Therapeutic Effect and Mechanism of Geraniin on Experimental Osteoporotic Fracture in Rabbits
-
摘要:
目的 研究老鹳草素(geraniin)对家兔实验性骨质疏松骨折的治疗作用及其机制。 方法 将家兔随机分为假手术组、模型组、老鹳草素不同剂量组(20、10、5 mg/kg)和辛伐他汀组(5 mg/kg)。利用去势法和桡骨中段骨缺损构建家兔骨质疏松骨折(osteoporotic fracture,OPF)模型。采用骨密度仪检测家兔骨密度变化;采用X线影像和Micro CT检测家兔骨质疏松骨折愈合情况;采用骨强度仪检测骨生物力学变化;采用HE染色检测骨组织病理学变化;采用全自动生化分析仪和Elisa检测血清骨转换生化标志物和骨灰成分中钙盐和磷盐含量变化。 结果 老鹳草素显著提高OPF家兔股骨、脊柱及全身的骨密度(P < 0.01),改善骨髓腔通畅性与骨皮质连续性,增加了OPF家兔的骨体积/总体积、减少骨表面积/骨体积,并改善骨小梁结构的完整性,增加骨小梁数量及骨小梁厚度、缩小骨小梁间距。另外,老鹳草素提升了OPF家兔最大载荷、结构刚度和最大位移等生物力学指标,改善骨微结构。此外,老鹳草素显著升高OPF家兔血清中的钙(Ca2+)、磷(P)水平,降低碱性磷酸酶(ALP)、 抗酒石酸酸性磷酸酶(TRACP)、Ⅰ型胶原交联羧基末端肽(CTX-1)和尿脱氧吡啶啉(DPD)的水平(P < 0.01),增加骨灰中的钙盐、磷盐含量(P < 0.01)。 结论 老鹳草素能够有效促进骨质疏松骨折的愈合,改善骨微结构和生物力学性能,其作用机制可能与增加骨矿盐含量、调节骨代谢相关。 Abstract:Objective To study the therapeutic effect and mechanism of geraniin on experimental osteoporotic fracture (OPF) in rabbits. Methods Rabbits were randomly divided into sham operation group, model group, different doses of geraniin groups ( 20, 10, 5 mg/kg ) and simvastatin group ( 5 mg/kg ). OPF model of rabbits was constructed by ovariectomy and bone defect in the middle radius. The changes of bone mineral density in rabbits were detected by bone densitometer. X-ray imaging and Micro CT were used to detect the healing of osteoporotic fractures in rabbits. Bone biomechanical changes were detected by bone strength instrument. The pathological changes of bone tissue were detected by HE staining. Automatic biochemical analyzer and Elisa were used to detect the changes of serum bone turnover biochemical markers and calcium salt and phosphorus salt content in ash composition. Results Geraniin significantly increased the bone mineral density of femur, spine and the whole body of OPF rabbits ( P < 0.01 ), improved the patency of bone marrow cavity and the continuity of bone cortex, increased the bone volume / total volume of OPF rabbits, reduced the bone surface area / bone volume, improved the integrity of trabecular structure, increased the number of trabecular bone and the thickness of trabecular bone, and reduced the spacing of trabecular bone. In addition, geraniin improved biomechanical indexes such as maximum load, structural stiffness and maximum displacement of OPF rabbits, and improved bone microstructure. In addition, geraniin significantly increased the levels of calcium ( Ca2 + ) and phosphorus ( P ) in serum of OPF rabbits, decreased the levels of alkaline phosphatase ( ALP ), tartrate-resistant acid phosphatase ( TRACP ), type I collagen cross-linked carboxyl terminal peptide ( CTX-1 ) and urinary deoxypyridinoline ( DPD ) ( P < 0.01 ), and increased the contents of calcium and phosphorus in bone ash ( P < 0.01 ). Conclusion Geraniin can effectively promote the healing of osteoporotic fractures and improve bone microstructure and biomechanical properties. The mechanism may be related to the increase of bone mineral content and the regulation of bone metabolism. -
Key words:
- Geraniin /
- Osteoporotic fracture /
- Bone microstructure /
- Biomechanics
-
图 5 药物干预 8周后对OPF家兔第四腰椎骨微结构参数的影响[ ($\bar x \pm s $) ,n = 6 ]
A. 药物干预 8周后对OPF家兔第四腰椎骨微结构参数BV/TV的影响;B. 药物干预 8周后对OPF家兔第四腰椎骨微结构参数BS/BV的影响;C. 药物干预 8周后对OPF家兔第四腰椎骨微结构参数Tb.Th的影响;D. 药物干预 8周后对OPF家兔第四腰椎骨微结构参数Tb.Sp的影响;E. 药物干预 8周后对OPF家兔第四腰椎骨微结构参数Tb.N的影响注:与假手术组比较,**P < 0.01;与OPF模型组比较,#P < 0.05,##P < 0.01。
Figure 5. The effect of drug intervention on bone microstructure parameters of the fourth lumbar vertebra in OPF rabbits after 8 weeks [ ($\bar x \pm s $) ,n = 6 ]
图 10 药物干预 8周后对OPF家兔血液生化指标的影响 [ ($\bar x \pm s $) ,n = 6 ]
A.药物干预 8周后对OPF家兔血液中Ca2+的影响;B.药物干预 8周后对OPF家兔血液中P的影响;C.药物干预 8周后对OPF家兔血液中ALP的影响;D.药物干预 8周后对OPF家兔血液中TRACP的影响;E.药物干预 8周后对OPF家兔血液中CTX-1的影响;F.药物干预 8周后对OPF家兔血液中DPD的影响注:与假手术组比较,**P < 0.01;与模型组比较,#P<0.05,##P < 0.01。
Figure 10. Effects of drug intervention on blood biochemical indexes of OPF rabbits after 8 weeks of drug intervention [ ($\bar x \pm s $),n = 6 ]
-
[1] Zhong H,Zhou Y,Wang P,et al. Influencing factors of bone mass abnormalities among postmenopausal women in Tibet,China[J]. BMC Public Health,2023,23(1):2100. doi: 10.1186/s12889-023-17015-6 [2] Jin Z,Da W,Zhao Y,et al. Role of skeletal muscle satellite cells in the repair of osteoporotic fractures mediated by β-catenin[J]. J Cachexia Sarcopenia Muscle,2022,13(2):1403-1417. doi: 10.1002/jcsm.12938 [3] Xiao L,Lin J,Chen R,et al. Sustained release of melatonin from GelMA liposomes reduced osteoblast apoptosis and improved implant osseointegration in osteoporosis[J]. Oxid Med Cell Longev,2020,2020:6797154. [4] Guo L,Gao Z,Ge H. Effects of serum 25-hydroxyvitamin D level on decreased bone mineral density at femoral neck and total hip in Chinese type 2 diabetes[J]. PLoS One,2017,12(11):e0188894. doi: 10.1371/journal.pone.0188894 [5] Celik B,Leal AF,Tomatsu S. Potential targeting mechanisms for bone-directed therapies[J]. Int J Mol Sci,2024,25(15):8339. doi: 10.3390/ijms25158339 [6] 芮琛,赵怡凡,刘天鹏,等. 老鹳草素抗骨质疏松症机制的研究进展[J]. 中国医药导报,2023,20(22):43-46+59. [7] Lee R H,Jeong J Y,Park A S,et al. Geraniin Alleviates Inflammation in Caco-2 Cells and Dextran Sulfate Sodium-Induced Colitis Mice by Targeting IL-1β[J]. Journal of agricultural and food chemistry,2024,72(14):7882-7893. doi: 10.1021/acs.jafc.3c09396 [8] 彭彩亮,崔璇,蒋宁,等. 老鹳草素对大鼠心肌缺血再灌注损伤的作用及其机制[J]. 吉林中医药,2023,43(9):1063-1067. [9] Zhou X,Qin M,He L,et al. Geraniin restricts inflammasome activation and macrophage pyroptosis by preventing the interaction between ASC and NLRP3 to exert anti-inflammatory effects[J]. International Immunopharmacology,2024,129:111656. doi: 10.1016/j.intimp.2024.111656 [10] 张小超,郭蕴萍,何波,等. 老鹳草素对破骨细胞Ⅱ型碳酸酐酶mRNA表达的影响[J]. 中药药理与临床,2013,29(1):32-34. [11] 吴鹰,何波,刘淑娟,等. 老鹳草素对实验性骨质疏松症及破骨细胞生成的影响[J]. 昆明医学院学报,2006(6):9-15+135. [12] Wang Y,Hu Y,Lan S,et al. A recombinant parathyroid hormone-related peptide locally applied in osteoporotic bone defect[J]. Adv Sci (Weinh),2023,10(22):e2300516. doi: 10.1002/advs.202300516 [13] Lu J,Ren Z,Liu X,et al. Osteoporotic fracture guidelines and medical education related to the clinical practices: A nationwide survey in China[J]. Orthop Surg,2019,11(4):569-577. doi: 10.1111/os.12476 [14] Zhang P,Li B,Chen H,et al. RNA sequencing-based approaches to identifying disulfidptosis-related diagnostic clusters and immune landscapes in osteoporosis[J]. Aging (Albany NY),2024,16(9):8198-8216. [15] Wang Y,Yao J,Cai L,et al. Bone-targeted extracellular vesicles from mesenchymal stem cells for osteoporosis therapy[J]. Int J Nanomedicine,2020,15:7967-7977. doi: 10.2147/IJN.S263756 [16] Fatoye F,Smith P,Gebrye T,et al. Real-world persistence and adherence with oral bisphosphonates for osteoporosis: a systematic review[J]. BMJ Open,2019,9(4):e027049. doi: 10.1136/bmjopen-2018-027049 [17] Shen B,Yu J,Wang S,et al. Phyllanthus urinaria ameliorates the severity of nutritional steatohepatitis both in vitro and in vivo[J]. Hepatology,2008,47(2):473-83. doi: 10.1002/hep.22039 [18] Zhao F,Xu Y,Ouyang Y,et al. Silencing of miR-483-5p alleviates postmenopausal osteoporosis by targeting SATB2 and PI3K/AKT pathway[J]. Aging (Albany NY),2021,13(5):6945-6956. doi: 10.18632/aging.202552 [19] Wang F,Zheng L,Theopold J,et al. Methods for bone quality assessment in human bone tissue: a systematic review[J]. J Orthop Surg Res,2022,17(1):174. doi: 10.1186/s13018-022-03041-4 [20] Mohammed RE,Salih Al Qassar SS,Taqa GA. Clinical and histological evaluation of the effect of magnesium oxide administration on relapse after orthodontic teeth movement (Rabbit Model Study)[J]. J Orthod Sci,2023,12:19. [21] Gao H,Zhao Y,Zhao L,et al. The role of oxidative stress in multiple exercise-regulated bone homeostasis[J]. Aging Dis,2023,14(5):1555-1582. doi: 10.14336/AD.2023.0223 [22] Izzo C,Secondulfo C,Bilancio G,et al. Chronic kidney disease with mineral bone disorder and vascular calcification: an overview[J]. Life (Basel),2024,14(3):418. doi: 10.3390/life14030418 [23] Wang T,Huang S,He C. Senescent cells: A therapeutic target for osteoporosis[J]. Cell Prolif,2022,55(12):e13323. doi: 10.1111/cpr.13323 [24] Massara B,Mariem R,Emna B,et al. Kaposiform hemangioendothelioma with fatal income: Kasabach-Merritt phenomenon and hypercalcemia[J]. Clin Case Rep,2022,10(2):e05458. doi: 10.1002/ccr3.5458 [25] Hubert PA,Lee SG,Lee SK,et al. Dietary polyphenols,berries,and age-related bone loss: A review based on human,animal,and cell studies[J]. Antioxidants (Basel),2014,3(1):144-158. doi: 10.3390/antiox3010144 [26] Cosme F,Pinto T,Aires A,et al. Red fruits composition and their health benefits: A review[J]. Foods,2022,11(5):644. doi: 10.3390/foods11050644 [27] Hou C,Wang X,Jiang W,et al. Peptide 11R VIVIT promotes fracture healing in osteoporotic rats[J]. Int J Mol Med,2021,48(2):162. doi: 10.3892/ijmm.2021.4995 [28] Oršolić N,Nemrava J,Jeleč Ž,et al. Antioxidative and anti-inflammatory activities of chrysin and naringenin in a drug-induced bone loss model in rats[J]. Int J Mol Sci,2022,23(5):2872. doi: 10.3390/ijms23052872 [29] Menzdorf L,Weuster M,Klüter T,et al. Local pamidronate influences fracture healing in a rodent femur fracture model: an experimental study[J]. BMC Musculoskelet Disord,2016,17:255. doi: 10.1186/s12891-016-1113-9 [30] 邹伟龙,于龙,王亮,等. 不同剂量辛伐他汀载药体系对兔骨质疏松模型骨修复的实验研究[J]. 中国骨质疏松杂志,2016,22(4):437-442. [31] Rothe R,Hauser S,Neuber C,et al. Adjuvant drug-assisted bone healing: Advances and challenges in drug delivery approaches[J]. Pharmaceutics,2020,12(5):428. doi: 10.3390/pharmaceutics12050428