留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HOXD-AS2、MIR3142HG基因多态性与宫颈上皮内瘤变的相关性

陈雪雅 许金美 李智 梁燕 姚宇峰 何凤权 严志凌

田波, 金永梅, 李海雯, 李重熙, 张伟, 关玮, 陈海云, 薛琪, 杨惠榕, 刘俊. 艾滋病抗病毒治疗患者代谢综合征发生现况及影响因素[J]. 昆明医科大学学报, 2024, 45(11): 149-154. doi: 10.12259/j.issn.2095-610X.S20241121
引用本文: 陈雪雅, 许金美, 李智, 梁燕, 姚宇峰, 何凤权, 严志凌. HOXD-AS2、MIR3142HG基因多态性与宫颈上皮内瘤变的相关性[J]. 昆明医科大学学报, 2024, 45(11): 16-21. doi: 10.12259/j.issn.2095-610X.S20241103
Bo TIAN, Yongmei JIN, Haiwen LI, Chongxi LI, Wei ZHANG, Wei GUAN, Haiyun CHEN, Qi XUE, Huirong YANG, Jun LIU. Analysis of the Current Status and Influencing Factors of Metabolic Syndrome in Patients Undergoing Antiretroviral Therapy for AIDS[J]. Journal of Kunming Medical University, 2024, 45(11): 149-154. doi: 10.12259/j.issn.2095-610X.S20241121
Citation: Xueya CHEN, Jinmei XU, Zhi LI, Yan LIANG, Yufeng YAO, Fengquan HE, Zhiling YAN. The Association of HOXD-AS2 and MIR3142HG Gene Polymorphisms with Cervical Intraepithelial Neoplasia[J]. Journal of Kunming Medical University, 2024, 45(11): 16-21. doi: 10.12259/j.issn.2095-610X.S20241103

HOXD-AS2、MIR3142HG基因多态性与宫颈上皮内瘤变的相关性

doi: 10.12259/j.issn.2095-610X.S20241103
基金项目: 云南省基础研究计划基金资助项目(202201AY070001-139);云南省“兴滇英才”支持计划产业创新人才基金资助项目(XDYC-CYCX-2023-0074)
详细信息
    作者简介:

    陈雪雅(1990~),女,山西长治人,在读硕士研究生,主要从事肿瘤的免疫遗传学工作

    通讯作者:

    何凤权,E-mail:569451434@qq.com

    严志凌,E-mail:yanzhiling2021@126.com

  • 中图分类号: R737.33

The Association of HOXD-AS2 and MIR3142HG Gene Polymorphisms with Cervical Intraepithelial Neoplasia

  • 摘要:   目的  探究靶向MAPK信号通路的HOXD-AS2、MIR3142HG基因多态性与宫颈上皮内瘤变(cervical intraepithelial neoplasia,CIN)的相关性。  方法  通过生物信息学工具筛选了2个单核苷酸多态性(single nucleotide polymorphism,SNP)位点,分别是位于HOXD-AS2启动子区域的rs1348808及位于MIR3142HG增强子区域的rs2431099。同时纳入了976名健康对照者和419名CIN患者,使用TaqMan探针法对其进行基因分型并分析与CIN的相关性。  结果  rs1348808的C等位基因可能是CIN3以及CIN2进展为CIN3的保护因素(OR = 0.77,95%CI:0.63~0.94;OR = 0.57,95%CI:0.37~0.90);rs2431099的A等位基因可能是CIN2的保护因素(OR = 0.50,95%CI:0.31~0.80)。  结论  HOXD-AS2、MIR3142HG的基因多态性可能与CIN相关。
  • 头颈部癌症是人类第6大常见癌症,约占总癌症种类的3%,这其中48%属于口腔癌。全世界每年约有30万例新发口腔鳞状细胞癌病例,中国口腔癌的发病率约为5~6人/10万[1]。口腔癌具有进展快、浸润广、预后差的特点,尽管目前手术及放化疗等治疗技术在不断提高,但是远未达到理想效果,口腔癌的长期生存率仍然低于50%[1-2]。若能深入阐明其发病的分子机制,综合多项分子靶点进行预测或治疗,则有望在口腔癌的早期诊断、治疗方面有所突破。

    SOX5(SRY-related high-mobility-group box 5)属于SOX转录因子家族的成员。近年的研究发现,SOX5在软骨组织分化、性别决定中起到重要的作用,并可促进多种肿瘤的发展与转移。而目前关于SOX5在口腔癌中的表达情况以及其在口腔癌中的可能作用还不清楚。小分子RNA(miRNA)是一类长度为17~25 个核苷酸的非编码单链RNA分子,它们在转录后基因表达调控中起着重要的作用。越来越多的研究表明,miRNA参与口腔癌的发生与发展过程,对口腔癌中miRNA的表达变化以及其调控基因的研究,有助于推进我们对口腔癌发生发展分子机制的认识。最近的研究表明,miR-219-5p做为新的癌症相关miRNA,可抑制包括结直肠癌、胃癌、卵巢癌及胶质瘤癌等多种癌细胞的增殖、迁移和侵袭过程,miR-219-5p在这些癌组织中的表达下调。但目前关于miR-219-5p在口腔癌中的表达和作用尚不清楚。

    根据生物学软件的预测,以及对SOX5基因3’-UTR(非编码区域)的分析,作者发现SOX5 是miR-219-5p的一个潜在靶基因,那么SOX5和miR-219-5p是否参与到口腔癌的发生进展中呢?如果是,miR-219-5p是否通过对SOX5的靶调控参与了口腔癌的发生进展呢?为了解决以上问题,本研究拟对miR-219-5p / SOX5在口腔癌中的作用做一初探,拟为临床治疗提供全新的药物治疗靶点依据。

    人舌鳞癌细胞株SCC4、SCC9和人正常皮肤成纤维细胞(HF)购自中国科学院上海细胞库。SCC4和SCC9细胞由中国科学院上海细胞库进行STR验证。本研究中没有使用错误识别和/或污染的细胞系。

    miR-219-5p模拟物、miR-219-5p抑制剂、miRNA模拟物阴性对照(miR-NC)和siRNA阴性对照(miR-219-5p抑制剂,NC)由中国广州瑞博生物有限公司提供。用Lipofectamine 3000试剂盒(Invitrogen;Thermo Fisher Scientific,Inc.)进行细胞转染实验。

    TRIzol® (Invitrogen;Thermo Fisher Scientific,Inc.)及miRNeasy mini kit (Qiagen AB)用于总RNA的提取,All-in-OneTM miRNA 定量RT-PCR检测试剂盒(GeneCopoeia公司)用于miR-219-5p 的RT-qPCR分析。用于miRNAhsa-miR-219-5p及U6 (内参基因) RT-PCR分析的引物购自Applied Biosystems及 Thermo Fisher Scientific公司。采用Moloney Murine Leukemia Virus Reverse Transcriptase (Takara Bio,Inc.) 及2× Mix SYBR Green I (Takara Bio,Inc.) 检测样本中SOX5 mRNA的表达水平。采用BCA试剂盒(北京生物技术公司)检测蛋白浓度。

    细胞在制备好的培养基中经过第12代传代培养,该培养基成分为:Dulbecco’s Modified Eagle’s Medium (DMEM)/F12(DMEM)/F12 (ThermoFisher,上海,中国)、2 mmol/L谷氨酰胺、10%胎牛血清、100 U/mL青霉素和100 mg/mL链霉素(ThermoFisher科学,上海,中国)。在提供5% CO2、恒温37 ℃的培养箱中培养。

    将1.5 μL miR-219-5p模拟物(3 μmol/L)、5 μL miR-219-5p抑制剂(2.5 μmol/L)或等量的Lipofectamine 3000试剂盒中的空白对照剂加入SCC4和SCC9细胞系进行瞬时转染。所使用的miRNA的序列描述如下:miR-219-5p 模拟物,UGAUUGUCCAAACGCAAUUCU;miR-219-5p模拟物空白对照(miR-NC),UGGAUUCCUUAACUUCCCAA;miR-219-5p 抑制剂,UUCAACCAGGAAAAG- UUGGGAAU;miR-219-5p 抑制剂空白对照(miR-219 inhibitor NC),AUGGCACGUGUACUCCUACAUAC。将浓度为1×106的各细胞系接种在培养皿中,按照制造商的说明书建议,在37 ℃下用上述试剂共培养48 h。随后,收集处理过的细胞进行进一步的分析,包括逆转录定量PCR (RT-qPCR)及Western blot实验等。

    根据miRMine (http://www.microrna.org)在线网站的计算,预测SOX5 mRNA的3′-UTR序列中miR-219-5p的结合位点为5′-GGACCAAA-3′,据此,设计验证实验中相应突变位点序列为5′-GCAGGCCA-3′。

    应用荧光素酶报告基因检测验证口腔癌细胞中miR-219-5p靶向调控SOX5基因。通过分子克隆实验将野生型(wt)和突变型(mut)序列插入pmirGLO载体(购自Promega公司)。在荧光素酶活性测定实验中,miR-219-5p模拟物或抑制剂分别用wt-SOX5和mut-SOX5或对照报告质粒转染口腔癌细胞。转染48 h后,使用双荧光素酶报告分析系统(Promega,Madison,WI)测量萤火虫(firefly)和海肾(Renilla)的荧光素酶活性,设定海肾荧光素酶活性作为内部对照。萤火虫的荧光素酶活性以海肾Renilla的荧光素酶活性为准做标准化处理。所有实验均重复进行3次。

    按发表文献的方法描述、运用RT-qPCR检测各细胞株中miR-219-5p和SOX5的相对表达水平[3]。参照样本中U6的表达水平对miR-219-5p的相对表达量参照进行标准化[4]。引物设计并购自Invitrogen (Thermo Fisher Scientific,Inc.),所用引物序列描述如下,hsa-miR-219-5p:正向, 5′-UAUCCACUUGAUCG-GCCUAC-3′;反向5′-GCUCCGCTGUAGACCUAUCUGCA-3′;GAPDH,正向5′-CGAGATCCCTCCAAAATCAA-3′,反向5′-TTCACACCCATGACGAACAT-3′;SOX5,正向5′-CGTAACGAGCCTATGCAAT-3′,反向5′-TACCGGAAGCTA-CAATGCA-3′。每个PCR反应由两部分组成,包括95 ℃初始变性3 min,多次循环扩增(36个循环,95 ℃ 10 s,56.5 ℃ 20 s,75 ℃ 30 s),随后95 ℃变性15 s,65 ℃退火10 s,最终95 ℃延伸10 s GAPDH 作为内参基因。用2-ΔΔCq法评价各基因的相对表达水平[5]

    Western blot检测SOX5蛋白在个样本中的表达水平。按BCA检测试剂盒说明书检测蛋白浓度。取蛋白质样品(40 μg)用10% SDS-PAGE分离,转移到硝化纤维素膜上(中国碧云天生物)。用5%的脱脂牛奶封闭纤维素膜2 h,随后,加入一抗SOX5 (1∶1000;cat.no.sc-293215;Santa Cruz 生物技术公司)和GAPDH (1∶500;cat.no.sc-47724;Santa Cruz 生物技术公司),4 ℃下孵育过夜。0.01 mol/L PBS漂洗3次,每次5 min;HRP标记的二抗IgG(1∶2000;cat. no. sc-516102)在20~24 ℃孵育2 h。用增强的化学发光试剂(EMD,Millipore)观察纤维膜上免疫印迹信号。以GAPDH作为蛋白表达的参考。蛋白质的印迹结果采用Bio-Rad化学发光凝胶成像系统(Bio-Rad,美国)显影,印迹的条带采用Image J软件(V1.8.0.172,美国)进行光密度值的分析。

    运用SPSS 软件(SPSS inc.,version21.0,美国) 对数据进行统计分析。采用方差分析(ANOVA)和Student-Newman-Keuls检验(Student-Newman-Keuls test)测定各组间mRNA和蛋白表达水平是否具有显著性差异。计量数据表述方式采用均数±标准差 (standard deviation,SD),P < 0.05为差异有统计学意义。用Pearson相关系数分析miR-219-5p与SOX5的表达水平是否具有相关性。

    RT-qPCR及Western blot的检测结果显示:在人口腔癌细胞株SCC4及SCC9中,miR-219-5p 的表达下调(图1A),与正常细胞株HF相比有统计学差异(P < 0.05);而SOX5的基因(图1B)及蛋白(图1C)表达水平显著增加,与正常细胞株HF相比有统计学差异(P < 0.05);Pearson相关系数分析合并后各组数据结果显示,人口腔癌细胞株中miR-219-5p 及SOX5的表达水平r = -0.869,绝对值接近1,说明miR-219-5p 的表达水平和SOX5的表达水平呈现负性相关。

    图  1  miR-219-5p及SOX5在人口腔癌细胞株SCC4及SCC9中的表达检测
    A:miR-219-5p在HF、SCC4及SCC9细胞株中的表达水平比较;B:SOX5 mRNA在HF、SCC4及SCC9细胞株中的相对表达水平;C:SOX5在HF、SCC4及SCC9各细胞株中的蛋白检测表达结果,左边为Western blot检测的印迹图,GAPDH为内参;右边为SOX5蛋白定量直方图。
    Figure  1.  The expressions of miR-219-5p and SOX5 in oral squamous cell lines SCC4 and SCC9

    miR-219-5p通过靶向3′-UTR区域调控口腔癌细胞中SOX5的表达见图2

    图  2  miR-219-5p靶向3’-UTR特异性序列调控SOX5
    A:miRMine预测人SOX5 mRNA序列中miR-219-5p可能的结合位点,红色标注的为miR-219-5p与SOX5 mRNA靶向结合的潜在位点;B:根据预测结果设计的miR-219-5p与SOX5 mRNA靶向结合潜在位点的突变序列(黄色标示);3’UTR,3’非编码区;C:SCC4细胞的双荧光素酶报告实验结果;D:SCC9细胞的双荧光素酶报告实验结果。SOX5 3'UTR-wt,SOX5 3'UTR结合位点野生型组(未突变组);SOX5 3'UTR-mut,SOX5 3'UTR结合位点突变组;miR-NC,miR-219-5p空白对照剂转染;miR-219-5p,miR-219-5p转染。
    Figure  2.  miR-219-5p regulates SOX5 by binding to specific sites in 3’-UTR

    由于SOX5和miR-219-5p在口腔癌细胞中表达趋势相反,呈现负性相关,笔者推测miR-219-5p可能通过特定的“种子”区域靶向调控SOX5 mRNA表达。为了验证这一推测,我们使用miRMine来预测SOX5 mRNA中miR-219-5p可能的结合位点。结果表明,SOX5 mRNA的3′- UTR上确实存在miR-219-5p的结合位点,SOX5是miR-219-5p的潜在靶基因(图2A,红色标注的为miR-219-5p与SOX5 mRNA靶向结合的潜在位点)。根据此结合位点,笔者设计验证实验中相应突变位点序列为5′-GCAGGCCA-3′(图2B,黄色标示的为突变后的序列)。

    接下来的双荧光素酶报告实验揭示:与相应对照组(SOX5 3′UTR-wt+miR-NC)相比,未经突变处理的野生型SOX5 3′UTR-wt与miR-219-5p模拟物 (SOX5 3′UTR-wt+miR-219-5p)联合转染可显著降低SCC4与SCC9的荧光素酶活性(P < 0.05,图2C-D)。而在SOX5种子序列区做了突变处理即SOX53′-UTR-mut载体转染后的细胞中,miR-219-5p处理均不能诱导SCC4或SCC9细胞中荧光素酶活性降低 (SOX5 3′UTR-mut+miR-NC vs. SOX5 3′UTR-mut+miR-219-5,P > 0.05,图2C-D)。

    为了进一步确定在口腔癌细胞中miR-219-5p是否靶向调节SOX5的表达水平,笔者用miR-219-5p模拟物或抑制剂处理SCC4和SCC9细胞,随后检测SOX5的表达水平。结果显示,miR-219-5p模拟物处理后显著抑制了SOX5表达,而miR-219-5p抑制剂处理显著恢复了SCC4 (图3A~B) 和SCC9 (图3C~D) 细胞中SOX5的表达水平,与各自的对照组相比具有统计学差异(P < 0.05)。这些结果验证了在口腔癌细胞中miR-219-5p通过与SOX5 mRNA3′-UTR中特定的序列结合而靶向调控SOX5的表达。

    图  3  在口腔癌细胞SCC4及SCC9中miR-219-5p靶向调控SOX5的表达
    A:miR-219-5p在SCC4细胞中对SOX5 mRNA水平的表达调控; B:miR-219-5p在SCC9细胞中对SOX5 mRNA水平的表达调控;C:miR-219-5p在SCC4细胞中对SOX5蛋白水平的表达调控,上方为Western blot检测的蛋白印迹图,GAPDH为内对照,下方SOX5蛋白水平的定量统计直方图;D:miR-219-5p在SCC9细胞中对SOX5蛋白水平的表达调控,上方为Western blot检测的蛋白印迹图,GAPDH为内对照,下方SOX5蛋白水平的定量统计直方图。
    Figure  3.  miR-219-5p regulates the expression of SOX5 in SCC4 and SCC9

    作为SOX转录因子家族的成员,SOX5除了在软骨组织分化、性别决定中起到重要的作用,也是许多疾病的易感基因,可促进鼻咽癌[6]、舌癌[3]、肝癌[7]、乳腺癌[8]和前列腺癌[9]等多种肿瘤的发展与转移。Huang等发现SOX5通过调控SPARC的表达下降来促进鼻咽癌的进展,同时SOX5在鼻咽癌组织中的过表达与临床低生存率成正相关性[6];在肝癌及乳腺癌中,SOX5通过Smad3-Sox5-Twist1信号通路促进上皮-间质转化及肿瘤细胞的入侵[7-8];在前列腺癌中,SOX5通过调控Twist1的表达来调节TGF-β诱导的上皮-间质转化过程[9]。而本研究发现SOX5在人口腔癌组织以及细胞中表达异常增加,且其表达水平上调与患者的组织分型、临床表现及生存率呈现正相关。本研究首次揭示了SOX5在人口腔癌肿瘤组织中的表达,并与患者的临床表现呈现出恶性相关,即SOX5的表达水平增加可能导致了人口腔癌的恶化与预后不良。

    为了检测SOX5表达水平改变的上游调控机制,笔者把研究目标转向了miRNA水平。miRNA通过与靶基因mRNA的3′-非翻译区(3′-UTR)互补结合从而诱导靶基因mRNA的直接降解,进而导致靶蛋白表达下降。目前的研究发现,超过30%的人类基因受miRNA调控,而同一种miRNA可以调控数百种mRNA的降解[10]。miRNA通过调节靶向基因的表达来参与细胞增殖与分化、发育、细胞凋亡、炎症及肿瘤发生与转移等过程[10-11]。研究表明,miRNA可以做为原癌基因或肿瘤抑制物来调节靶基因表达及旗下有信号通路的传导[12]。越来越多的研究表明正常组织与癌组织中的miRNA表达谱是不一样的。研究发现,不同类型的组织或细胞中都有特异表达的miRNA,不同癌组织中的特异miRNA表达谱可为临床诊断与治疗提供重要的信息。miRNA参与口腔癌的发生与发展过程,越来越多的研究表明,针对特异miRNA,如miR-196a-5p和miR-145,具有抑制口腔鳞状细胞癌的潜在作用[13-14],因此,对口腔癌中miRNA的表达变化以及其调控基因的研究,有助于推进笔者对口腔癌发生发展分子机制的认识;同时miRNA介导的治疗为临床治疗提供了全新的药物治疗靶点依据。而本研究发现miR-219-5p通过特异性与SOX5基因的3′-UTR区互补结合,在转录水平实现了对SOX5的表达沉默,在人口腔癌中靶向调控了SOX5的表达。

    值得注意的是,miR-219-5p做为新的肿瘤相关miRNA被证实参与了多种肿瘤的发生与进展。miR-219-5p在包括卵巢癌、胃癌以及结直肠癌等癌组织中的表达下调[15-19]。miR-219-5p通过调节Twist/Wnt/β-catenin信号通路来抑制表皮卵巢癌细胞的增殖、迁移和侵袭过程[15];而在胃癌中,miR-219-5p通过调节LRH-1/Wnt/β-catenin信号通路来抑制胃癌细胞的增殖、迁移和侵袭过程[16];在结直肠癌中,miR-219-5p通过下调calcyphosin和PDGF受体的表达来抑制癌细胞的增殖和侵袭过程[17-18],同时可以通过下调LEBF1的表达来抑制结直肠癌上皮-间质转化及癌细胞转移过程[19]

    结合本研究结果,miR-219-5p在人口腔癌细胞株中的表达水平显著下降、而SOX5的表达增加,miR-219-5p表达水平下降与SOX5的表达水平增加呈现负相关,miR-219-5p模拟物处理后可诱导人口腔癌细胞中SOX5的表达增加,而将SOX5 mRNA上miR-219-5p靶向调控的潜在区域进行突变处理后可以消除miR-219-5p对SOX5的表达调控。这些结果提示miR-219-5p可能通过特异性靶向结合SOX5基因的3′非编码区调控了SOX5的表达;在口腔癌中miR-219-5p的表达缺失,导致SOX5表达失控而异常增加,可能与口腔癌的发生发展密切相关。本研究结果为口腔癌靶点基因的甄选及开展临床靶向治疗奠定了基础。

  • 图  1  RBP-lncRNA相互作用网络。

    A:RBP-HOXD-AS2相互作用图;B:RBP-MIR3142HG相互作用图;C:HOXD-AS2及MIR3142HG共有的RBP。

    Figure  1.  RBP-lncRNA interaction network.

    表  1  所选SNP位点信息

    Table  1.   The information of selected SNPs in the current study

    SNPs 基因 功能 位置 等位基因 中国南方汉族人群MAF
    rs1348808 HOXD-AS2 启动子区域 Chr 2: 176135888 C>T 0.28
    rs2431099 MIR3142HG 增强子区域 Chr 5: 160459613 A>G 0.33
    下载: 导出CSV

    表  2  2个SNP位点在3组中等位基因及基因型分布频率结果 [n (%)]

    Table  2.   Allele and genotype frequencies of two SNPs between three groups [n(%)]

    SNPs等位基因/基因型对照组CIN2组CIN3组χ2P
    rs1348808C529(27.1)34(33.3)164(22.3)9.3480.009*
    T1423(72.9)68(66.7)572(77.7)
    C/C78(8.0)3(5.9)22(6.0)13.5250.009*
    C/T373(38.2)28(54.9)120(32.6)
    T/T525(53.8)20(39.2)226(61.4)
    rs2431099A720(36.9)23(22.5)254(34.5)9.3270.009*
    G1232(63.1)79(77.5)482(65.5)
    A/A136(13.9)6(11.8)36(9.8)19.5130.001*
    A/G448(45.9)11(21.5)182(49.4)
    G/G392(40.2)34(66.7)150(40.8)
      *P < 0.016(经Bonferroni校正,n = 3)。
    下载: 导出CSV

    表  3  rs1348808位点遗传模式分析

    Table  3.   The inheritance model analysis of rs1348808

    模型 CIN3 vs 对照组 CIN3 vs CIN2
    OR (95%CI P AIC BIC OR (95%CI P AIC BIC
    共显性 T/T 1.00 0.037 1577.3 1592.9 1.00 0.008 306.6 318.7
    C/T 0.75(0.58~0.97) 2.63(1.43~4.76)
    C/C 0.65(0.40~1.08) 1.54(0.42~5.56)
    显性 T/T 1.00 0.012 1575.5 1586.0 1.00 0.003 305.4 313.5
    C/T-C/C 0.73(0.57~0.93) 2.44(1.35~4.55)
    隐性 T/T-C/T 1.00 0.200 1580.2 1590.7 1.00 0.980 314.3 322.4
    C/C 0.73(0.45~1.19) 0.98(0.28~3.45)
    超显性 T/T-C/C 1.00 0.056 1578.2 1588.6 1.00 0.002* 305.0 313.1
    C/T 0.78(0.61~1.01) 2.50(1.39~4.55)
    逻辑累加 --- 0.78(0.64~0.95) 0.012* 1575.5 1585.9 1.72(1.11~2.70) 0.018 308.8 316.9
      *P < 0.05;且AIC和BIC值最小,为分组比较中的最优遗传模式。
    下载: 导出CSV

    表  4  rs2431099位点在CIN2组和对照组的比较中遗传模式分析

    Table  4.   The inheritance model analysis of rs2431099 between the CIN2 and control groups

    模型 OR (95%CI P AIC BIC
    共显性 G/G 1 5.00×10−4 396.7 411.5
    A/G 0.28(0.14~0.56)
    A/A 0.51(0.21~1.23)
    显性 G/G 1 2.00×10−4* 395.9 405.7
    A/G-A/A 0.34(0.18~0.61)
    隐性 G/G-A/G 1 0.66 409.5 419.4
    A/A 0.83(0.34~1.96)
    超显性 G/G-A/A 1 4.00×10−4 397.2 407.1
    A/G 0.32(0.16~0.64)
    逻辑累加 --- 0.51(0.32~0.81) 0.003 400.7 410.6
      *P < 0.05;且AIC和BIC值最小,为分组比较中的最优遗传模式。
    下载: 导出CSV
  • [1] Arbyn M,Ronco G,Anttila A,et al. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer[J]. Vaccine,2012,30(Suppl 5):F88-F99.
    [2] 赵超,毕蕙,赵昀,等. 子宫颈高级别上皮内病变管理的中国专家共识[J]. 中国妇产科临床杂志,2022,23(2):220-224.
    [3] Mccredie M R,Sharples K J,Paul C,et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: A retrospective cohort study[J]. Lancet Oncol,2008,9(5):425-434. doi: 10.1016/S1470-2045(08)70103-7
    [4] Zheng R,Zhang S,Zeng H,et al. Cancer incidence and mortality in China,2016[J]. Journal of the National Cancer Center,2022,2(1):1-9. doi: 10.1016/j.jncc.2022.02.002
    [5] Kawase K,Taguchi A,Ishizaka A,et al. Allelic loss of HLA class I facilitates evasion from immune surveillance in cervical intraepithelial neoplasia[J]. HLA,2024,103(6):e15509. doi: 10.1111/tan.15509
    [6] Hangauer M J,Vaughn I W,Mcmanus M T. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs[J]. PLoS Genet,2013,9(6):e1003569. doi: 10.1371/journal.pgen.1003569
    [7] Kaewsapsak P,Shechner D M,Mallard W,et al. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking[J]. Elife,2017,6(1):e29224.
    [8] Melé M,RInn J L. "Cat's cradling" the 3D genome by the act of lncRNA transcription[J]. Mol Cell,2016,62(5):657-664. doi: 10.1016/j.molcel.2016.05.011
    [9] Lee S,Kopp F,Chang T C,et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins[J]. Cell,2016,164(1-2):69-80. doi: 10.1016/j.cell.2015.12.017
    [10] Benoit bouvrette L P,Cody N A L,Bergalet J,et al. CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells[J]. RNA,2018,24(1):98-113. doi: 10.1261/rna.063172.117
    [11] Dai J,Zhang S,Shi Y,et al. rs217727 of lncRNA H19 is associated with cervical cancer risk in the Chinese Han population[J]. Pharmgenomics Pers Med,2023,16(1):933-948.
    [12] Liu Y,Zhang Q,Ni R. Association between genetic variants (rs920778,rs4759314,and rs217727) in LncRNAs and cervical cancer susceptibility in Chinese population: A systematic review and meta-analysis[J]. Front Genet,2022,13(1):988207.
    [13] 中华医学会. 临床诊疗指南: 妇产科学分册 [M]. 北京: 人民卫生出版社,2007: 65-67.
    [14] Yang J,Yan Z,Wang Y,et al. Association study of relationships of polymorphisms in the miR-21,miR-26b,miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer[J]. BMC Cancer,2021,21(1):997. doi: 10.1186/s12885-021-08743-2
    [15] Shi Y Y,He L. SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci[J]. Cell Res,2005,15(2):97-98. doi: 10.1038/sj.cr.7290272
    [16] Solé X,Guinó E,Valls J,et al. SNPStats: A web tool for the analysis of association studies[J]. Bioinformatics,2006,22(15):1928-1929. doi: 10.1093/bioinformatics/btl268
    [17] Qi Y,Wang Z,Wu F,et al. Long noncoding RNA HOXD-AS2 regulates cell cycle to promote glioma progression[J]. J Cell Biochem,2019,120(5):8343-8351. doi: 10.1002/jcb.28117
    [18] Zhang Y,Ma H. LncRNA HOXD-AS2 regulates miR-3681-5p/DCP1A axis to promote the progression of non-small cell lung cancer[J]. J Thorac Dis,2023,15(3):1289-1301. doi: 10.21037/jtd-23-153
    [19] Paterson M R,Kriegel A J. MiR-146a/b: A family with shared seeds and different roots[J]. Physiol Genomics,2017,49(4):243-252. doi: 10.1152/physiolgenomics.00133.2016
    [20] Guo X,Zhang M,Li Q,et al. Evaluation of genetic variants in MIR3142HG in susceptibility to and prognosis of glioma[J]. Am J Clin Oncol,2020,43(1):1-8. doi: 10.1097/COC.0000000000000587
    [21] Chen Y,Zhao Y,Lu R,et al. Identification and validation of a novel genomic instability-associated long non-coding RNA prognostic signature in head and neck squamous cell carcinoma[J]. Front Cell Dev Biol,2021,9(1):787766.
    [22] Järvelin A I,Noerenberg M,Davis I,et al. The new (dis)order in RNA regulation[J]. Cell Commun Signal,2016,14(1):9. doi: 10.1186/s12964-016-0132-3
    [23] Hentze M W,Castello A,Schwarzl T,et al. A brave new world of RNA-binding proteins[J]. Nat Rev Mol Cell Biol,2018,19(5):327-341. doi: 10.1038/nrm.2017.130
  • [1] 李盈甫, 郭妮, 罗正光, 邢安灏, 李太福, 马千里.  EGFR基因多态性与云南汉族人群非小细胞肺癌的关联性, 昆明医科大学学报.
    [2] 师雨晗, 柴江红, 许金美, 林牧, 姚宇峰, 何凤权, 严志凌.  miR-146a基因多态性与宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250207
    [3] 谢飞飞, 辛隐子, 徐敏, 李景涵, 王伟.  长链非编码RNA在软骨发育及骨关节炎中作用机制的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241001
    [4] 洪超, 向旭东, 李盈甫, 曹杨, 陈雪雅, 李帅, 邢安灏, 林牧, 马千里.  ERK1/2信号通路基因3'UTR多态性与非小细胞肺癌的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240302
    [5] 郭妮, 张承, 洪超, 刘伟鹏, 姚宇峰, 严志凌.  KRAS基因3′UTR多态性与云南汉族人群宫颈癌及宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240203
    [6] 牛志鑫, 汤丽华, 史磊, 洪超, 姚宇峰, 严志凌.  MAPK1NRAS基因多态性与云南汉族人群宫颈上皮内瘤变的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240502
    [7] 伍蓉霜, 彭江丽, 陈永刚, 陈洁, 马国伟, 李先蕊, 李谢, 余春红.  SLC2A9基因单核苷酸多态性与吡嗪酰胺致高尿酸血症易感性关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230409
    [8] 李抒瑾, 杨艳飞, 苏敏, 凌昱, 饶艳琼, 崔继华.  儿童注意缺陷多动障碍共病情绪问题的单核苷酸多态性研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230420
    [9] 顾君, 何泽喜, 栾婷, 王海峰, 王剑松, 丁明霞.  外泌体长链非编码RNA在膀胱癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220110
    [10] 郭方圆, 李文亮, 徐凡, 魏向群.  非编码RNA 在宫颈癌组织中的表达及临床意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220527
    [11] 李东云, 冮顺奎, 李捷, 张明星, 李雷.  ABCG2、SLC2A9、SLC17A3和 PRKG2基因单核苷酸位点多态性与哈尼族人群痛风的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210320
    [12] 谭丁及, 尹洪莉, 朱锐, 张曦, 余鑫, 飞勇, 李昕, 段铭, 何亮, 杨宏英.  宫颈上皮内瘤变和宫颈癌患者的阴道微生态特点, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210821
    [13] 张腾飞, 何越峰, 张磊, 张莉, 杨凯云, 刘莲清, 谭慧.  长链非编码RNA APTR、HEIH、FAS-ASA1、FAM83H-AS1、DICER1-AS1、PR-lncRNA在肺癌中的表达, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210409
    [14] 朱胜章.  宫颈液基细胞学检查在贵州黔南地区宫颈癌筛查中的临床运用, 昆明医科大学学报.
    [15] 洪超.  CDH13 基因变异与非小细胞肺癌的相关性, 昆明医科大学学报.
    [16] 李轶梅.  宫颈环行电刀切除术治疗宫颈上皮内瘤变的临床价值, 昆明医科大学学报.
    [17] 向茜.  维生素D受体基因FokI位点单核苷酸多态性与糖尿病肾病的相关性, 昆明医科大学学报.
    [18] 刘丽丽.  染色体9p21单核苷酸多态性与冠心病/心肌梗死相关性的研究进展, 昆明医科大学学报.
    [19] 杨小蕾.  STAT4基因单核苷酸多态性与云南汉族人群SLE发病的相关性研究, 昆明医科大学学报.
    [20] 黄雅.  Brn-3a、PPAR-γ在宫颈癌及癌前病变中的表达, 昆明医科大学学报.
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  168
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-27
  • 网络出版日期:  2024-11-06
  • 刊出日期:  2024-11-25

目录

/

返回文章
返回