The Association of HOXD-AS2 and MIR3142HG Gene Polymorphisms with Cervical Intraepithelial Neoplasia
-
摘要:
目的 探究靶向MAPK信号通路的HOXD-AS2、MIR3142HG基因多态性与宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)的相关性。 方法 通过生物信息学工具筛选了2个单核苷酸多态性(single nucleotide polymorphism,SNP)位点,分别是位于HOXD-AS2启动子区域的rs1348808及位于MIR3142HG增强子区域的rs2431099。同时纳入了976名健康对照者和419名CIN患者,使用TaqMan探针法对其进行基因分型并分析与CIN的相关性。 结果 rs1348808的C等位基因可能是CIN3以及CIN2进展为CIN3的保护因素(OR = 0.77,95%CI:0.63~0.94;OR = 0.57,95%CI:0.37~0.90);rs2431099的A等位基因可能是CIN2的保护因素(OR = 0.50,95%CI:0.31~0.80)。 结论 HOXD-AS2、MIR3142HG的基因多态性可能与CIN相关。 Abstract:Objective To explore the association of HOXD-AS2 and MIR3142HG gene polymorphism with cervical intraepithelial neoplasia (CIN). Methods Two single nucleotide polymorphisms (SNPs) located in HOXD-AS2 (rs1348808) and located in MIR3142HG (rs2431099) were selected using bioinformatics tools. The two candidate SNPs were genotyped in 976 healthy individuals and 419 patients with CIN using the TaqMan probe method for genotyping, and the association with CIN were analyzed. Results rs1348808 C allele might be the protective factor for CIN3 as well as the progression from CIN2 to CIN3 (OR = 0.77, 95%CI: 0.63~0.94; OR = 0.57, 95%CI: 0.37~0.90). Similarly, rs2431099 A allele might be the protective factor of CIN2 (OR = 0.50, 95%CI: 0.31~0.80). Conclusion HOXD-AS2 and MIR3142HG gene polymorphisms might be associated with CIN. -
Key words:
- Cervical intraepithelial neoplasia /
- lncRNA /
- SNP /
- MAPK signaling pathway
-
表 1 所选SNP位点信息
Table 1. The information of selected SNPs in the current study
SNPs 基因 功能 位置 等位基因 中国南方汉族人群MAF rs1348808 HOXD-AS2 启动子区域 Chr 2: 176135888 C>T 0.28 rs2431099 MIR3142HG 增强子区域 Chr 5: 160459613 A>G 0.33 表 2 2个SNP位点在3组中等位基因及基因型分布频率结果 [n (%)]
Table 2. Allele and genotype frequencies of two SNPs between three groups [n(%)]
SNPs 等位基因/基因型 对照组 CIN2组 CIN3组 χ2 P rs1348808 C 529(27.1) 34(33.3) 164(22.3) 9.348 0.009* T 1423 (72.9)68(66.7) 572(77.7) C/C 78(8.0) 3(5.9) 22(6.0) 13.525 0.009* C/T 373(38.2) 28(54.9) 120(32.6) T/T 525(53.8) 20(39.2) 226(61.4) rs2431099 A 720(36.9) 23(22.5) 254(34.5) 9.327 0.009* G 1232 (63.1)79(77.5) 482(65.5) A/A 136(13.9) 6(11.8) 36(9.8) 19.513 0.001* A/G 448(45.9) 11(21.5) 182(49.4) G/G 392(40.2) 34(66.7) 150(40.8) *P < 0.016(经Bonferroni校正,n = 3)。 表 3 rs1348808位点遗传模式分析
Table 3. The inheritance model analysis of rs1348808
模型 CIN3 vs 对照组 CIN3 vs CIN2 OR (95% CI) P AIC BIC OR (95% CI) P AIC BIC 共显性 T/T 1.00 0.037 1577.3 1592.9 1.00 0.008 306.6 318.7 C/T 0.75(0.58~0.97) 2.63(1.43~4.76) C/C 0.65(0.40~1.08) 1.54(0.42~5.56) 显性 T/T 1.00 0.012 1575.5 1586.0 1.00 0.003 305.4 313.5 C/T-C/C 0.73(0.57~0.93) 2.44(1.35~4.55) 隐性 T/T-C/T 1.00 0.200 1580.2 1590.7 1.00 0.980 314.3 322.4 C/C 0.73(0.45~1.19) 0.98(0.28~3.45) 超显性 T/T-C/C 1.00 0.056 1578.2 1588.6 1.00 0.002* 305.0 313.1 C/T 0.78(0.61~1.01) 2.50(1.39~4.55) 逻辑累加 --- 0.78(0.64~0.95) 0.012* 1575.5 1585.9 1.72(1.11~2.70) 0.018 308.8 316.9 *P < 0.05;且AIC和BIC值最小,为分组比较中的最优遗传模式。 表 4 rs2431099位点在CIN2组和对照组的比较中遗传模式分析
Table 4. The inheritance model analysis of rs2431099 between the CIN2 and control groups
模型 OR (95% CI) P AIC BIC 共显性 T/T 1 5.00×10−4 396.7 411.5 C/T 0.28(0.14~0.56) C/C 0.51(0.21~1.23) 显性 T/T 1 2.00×10−4* 395.9 405.7 C/T-C/C 0.34(0.18~0.61) 隐性 T/T-C/T 1 0.66 409.5 419.4 C/C 0.83(0.34~1.96) 超显性 T/T-C/C 1 4.00×10−4 397.2 407.1 C/T 0.32(0.16~0.64) 逻辑累加 --- 0.51(0.32~0.81) 0.003 400.7 410.6 *P < 0.05;且AIC和BIC值最小,为分组比较中的最优遗传模式。 -
[1] Arbyn M,Ronco G,Anttila A,et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer[J]. Vaccine,2012,30(Suppl 5):F88-F99. [2] 赵超,毕蕙,赵昀,等. 子宫颈高级别上皮内病变管理的中国专家共识[J]. 中国妇产科临床杂志,2022,23(2):220-224. [3] Mccredie M R,Sharples K J,Paul C,et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: A retrospective cohort study[J]. Lancet Oncol,2008,9(5):425-434. doi: 10.1016/S1470-2045(08)70103-7 [4] Zheng R,Zhang S,Zeng H,et al. Cancer incidence and mortality in China,2016[J]. Journal of the National Cancer Center,2022,2(1):1-9. doi: 10.1016/j.jncc.2022.02.002 [5] Kawase K,Taguchi A,Ishizaka A,et al. Allelic loss of HLA class I facilitates evasion from immune surveillance in cervical intraepithelial neoplasia[J]. HLA,2024,103(6):e15509. doi: 10.1111/tan.15509 [6] Hangauer M J,Vaughn I W,Mcmanus M T. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs[J]. PLoS Genet,2013,9(6):e1003569. doi: 10.1371/journal.pgen.1003569 [7] Kaewsapsak P,Shechner D M,Mallard W,et al. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking[J]. Elife,2017,6(1):e29224. [8] Melé M,RInn J L. "Cat's cradling" the 3D genome by the act of lncRNA transcription[J]. Mol Cell,2016,62(5):657-664. doi: 10.1016/j.molcel.2016.05.011 [9] Lee S,Kopp F,Chang T C,et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins[J]. Cell,2016,164(1-2):69-80. doi: 10.1016/j.cell.2015.12.017 [10] Benoit bouvrette L P,Cody N A L,Bergalet J,et al. CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells[J]. RNA,2018,24(1):98-113. doi: 10.1261/rna.063172.117 [11] Dai J,Zhang S,Shi Y,et al. rs217727 of lncRNA H19 is associated with cervical cancer risk in the Chinese Han population[J]. Pharmgenomics Pers Med,2023,16(1):933-948. [12] Liu Y,Zhang Q,Ni R. Association between genetic variants (rs920778,rs4759314,and rs217727) in LncRNAs and cervical cancer susceptibility in Chinese population: A systematic review and meta-analysis[J]. Front Genet,2022,13(1):988207. [13] 中华医学会. 临床诊疗指南: 妇产科学分册 [M]. 北京: 人民卫生出版社,2007: 65-67. [14] Yang J,Yan Z,Wang Y,et al. Association study of relationships of polymorphisms in the miR-21,miR-26b,miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer[J]. BMC Cancer,2021,21(1):997. doi: 10.1186/s12885-021-08743-2 [15] Shi Y Y,He L. SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci[J]. Cell Res,2005,15(2):97-98. doi: 10.1038/sj.cr.7290272 [16] Solé X,Guinó E,Valls J,et al. SNPStats: A web tool for the analysis of association studies[J]. Bioinformatics,2006,22(15):1928-1929. doi: 10.1093/bioinformatics/btl268 [17] Qi Y,Wang Z,Wu F,et al. Long noncoding RNA HOXD-AS2 regulates cell cycle to promote glioma progression[J]. J Cell Biochem,2019,120(5):8343-8351. doi: 10.1002/jcb.28117 [18] Zhang Y,Ma H. LncRNA HOXD-AS2 regulates miR-3681-5p/DCP1A axis to promote the progression of non-small cell lung cancer[J]. J Thorac Dis,2023,15(3):1289-1301. doi: 10.21037/jtd-23-153 [19] Paterson M R,Kriegel A J. MiR-146a/b: A family with shared seeds and different roots[J]. Physiol Genomics,2017,49(4):243-252. doi: 10.1152/physiolgenomics.00133.2016 [20] Guo X,Zhang M,Li Q,et al. Evaluation of genetic variants in MIR3142HG in susceptibility to and prognosis of glioma[J]. Am J Clin Oncol,2020,43(1):1-8. doi: 10.1097/COC.0000000000000587 [21] Chen Y,Zhao Y,Lu R,et al. Identification and validation of a novel genomic instability-associated long non-coding RNA prognostic signature in head and neck squamous cell carcinoma[J]. Front Cell Dev Biol,2021,9(1):787766. [22] Järvelin A I,Noerenberg M,Davis I,et al. The new (dis)order in RNA regulation[J]. Cell Commun Signal,2016,14(1):9. doi: 10.1186/s12964-016-0132-3 [23] Hentze M W,Castello A,Schwarzl T,et al. A brave new world of RNA-binding proteins[J]. Nat Rev Mol Cell Biol,2018,19(5):327-341. doi: 10.1038/nrm.2017.130