留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衰老与骨质疏松靶基因及小分子筛选的基因组分析

马丹 张亚娟 马彬斌 岳乔宁 刘建平

马丹, 张亚娟, 马彬斌, 岳乔宁, 刘建平. 衰老与骨质疏松靶基因及小分子筛选的基因组分析[J]. 昆明医科大学学报.
引用本文: 马丹, 张亚娟, 马彬斌, 岳乔宁, 刘建平. 衰老与骨质疏松靶基因及小分子筛选的基因组分析[J]. 昆明医科大学学报.
Dan MA, Yajuan ZHANG, Binbin MA, Qiaoning YUE, Jianping LIU. Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening[J]. Journal of Kunming Medical University.
Citation: Dan MA, Yajuan ZHANG, Binbin MA, Qiaoning YUE, Jianping LIU. Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening[J]. Journal of Kunming Medical University.

衰老与骨质疏松靶基因及小分子筛选的基因组分析

基金项目: 云南省卫健委医学后备人才培养计划项目(H-2019049)。
详细信息
    作者简介:

    马丹(2000~),女,云南宣威人,在读硕士研究生,主要从事骨质疏松的流行病与卫生统计学研究工作

    通讯作者:

    刘建平,E-mail:liujianping789123@163.com

  • 中图分类号: R681

Genomic Analysis of Cellular Senescence and Osteoporosis Target Genes and Small Molecule Screening

  • 摘要:   目的  利用公共数据库中的数据探索衰老与骨质疏松的共同靶基因,筛选有潜在治疗作用的小分子化合物。  方法  从公共基因表达数据库(gene expression omnibus,GEO)中下载骨质疏松数据集GSE56814和GSE56815并合并,从Genecard数据库和Cell age数据库中选取衰老基因并合并,使用R软件对数据进行清洗,筛选出差异基因,制作火山图,进行加权基因共表达筛选出关键模块和基因以及使用机器学习方法筛选靶基因,利用微生信平台绘制韦恩图,Cytoscape软件进行蛋白互作结果可视化,使用STRING 数据库进行差异编码蛋白的相互作用分析,利用Cmap数据库进行小分子化合物的预测。绘制受试者工作特征曲线,找出最有意义的靶基因,在此基础上建立逻辑回归模型并绘制列线图。  结果  使用limma包共筛选出127个差异基因。对差异基因进行加权基因共表达网络分析,筛选出103个高表达基因。采用拉索回归、支持向量机和随机森林模型3种机器学习方法,最终获得4个靶基因:FOXO3、HIRA、CBX5、RAD1。列线图和校准曲线显示出良好的预测效果。使用Cmap数据库筛选出有潜在治疗作用的5种小分子化合物:樱黄素(O-甲基化异黄酮)、XMD-885、杠柳次苷、依维莫司和XMD-1150  结论  FOXO3、HIRA基因目前已证实是衰老和骨质疏松共同的靶基因,樱黄素对衰老和骨质疏松有潜在治疗作用。
  • 图  1  工作流程图

    Figure  1.  Workflow diagram

    图  2  差异基因结果及交集

    A:差异基因火山图结果;B:骨质疏松与衰老基因交集。

    Figure  2.  Differential gene results and intersections

    图  3  加权基因共表达分析结果

    A:样本聚类图;B:软阈值;C:基因聚类树;D:模块与临床相关性。

    Figure  3.  Weighted gene co-expression analysis results

    图  4  蛋白质互作可视化

    Figure  4.  Visualisation of protein interactions

    图  5  17个交集基因的GO-KEGG富集分析

    A:BP;B:CC;C:MF;D:KEGG。

    Figure  5.  GO-KEGG Enrichment analysis of 17 intersecting genes

    图  6  机器学习筛选靶基因

    A:17个基因的LASSO系数路径图;B:交叉验证曲线;C:SVM-RFE;D:随机森林15个基因重要性;E:三种机器学习方法筛选基因的交集。

    Figure  6.  Machine learning screening of target genes

    图  7  4个靶基因的受试者工作曲线

    A:CBX5基因的ROC;B:FOXO3基因的ROC;C:HIRA基因的ROC;D:RAD1基因的ROC。

    Figure  7.  ROC curves for the four target genes

    图  8  4个靶基因的列线图与ROC曲线

    A:4个靶基因列线图;B:逻辑回归模型的预测效果ROC曲线。

    Figure  8.  Nomogram and ROC curves for the four target genes

    表  1  CMap分析发现的潜在衰老和骨质疏松症药物小分子化合物

    Table  1.   Potential small molecular compounds for aging and osteoporosis found in CMap analysis

    连通性评分药物名称说明
    −98.39prunetinBreast cancer resistance protein inhibitor
    −97.82XMD-885Leucine rich repeat kinase inhibitor
    −97.64periplocymarinApoptosis stimulant
    −96.95everolimusMTOR inhibitor
    −96.37XMD-1150Leucine rich repeat kinase inhibitor
    下载: 导出CSV
  • [1] Calimport S R G,Bentley B L,Stewart C E,et al. To help aging populations,classify organismal senescence[J]. Science,2019,366(6465):576-578. doi: 10.1126/science.aay7319
    [2] 陈卫,郭亚隆. 中国的人口负增长与人口老龄化[J]. 北京社会科学,2023(8):101-112.
    [3] 杜鹏. 中国人口老龄化现状与社会保障体系发展[J]. 社会保障评论,2023,7(2):31-47.
    [4] Le Couteur D G,Thillainadesan J. What is an aging-related disease? An epidemiological perspective[J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences,2022,77(11):2168-2174. doi: 10.1093/gerona/glac039
    [5] Dönertaş H M,Fabian D K,Valenzuela M F,et al. Common genetic associations between age-related diseases[J]. Nat Aging,2021,1(4):400-412. doi: 10.1038/s43587-021-00051-5
    [6] Fougère B,Boulanger E,Nourhashémi F,et al. Chronic inflammation: Accelerator of biological aging[J]. J Gerontol A Biol Sci Med Sci,2017,72(9):1218-1225. doi: 10.1093/gerona/glw240
    [7] Filippov M A,Tatarnikova O G,Pozdnyakova N V,et al. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: A role of mitochondria targeted catalase and xanthophylls[J]. Neural Regen Res,2021,16(2):223-233. doi: 10.4103/1673-5374.290878
    [8] Wang Y,Shen J,Chen Y,et al. PINK1 protects against oxidative stress induced senescence of human nucleus pulposus cells via regulating mitophagy[J]. Biochem Biophys Res Commun,2018,504(2):406-414. doi: 10.1016/j.bbrc.2018.06.031
    [9] Tian Y,Hu Y,Hou X,et al. Impacts and mechanisms of PM2.5 on bone[J]. Rev Environ Health,2023,39(4):765-775.
    [10] 王永炫,李梅,章振林,等. 《原发性骨质疏松症诊疗指南(2022)》要点解读[J]. 协和医学杂志,2023,14(6):1203-1207.
    [11] Almeida M,Laurent M R,Dubois V,et al. Estrogens and androgens in skeletal physiology and pathophysiology[J]. Physiol Rev,2017,97(1):135-187. doi: 10.1152/physrev.00033.2015
    [12] Ahire JJ,Kumar V,Rohilla A. Understanding osteoporosis: Human bone density,genetic mechanisms,gut microbiota,and future prospects[J]. Probiotics Antimicrob Proteins,2024,16(3):875-883. doi: 10.1007/s12602-023-10185-0
    [13] Zhou Z,Lu Y,Wang Y,et al. Let-7c regulates proliferation and osteodifferentiation of human adipose-derived mesenchymal stem cells under oxidative stress by targeting SCD-1[J]. Am J Physiol Cell Physiol,2019,316(1):C57-C69. doi: 10.1152/ajpcell.00211.2018
    [14] Li H,Xiao Z,Quarles L D,et al. Osteoporosis: Mechanism,molecular target and current status on drug development[J]. Curr Med Chem,2021,28(8):1489-1507. doi: 10.2174/0929867327666200330142432
    [15] Palacios S. Medical treatment of osteoporosis[J]. Climacteric,2022,25(1):43-49. doi: 10.1080/13697137.2021.1951697
    [16] Yang T L,Shen H,Liu A,et al. A road map for understanding molecular and genetic determinants of osteoporosis[J]. Nat Rev Endocrinol,2020,16(2):91-103. doi: 10.1038/s41574-019-0282-7
    [17] Farr J N,Rowsey J L,Eckhardt B A,et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: Evidence in young adult mice and older humans[J]. J Bone Miner Res,2019,34(8):1407-1418. doi: 10.1002/jbmr.3729
    [18] Shen G S,Zhou H B,Zhang H,et al. The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(12):3644-3654. doi: 10.1016/j.bbadis.2018.09.015
    [19] Busse B,Djonic D,Milovanovic P,et al. Decrease in the osteocytelacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone[J]. Aging Cell,2010,9(6):1065-1075. doi: 10.1111/j.1474-9726.2010.00633.x
    [20] Jilka R L,O'Brien C A. The role of osteocytes in age-related bone loss[J]. Curr Osteoporos Rep.,2016,14(1):16-25. doi: 10.1007/s11914-016-0297-0
    [21] Lv Y J,Yang Y,Sui B D,et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice[J]. Theranostics,2018,8(9):2387-2406. doi: 10.7150/thno.23620
    [22] Tiede-Lewis L M,Dallas S L. Changes in the osteocyte lacunocanalicular network with aging[J]. Bone,2019,122:101-113. doi: 10.1016/j.bone.2019.01.025
    [23] Aurora R,Veis D. Does aging activate T-cells to reduce bone mass and quality?[J]. Curr Osteoporos Rep,2022,20(5):326-333. doi: 10.1007/s11914-022-00745-8
    [24] De Spiegeleer A,Beckwée D,Bautmans I,et al. Pharmacological interventions to improve muscle mass,muscle strength and physical performance in older people: An umbrella review of systematic reviews and meta-analyses[J]. Drugs Aging,2018,35(8):719-734. doi: 10.1007/s40266-018-0566-y
    [25] Choi H S. Why do we need proactive management for fracture prevention in long-term glucocorticoid users?[J]. Endocrinol Metab (Seoul),2020,35(3):549-551. doi: 10.3803/EnM.2020.308
    [26] Cortet B,Lucas S,Legroux-Gerot I,et al. Bone disorders associated with diabetes mellitus and its treatments[J]. Joint Bone Spine,2019,86(3):315-320. doi: 10.1016/j.jbspin.2018.08.002
    [27] Ashamalla M,Malik,W. S,et al. Investigating the factors that affect osteoporosis in an aging population[J]. The Health & Fitness Journal of Canada,2020,13(2):30-36.
    [28] Rubio-Gutierrez J C,Mendez-Hernández P,Guéguen Y,et al. Overview of traditional and environmental factors related to bone health[J]. Environ Sci Pollut Res Int,2022,29(21):31042-31058. doi: 10.1007/s11356-022-19024-1
    [29] Javaheri B,Pitsillides A A. Aging and mechanoadaptive responsiveness of bone[J]. Curr Osteoporos Rep,2019,17(6):560-569. doi: 10.1007/s11914-019-00553-7
    [30] Khor Y S,Wong P F. MicroRNAs-associated with FOXO3 in cellular senescence and other stress responses[J]. Biogerontology,2024,25(1):23-51. doi: 10.1007/s10522-023-10059-6
    [31] Xia B,Li Y,Zhou J,et al. Identification of potential pathogenic genes associated with osteoporosis[J]. Bone Joint Res,2017,6(12):640-648. doi: 10.1302/2046-3758.612.BJR-2017-0102.R1
    [32] Köksal Karayildirim Ç,Nalbantsoy A,Karabay Yavaşoğlu N Ü. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes[J]. Mol Biol Rep,2021,48(11):7251-7259. doi: 10.1007/s11033-021-06719-w
    [33] Kim B,Jo C,Choi H Y,et al. Prunetin relaxed isolated rat aortic rings by blocking calcium channels[J]. Molecules,2018,23(9):2372. doi: 10.3390/molecules23092372
    [34] Khan K,Pal S,Yadav M,et al. Prunetin signals via G-protein-coupled receptor,GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration[J]. J Nutr Biochem,2015,26(12):1491-501. doi: 10.1016/j.jnutbio.2015.07.021
    [35] Wu J,Chen J,Yu X,et al. The potential pharmacological mechanism of prunetin against osteoporosis: transcriptome analysis,molecular docking,and experimental approaches[J]. Toxicol Mech Methods,2024,34(1):46-56. doi: 10.1080/15376516.2023.2253305
    [36] Chandra A, Rajawat J. Skeletal aging and osteoporosis: Mechanisms and therapeutics[J]. Int J Mol Sci,2021,22(7):3553. doi: 10.3390/ijms22073553
    [37] Pignolo R J,Law S F,Chandra A. Bone aging,cellular senescence,and osteoporosis[J]. JBMR Plus,2021,5(4):e10488. doi: 10.1002/jbm4.10488
    [38] Manolagas S C. From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis[J]. Endocr Rev,2010,31(3):266-300. doi: 10.1210/er.2009-0024
    [39] Pietschmann P,Mechtcheriakova D,Meshcheryakova A,et al. Immunology of osteoporosis: A mini-review[J]. Gerontology,2016,62(2):128-137. doi: 10.1159/000431091
  • [1] 楚昭阳, 李佳玲, 陈俊薇, 冯昌增, 张名, 李丽, 马绍辉.  云南省柯萨奇病毒A组10型的全基因组分析, 昆明医科大学学报. 2025, 46(2): 1-7.
    [2] 江陈榕, 周旋然, 蒲龙, 袁勇.  不同入路半髋关节置换术治疗老年股骨粗隆间骨折的疗效分析, 昆明医科大学学报. 2024, 45(1B): 1-6.
    [3] 冉蕾晶, 王绍华, 李林童, 桂莉.  益生菌辅助治疗骨质疏松患者效果的Meta分析, 昆明医科大学学报. 2024, 45(2): 65-76. doi: 10.12259/j.issn.2095-610X.S20240209
    [4] 罗景梅, 李灿晖, 李斓, 林婕, 张婧容, 张丽华.  血浆miR-1181在2型糖尿病患者表达水平变化和意义, 昆明医科大学学报. 2021, 42(10): 61-67. doi: 10.12259/j.issn.2095-610X.S20211019
    [5] 廖勇, 郭一雲, 周红宇, 冯海魄, 陈根定, 杨水清.  叶酸联合阿伦磷酸钠对绝经后骨质疏松患者骨代谢、CCL4及纤维细胞生长因子水平的影响, 昆明医科大学学报. 2021, 42(7): 98-103. doi: 10.12259/j.issn.2095-610X.S20210716
    [6] 季雨伟, 赵鑫, 陆姜利, 杨艺, 唐薇, 角建林.  恒古骨伤愈合剂对绝经后骨质疏松性骨折模型树鼩骨密度及骨生物力学的影响, 昆明医科大学学报. 2020, 41(11): 7-11. doi: 10.12259/j.issn.2095-610X.S20201103
    [7] 李娜, 方红丽, 邓苙.  原发性骨质疏松影响因素及健康干预研究进展, 昆明医科大学学报. 2019, 40(06): 135-139.
    [8] 解春林, 岳桥宁, 滕兆伟.  骨质疏松疾病发生的一种非编码RNA科学假说, 昆明医科大学学报. 2019, 40(01): 1-5.
    [9] 杜士刚, 赵玲, 普梦娴, 潘毅, 杜娟, 柯亭羽.  昆明地区部分成年健康女性骨量调查, 昆明医科大学学报. 2018, 39(12): 43-48.
    [10] 李进涛, 郑红, 唐薇, 吴超, 角建林, 赵宏斌.  不同饲养空间对骨质疏松树鼩雌二醇和骨代谢指标的影响, 昆明医科大学学报. 2017, 38(09): 1-6.
    [11] 梁大伟.  不同假体的人工髋关节置换术治疗老年骨质疏松性股骨颈骨折, 昆明医科大学学报. 2016, 37(05): -.
    [12] 赵正兴.  防旋型股骨近端髓内钉治疗骨质疏松性粗隆间骨折40例临床疗效, 昆明医科大学学报. 2016, 37(02): -.
    [13] 李丽.  老鹳草素对骨质疏松大鼠BMSCWnt3a表达的影响, 昆明医科大学学报. 2016, 37(06): -.
    [14] 杨凤.  手术双侧卵巢去势法建立骨质疏松树鼩模型, 昆明医科大学学报. 2016, 37(01): -.
    [15] 柯亭羽.  阻塞性睡眠呼吸暂停低通气综合征患者骨密度改变, 昆明医科大学学报. 2015, 36(05): -.
    [16] 杨曼.  糖尿病SD大鼠骨密度及骨组织学特点研究, 昆明医科大学学报. 2014, 35(06): -.
    [17] 陈波.  hsa-miR-126的靶基因预测及功能分析, 昆明医科大学学报. 2014, 35(11): -1.
    [18] 袁晓峰.  球囊扩张椎体后凸成形术治疗老年胸腰椎爆裂骨折临床疗效观察, 昆明医科大学学报. 2013, 34(09): -.
    [19] 张小超.  老鹳草素对破骨细胞体外骨吸收功能的影响, 昆明医科大学学报. 2012, 33(08): 1-1.
    [20] 宋宇锋.  去势大鼠关节软骨病理变化的研究, 昆明医科大学学报. 2011, 32(12): -.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-20
  • 网络出版日期:  2025-01-04

目录

    /

    返回文章
    返回