珺, 李旭东.  miR-148a-3p靶向SMURF2调节牙髓干细胞和口腔上皮细胞共培养体系成骨分化及牙釉质发育的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231103
    [6] 赵琨, 肖云, 杨纯, 严志凌, 董敏娜, 向柄全, 肖茗耀.  白细胞介素-4在脂多糖诱导急性肺损伤模型中的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220805
    [7] 张浒, 彭安睿, 钟佳冀, 黄波.  动脉旁路移植术后静脉桥再狭窄通路的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210704
    [8] 杨金荣, 武坤, 聂波, 贺振新, 杨雨宇, 孙杰, 曾云.  成人HPS临床特征及多种细胞因子水平与预后的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211220
    [9] 周玮莎, 张乐, 彭静, 陈寿坤, 刘梦君, 符晓, 唐志飞, 岳云璇.  血浆置换加双重血浆分子吸附对自身免疫性肝炎合并肝衰竭的细胞因子的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210414
    [10] 赵维佳, 李红宾, 陈宗翰.  窄谱中波紫外线联合卡泊三醇治疗银屑病症状转归及患者治疗前后外周血细胞因子水平评价, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201227
    [11] 王艳春, 杜曾庆, 刘梅, 王美芬, 黄永坤血清细胞因子变化与手足口病患儿病情程度的相关性, 昆明医科大学学报.
    [12] 李龙滕, 李彦林, 王坤, 肖渝, 闫祥甲.  信号通路在骨性关节炎发病中的作用, 昆明医科大学学报.
    [13] 王洋.  MAPK信号通路在雄激素和运动对大鼠骨骼肌蛋白合成中的作用, 昆明医科大学学报.
    [14] 胡正雄.  TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用, 昆明医科大学学报.
    [15] 姚寒曦.  HtrA1 及其相关因子MGP、BMP-2 在人牙周膜细胞体外成骨分化和矿化过程中的动态表达, 昆明医科大学学报.
    [16] 杨婧.  Th17细胞及相关细胞因子在原发性胆汁性肝硬化患者的表达, 昆明医科大学学报.
    [17] 杨德兴.  脓毒性休克对恒河猴血流动力学、器官损伤及细胞因子释放的影响, 昆明医科大学学报.
    [18] 呼延婕.  白藜芦醇在治疗动脉粥样硬化中关键信号通路mTOR和STAT3转导机制的研究进展, 昆明医科大学学报.
    [19] 李劲涛.  P38-一种信号分子在神经系统疾病中的作用, 昆明医科大学学报.
    [20] 武斌.  大豆苷元对人乳牙牙髓干细胞增殖和成骨分化的影响, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  785
  • HTML全文浏览量:  639
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 网络出版日期:  2024-09-03
  • 刊出日期:  2024-09-25

目录

/

返回文章
返回