留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

URSA患者蜕膜MDSCs细胞差异基因表达分析及功能预测

牛玉红 康晓敏

牛玉红, 康晓敏. URSA患者蜕膜MDSCs细胞差异基因表达分析及功能预测[J]. 昆明医科大学学报.
引用本文: 牛玉红, 康晓敏. URSA患者蜕膜MDSCs细胞差异基因表达分析及功能预测[J]. 昆明医科大学学报.
Yuhong NIU, Xiaomin KANG. Differential Gene Expression Analysis and Functional Prediction of Decidual Myeloid-Derived Suppressor Cells in Patients with Unexplained Recurrent Abortion[J]. Journal of Kunming Medical University.
Citation: Yuhong NIU, Xiaomin KANG. Differential Gene Expression Analysis and Functional Prediction of Decidual Myeloid-Derived Suppressor Cells in Patients with Unexplained Recurrent Abortion[J]. Journal of Kunming Medical University.

URSA患者蜕膜MDSCs细胞差异基因表达分析及功能预测

基金项目: 国家自然科学基金(82260311)
详细信息
    作者简介:

    牛玉红(1991~),女,安徽合肥人,医学硕士,住院医师,主要从事妇产科相关工作

    通讯作者:

    康晓敏,E-mail:kangxiaomin1116@163.com

  • 中图分类号: R714.21

Differential Gene Expression Analysis and Functional Prediction of Decidual Myeloid-Derived Suppressor Cells in Patients with Unexplained Recurrent Abortion

  • 摘要:   目的  研究不明原因复发性流产(unexplained recurrent abortion ,URSA)患者蜕膜髓系抑制细胞(myeloid-derived suppressor cells,MDSCs)差异基因表达分析及功能预测。  方法  收集2023年7月至2023年12月在云南省第一人民医院生殖妇科就诊的3例早孕期人工流产孕妇及3例URSA患者的蜕膜组织,利用MACS分选出蜕膜MDSCs细胞,经表达谱基因芯片检测,差异基因表达分析(如DESeq2或edgeR)来识别两组间基因表达的显著变化,并通过P值和多重校正(如FDR)控制假阳性率。富集分析(如GO或KEGG分析)用于评估差异基因在生物通路中的富集情况。应用 SPSS16.0 分析软件进行超几何检验或Fisher精确检验确定其显著性。  结果  与正常妊娠相比,URSA患者蜕膜MDSCs中有163个基因发生显著变化(P < 0.05),其中67个基因上调,96个基因下调。这些基因在细胞成分、生物过程、分子功能、蛋白结合、补体系统信号通路、白细胞相关激活炎症反应通路、蛋白多糖和细胞外基质受体相互作用中富集。PPI网络分析和HUB基因鉴定显示前10的HUB基因中,上调基因只有SPP1、CCL5、C3AR1和TNF,下调基因包括MXRA8、IGFBP5、SPARCL1、SAA1、DCN、COL3A1。HUB基因主要涉及免疫调节、炎症反应及细胞间交互作用。  结论  URSA患者蜕膜中的MDSCs与细胞外基质和其他细胞间的相互作用功能低下,免疫抑制能力下降,促炎反应加强。
  • 图  1  蜕膜MDSCs细胞形态学及分子机制图

    注:蜕膜MDSCs分为两种类型M-MDSCs和PMN-MDSCs,在蜕膜界面分别趋化不同的免疫分子。

    Figure  1.  Cellular morphology and molecular mechanism of MDSCs in uterine decidua

    图  2  RNA质检图

    注:N1~N3:对照组; R1~R3:不明原因复发性流产组 。

    Figure  2.  RNA quality assessment plot

    图  3  差异表达基因火山图

    注:每个点代表1个基因,共28264基因,红/绿色虚线分别代表 P < 0.05且倍数筛选阈值|Fold change| ≥1。蓝色的点代表显著变化基因,其中左侧代表表达下调的基因,右侧代表表达上调的基因。黑色的点表示表达量没有明显变化的基因。

    Figure  3.  Volcano plot of differential gene expression

    图  4  差异表达基因热图

    注:线的长度则代表距离指标,同簇样本或基因的相似性高(模式相近)。每1行为1张芯片,每1列为1个基因探针,共163个差异表达基因,红色代表上调基因,蓝色代表下调基因。

    Figure  4.  Heatmap of differentially expressed genes

    图  5  差异表达基因GO富集分析柱状图

    A:细胞组成富集分析;B:分子功能富集分析;C:生物学过程富集分析;横轴表示功能富集显著性水平(P-Value)的-Log10P 值,纵轴表示 GO term;CC: cellular component; MF:molecular function;BP: biological process。

    Figure  5.  Histogram of differentially expressed gene GO enrichment analysis

    图  6  差异表达基因KEGG富集分析

    Figure  6.  KEGG enrichment analysis of differentially expressed genes

    图  7  差异基因的蛋白质相互作用网络图

    注:用 CYTOSCAPE 中的 cytohubb 模块分析 STRING 处理的 DGE 基因;粉色:上调基因,蓝色:下调基因, node 的颜色越深表示相关度越强。

    Figure  7.  Protein-protein interaction network diagram of differentially expressed genes

  • [1] Quenby S,Gallos I D,Dhillon-Smith R K,et al. Miscarriage matters: The epidemiological,physical,psychological,and economic costs of early pregnancy loss[J]. Lancet (London,England),2021,397(10285):1658-1667. doi: 10.1016/S0140-6736(21)00682-6
    [2] Xiong M,Li L,Wen L,et al. Decidual stromal cell-derived exosomes deliver miR-22-5p_R-1 to suppress trophoblast metabolic switching from mitochondrial respiration to glycolysis by targeting PDK4 in unexplained recurrent spontaneous abortion[J]. Placenta,2024,153:1-21. doi: 10.1016/j.placenta.2024.05.131
    [3] Tang C,Hu W. The role of Th17 and Treg cells in normal pregnancy and unexplained recurrent spontaneous abortion (URSA): New insights into immune mechanisms[J]. Placenta,2023,142:18-26. doi: 10.1016/j.placenta.2023.08.065
    [4] Esparvarinha M,Madadi S,Aslanian-Kalkhoran L,et al. Dominant immune cells in pregnancy and pregnancy complications: T helper cells (TH1/TH2,TH17/Treg cells),NK cells,MDSCs,and the immune checkpoints[J]. Cell Biology International,2023,47(3):507-519. doi: 10.1002/cbin.11955
    [5] Kang X,Zhang X,Liu Z,et al. Granulocytic myeloid-derived suppressor cells maintain feto-maternal tolerance by inducing Foxp3 expression in CD4+CD25-T cells by activation of the TGF-beta/beta-catenin pathway[J]. Mol Hum Reprod,2016,22(7):499-511. doi: 10.1093/molehr/gaw026
    [6] Vento-Tormo R,Efremova M,Botting R A,et al. Single-cell reconstruction of the early maternal-fetal interface in humans[J]. Nature,2018,563(7731):347-353. doi: 10.1038/s41586-018-0698-6
    [7] Zhao A M,Xu H J,Kang X M,et al. New insights into myeloid-derived suppressor cells and their roles in feto-maternal immune cross-talk[J]. J Reprod Immunol,2016,113:35-41. doi: 10.1016/j.jri.2015.11.001
    [8] Liu Z,Geng Y,Huang Y,et al. Bushen Antai recipe alleviates embryo absorption by enhancing immune tolerance and angiogenesis at the maternal-fetal interface via mobilizing MDSCs in abortion-prone mice[J]. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology,2024,123: 155164.
    [9] Wang Q,Zhang X,Li C,et al. Intracellular lipid accumulation drives the differentiation of decidual polymorphonuclear myeloid-derived suppressor cells via arachidonic acid metabolism[J]. Frontiers in Immunology,2022,13:868669. doi: 10.3389/fimmu.2022.868669
    [10] Kang X,Zhang X,Liu Z,et al. CXCR2-mediated granulocytic myeloid-derived suppressor cells' functional characterization and their role in maternal fetal interface[J]. DNA and Cell Biology,2016,35(7):358-365. doi: 10.1089/dna.2015.2962
    [11] Li C,Chen C,Kang X,et al. Decidua-derived granulocyte macrophage colony-stimulating factor induces polymorphonuclear myeloid-derived suppressor cells from circulating CD15+ neutrophils[J]. Human Reproduction (Oxford,England),2020,35(12):2677-2691. doi: 10.1093/humrep/deaa217
    [12] Huang X,Lin Z,Zheng Z M,et al. A Hypoxia-decidual macrophage regulatory axis in normal pregnancy and spontaneous miscarriage[J]. International Journal of Molecular Sciences,2024,25(17):9710. doi: 10.3390/ijms25179710
    [13] Chen K,Yu Q,Sha Q,et al. Single-cell transcriptomic analysis of immune cell dynamics in the healthy human endometrium[J]. Biochemistry and Biophysics Reports,2024,39:101802. doi: 10.1016/j.bbrep.2024.101802
    [14] Wang J,Han T,Zhu X. Role of maternal-fetal immune tolerance in the establishment and maintenance of pregnancy[J]. Chinese Medical Journal,2024,137(12):1399-1406. doi: 10.1097/CM9.0000000000003114
    [15] Yang S,Wang H,Li D,et al. An Estrogen-NK Cells regulatory axis in endometriosis,related infertility,and miscarriage[J]. International Journal of Molecular Sciences,2024,25(6):3362. doi: 10.3390/ijms25063362
    [16] Qian C,Pan C,Liu J,et al. Differential expression of immune checkpoints (OX40/OX40L and PD-1/PD-L1) in decidua of unexplained recurrent spontaneous abortion women[J]. Human Immunology,2024,85(1):110745. doi: 10.1016/j.humimm.2023.110745
    [17] Baines K J,Klausner M S,Patterson V S,et al. Interleukin-15 deficient rats have reduced osteopontin at the maternal-fetal interface[J]. Frontiers in Cell and Developmental Biology,2023,11:1079164. doi: 10.3389/fcell.2023.1079164
    [18] Bao S,Chen Z,Qin D,et al. Single-cell profiling reveals mechanisms of uncontrolled inflammation and glycolysis in decidual stromal cell subtypes in recurrent miscarriage[J]. Human Reproduction (Oxford,England),2023,38(1):57-74. doi: 10.1093/humrep/deac240
    [19] Jin B,Ding X,Dai J,et al. Deciphering decidual deficiencies in recurrent spontaneous abortion and the therapeutic potential of mesenchymal stem cells at single-cell resolution[J]. Stem Cell Research & Therapy,2024,15(1):228.
    [20] Chen X,Song Q L,Ji R,et al. Hypoxia-induced polarization of M2 macrophages and C-C motif chemokine ligand 5 secretion promotes the migration and invasion of trophoblasts†[J]. Biology of Reproduction,2022,107(3):834-845. doi: 10.1093/biolre/ioac100
    [21] Santolaya J L,Schweer D S,Cardenas-Goicoechea J,et al. Bioavailability of the tumor necrosis factor alpha/regulated on activation,normal T cell expressed and secreted (RANTES) biosystem inside the gestational sac during the pre-immune stages of embryo development[J]. Journal of Perinatal Medicine,2023,51(7):891-895. doi: 10.1515/jpm-2022-0542
    [22] Chen Y,Lv G,Du X,et al. Fentanyl promoted the growth of placenta trophoblast cells through regulating the METTL14 mediated CCL5 levels[J]. Biological & Pharmaceutical Bulletin,2023,46(12):1797-1804.
    [23] Yamanaka R,Ichii O,Nakamura T,et al. Effects of autoimmune abnormalities on fertility and placental morphology in mice[J]. Autoimmunity,2024,57(1):2319209. doi: 10.1080/08916934.2024.2319209
    [24] He Y,Li J,Qu Y,et al. Identification and analysis of potential immune-related biomarkers in endometriosis[J]. Journal of Immunology Research,2023,2023:2975581.
    [25] Bazile C,Abdel Malik M M,Ackeifi C,et al. TNF-α inhibitors for type 1 diabetes: Exploring the path to a pivotal clinical trial[J]. Frontiers in Immunology,2024,15:1470677. doi: 10.3389/fimmu.2024.1470677
    [26] Kwon M J,Kim J H,Kim K J,et al. Genetic association between inflammatory-related polymorphism in STAT3,IL-1β,IL-6,TNF-α and idiopathic recurrent implantation failure[J]. Genes,2023,14(8):1588. doi: 10.3390/genes14081588
    [27] Wang L,Deng Z,Yang J,et al. Epigenetic and transcriptomic characterization of maternal-fetal interface in patients with recurrent miscarriage via an integrated multi-omics approach[J]. J Reprod Immunol,2022,154:103754. doi: 10.1016/j.jri.2022.103754
    [28] Zhu Q,Wang Y,Xu L,et al. Role of SAA1 in endometrial extracellular matrix remodeling in polycystic ovary syndrome: Implication for pregnancy loss[J]. The Journal of Clinical Endocrinology and Metabolism,2024,published online.
    [29] Ishikawa H,Goto Y,Hirooka C,et al. Role of inflammation and immune response in the pathogenesis of uterine fibroids: Including their negative impact on reproductive outcomes[J]. J Reprod Immunol,2024,165:104317. doi: 10.1016/j.jri.2024.104317
    [30] Yang S,Bi J,Drnevich J,et al. Basigin is necessary for normal decidualization of human uterine stromal cells[J]. Human Reproduction (Oxford,England),2022,37(12):2885-2898. doi: 10.1093/humrep/deac229
    [31] Sun Z,Li J,Liu H,et al. Insulin-like growth factor-binding protein 5 promotes the cell proliferation and osteogenic potential of dental pulp stem cells dependent on its nuclear localisation sequence[J]. Journal of Oral Rehabilitation,2024,51(12):2664-2674. doi: 10.1111/joor.13863
    [32] Luna-Ramirez R I,Kelly A C,Anderson M J,et al. Elevated norepinephrine stimulates adipocyte hyperplasia in ovine fetuses with placental insufficiency and IUGR[J]. Endocrinology,2023,165(1):bqad177. doi: 10.1210/endocr/bqad177
    [33] Pant A,Moar K,Maurya P K. Impact of estradiol in inducing endometrial cancer using RL95-2[J]. Pathology,Research and Practice,2024,263:155640.
    [34] Pant A,Dakal T C,Moar K,et al. Assessment of MMP14,CAV2,CLU and SPARCL1 expression profiles in endometriosis[J]. Pathology,Research and Practice,2023,251:154892.
    [35] Kim H J,Lee K N,Park K H,et al. Characterization of inflammation/immune-,acute phase-,extracellular matrix-,adhesion-,and serine protease-related proteins in the amniotic fluid of women with early preterm prelabor rupture of membranes[J]. Am J Reprod Immunol,2024,92(2):e13913. doi: 10.1111/aji.13913
    [36] Liu L,Xiang M,Zhou J,et al. Progranulin inhibits autophagy to facilitate intracellular colonization of Helicobacter pylori through the PGRN/mTOR/DCN axis in gastric epithelial cells[J]. Frontiers in Cellular and Infection Microbiology,2024,14:1425367. doi: 10.3389/fcimb.2024.1425367
    [37] Neykhonji M,Asgharzadeh F,Farazestanian M,et al. Oenothera biennis improves pregnancy outcomes by suppressing inflammation and fibrosis in an intra-uterine adhesion rat model[J]. Scientific Reports,2024,14(1):22376. doi: 10.1038/s41598-024-69488-z
    [38] Afshar Y,Yin O,Jeong A,et al. Placenta accreta spectrum disorder at single-cell resolution: A loss of boundary limits in the decidua and endothelium[J]. Am J Obstet Gynecol,2024,230(4): 443. e1-443. e18.
  • [1] 廉坤, 李咏梅, 施诚龙, 陈怡兰, 张磊, 杨薇, 许秀峰.  综合生物信息学方法识别精神分裂症状中关键线粒体自噬基因, 昆明医科大学学报. 2025, 46(1): 1-13.
    [2] 马彬斌, 张少雄, 高永丽.  基于生物信息学探究ESCRT相关基因对骨肉瘤预后的评估价值, 昆明医科大学学报. 2025, 46(4): 1-10.
    [3] 杨东艳, 林华, 张宇箫, 赵昆颖, 向丽蓉, 杨淑达, 胡炜彦.  贝伐珠单抗联合替莫唑胺用于复发性高级别脑胶质瘤的有效性及安全性分析, 昆明医科大学学报. 2024, 45(4): 67-73. doi: 10.12259/j.issn.2095-610X.S20240410
    [4] 刘春艳, 常炳庆, 李超, 任欣, 刘小琴.  T淋巴细胞亚群与急性髓系白血病病理特征的关系及预测化疗预后的价值分析, 昆明医科大学学报. 2024, 45(5): 116-122. doi: 10.12259/j.issn.2095-610X.S20240518
    [5] 崔道林, 陈春丽, 周正宏, 龚蕾.  基于生物信息学分析MX1、IFI44STAT1在狼疮性肾炎中的作用, 昆明医科大学学报. 2024, 45(12): 105-114. doi: 10.12259/j.issn.2095-610X.S20241215
    [6] 杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明.  基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联, 昆明医科大学学报. 2024, 45(3): 18-29. doi: 10.12259/j.issn.2095-610X.S20240303
    [7] 苗文清, 王宇, 赵晓丽, 田倪妮, 尤丽英.  冠心病急性心肌梗死患者外周血差异基因表达分析及功能, 昆明医科大学学报. 2022, 43(6): 25-34. doi: 10.12259/j.issn.2095-610X.S20220614
    [8] 陈丽华, 庞晓军.  妇科内分泌疾病与复发性流产的相关性, 昆明医科大学学报. 2020, 41(06): 136-139.
    [9] 马国玉, 熊庆, 蒋国庆, 杨家甜, 木云珍.  基于生物信息学方法识别肺腺癌预后相关基因, 昆明医科大学学报. 2020, 41(07): 30-37.
    [10] 蔡金凤, 肖彭莹, 姚颖杰.  复发性流产患者应用脂肪乳联合肝素的疗效, 昆明医科大学学报. 2019, 40(10): 106-108.
    [11] 邓玉梅, 宋家美, 刘仲伟, 杨洁, 孟昱时.  淋巴细胞免疫治疗次数对复发性流产的疗效观察, 昆明医科大学学报. 2019, 40(10): 150-153.
    [12] 李辉, 王智, 辛应朋, 杨晓佩, 张柠, 赵斐, 钟树荣.  不同载体上人体脱落细胞富集方法的比较, 昆明医科大学学报. 2017, 38(11): 118-121.
    [13] 胡万芹, 赵洪波, 梁宏, 赵庆华, 杨丽华.  顺铂耐药卵巢癌的差异表达基因和信号通路富集分析, 昆明医科大学学报. 2017, 38(06): 97-101.
    [14] 杨晓玲.  复发性流产患者凝血功能与流产次数的相关性, 昆明医科大学学报. 2015, 36(12): -.
    [15] 谷芳娜.  急性髓系白血病染色体核型及免疫表型分布及治疗后临床疗效分析, 昆明医科大学学报. 2015, 36(03): -1.
    [16] 仇晓春.  2000年至2012年MEDLINE收录我国生物医学论文计量学分析, 昆明医科大学学报. 2013, 34(06): -.
    [17] 宋向菁.  昆明市育龄妇女人工流产现状及避孕失败原因分析, 昆明医科大学学报. 2013, 34(09): -.
    [18] 周虹.  皮肤基底细胞癌178例临床特征及组织病理学分析, 昆明医科大学学报. 2012, 33(04): -.
    [19] 超声引导下肝活检对不明原因黄疸的诊疗分析, 昆明医科大学学报. 2011, 32(02): -.
    [20] 林翠云.  超声引导下肝活检对不明原因黄疸的诊疗分析, 昆明医科大学学报. 2011, 32(02): -.
  • 加载中
图(7)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  12
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-08
  • 网络出版日期:  2024-12-29

目录

    /

    返回文章
    返回