留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺血再灌注损伤与细胞焦亡的相关性研究进展

王小莹 刘作金 申丽娟

王小莹, 刘作金, 申丽娟. 缺血再灌注损伤与细胞焦亡的相关性研究进展[J]. 昆明医科大学学报, 2020, 41(12): 142-147. doi: 10.12259/j.issn.2095-610X.S20201240
引用本文: 王小莹, 刘作金, 申丽娟. 缺血再灌注损伤与细胞焦亡的相关性研究进展[J]. 昆明医科大学学报, 2020, 41(12): 142-147. doi: 10.12259/j.issn.2095-610X.S20201240
Xiao-ying WANG, Zuo-jin LIU, Li-juan SHEN. Review of Correlation between Ischemia-reperfusion Injury and Pyroptosis[J]. Journal of Kunming Medical University, 2020, 41(12): 142-147. doi: 10.12259/j.issn.2095-610X.S20201240
Citation: Xiao-ying WANG, Zuo-jin LIU, Li-juan SHEN. Review of Correlation between Ischemia-reperfusion Injury and Pyroptosis[J]. Journal of Kunming Medical University, 2020, 41(12): 142-147. doi: 10.12259/j.issn.2095-610X.S20201240

缺血再灌注损伤与细胞焦亡的相关性研究进展

doi: 10.12259/j.issn.2095-610X.S20201240
基金项目: 国家自然科学基金资助项目(81170442)
详细信息
    作者简介:

    王小莹(1987~),重庆人,医学硕士,住院医师,主要研究肝脏缺血再灌注损伤保护机制

    通讯作者:

    申丽娟,E-mail: shenljkm@163.com

  • 中图分类号: R365

Review of Correlation between Ischemia-reperfusion Injury and Pyroptosis

  • 摘要: 缺血再灌注损伤是由病理因素或治疗方式所致的组织暂时缺血,恢复血流后引起组织损伤,能导致相关器官功能障碍。这种损伤与各器官中相关细胞中发生的炎性损伤密切相关。细胞焦亡是研究发现的形态学上与凋亡相似,伴随炎症反应发生的细胞程序性死亡。近年来多项研究证明缺血再灌注损伤的发病机制可能与细胞焦亡相关。细胞焦亡过程中各种炎症因子活化在此环节中起关键作用。结合文献就细胞焦亡与心、脑、肝脏、肾脏这几个重要脏器的缺血再灌注损伤间的关系作一综述。
  • [1] Ali J M,Davies S E,Brais R J,et al. Analysis of ischemia/reperfusion injury in time-zero biopsies predicts liver allograft outcomes[J]. Liver Transpl,2015,21(4):487-499. doi: 10.1002/lt.24072
    [2] Zhao J,Wang F,Zhang Y,et al. Sevoflurane preconditioning attenuates myocardial ischemia/reperfusion injury via caveolin-3-dependent cyclooxygenase-2 inhibition[J]. Circulation,2013,128(11 Suppl 1):S121-129.
    [3] Zhaolin Z,Guohua L,Shiyuan W,et al. Role of pyroptosis in cardiovascular disease[J]. Cell Prolif,2019,52(2):e12563. doi: 10.1111/cpr.12563
    [4] Li H,Xia Z,Chen Y,et al. Mechanism and therapies of oxidative stress-Mediated cell death in ischemia reperfusion injury[J]. Oxid Med Cell Longev,2018,2018(6):2910643.
    [5] Frank D,Vince J E. Pyroptosis versus necroptosis:Similarities,differences,and crosstalk[J]. Cell Death Differ,2019,26(1):99-114. doi: 10.1038/s41418-018-0212-6
    [6] Robinson N,Ganesan R,Hegedus C,et al. Programmed necrotic cell death of macrophages:Focus on pyroptosis,necroptosis,and parthanatos[J]. Redox Biol,2019,26(9):101239.
    [7] Vande Walle L,Lamkanfi M. Pyroptosis[J]. Curr Biol,2016,26(13):R568-R572. doi: 10.1016/j.cub.2016.02.019
    [8] Fang Y,Tian S,Pan Y,et al. Pyroptosis:A new frontier in cancer[J]. Biomed Pharmacother,2020,121(1):109595.
    [9] Fritsch M,Günther S D,Schwarzer R,et al. Caspase-8 is the molecular switch for apoptosis,necroptosis and pyroptosis[J]. Nature,2019,575(7784):683-687. doi: 10.1038/s41586-019-1770-6
    [10] Osman A S,Osman A H,Kamel M M. Study of the protective effect of ischemic and pharmacological preconditioning on hepatic ischemic reperfusion injury induced in rats[J]. JGH Open,2017,1(3):105-111. doi: 10.1002/jgh3.12018
    [11] Zhao H,Huang H,Alam A,et al. VEGF mitigates histone-induced pyroptosis in the remote liver injury associated with renal allograft ischemia-reperfusion injury in rats[J]. Am J Transplant,2018,18(8):1890-1903. doi: 10.1111/ajt.14699
    [12] Zhang Z,Shao X,Jiang N,et al. Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury[J]. Cell Death Dis,2018,9(10):983. doi: 10.1038/s41419-018-1023-x
    [13] Zhang H,Xiong X,Liu J,et al. Emulsified isoflurane protects against transient focal cerebral ischemia injury in rats via the PI3K/Akt signaling pathway[J]. Anesth Analg,2016,122(5):1377-1384. doi: 10.1213/ANE.0000000000001172
    [14] Yue R C,Lu S Z,Luo Y,et al. Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice[J]. Life Sci,2019,233(11):116631.
    [15] Y Chen,M R Smith,K Thirumalai,et al. A bacterial invasin induces macrophage apoptosis by binding directly to ICE.[J]. The EMBO Journal,1996,15(15):3853-3860. doi: 10.1002/j.1460-2075.1996.tb00759.x
    [16] Guo H,Xie M,Zhou C,et al. The relevance of pyroptosis in the pathogenesis of liver diseases[J]. Life Sci,2019,223(4):69-73.
    [17] Kovacs S B,Miao E A. Gasdermins:Effectors of pyroptosis[J]. Trends Cell Biol,2017,27(9):673-684. doi: 10.1016/j.tcb.2017.05.005
    [18] Hilbi H,Moss J E,Hersh D,et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IPAB.[J]. The Journal of biological chemistry,1998,273(49):32895-32900.
    [19] Fernandes-Alnemri T,Wu J,Yu J-W,et al. The pyroptosome:A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation[J]. Cell death and differentiation,2007,14(9):1590-1604.
    [20] Fink Susan L,Cookson Brad T. Pillars Article:Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages[J]. Cellular microbiology,2006,8(11):1812-1825. doi: 10.1111/j.1462-5822.2006.00751.x
    [21] De Carvalho R V H,Andrade W A,Lima-Junior D S,et al. Leishmania lipophosphoglycan triggers caspase-11 and the non-canonical activation of the NLRP3 inflammasome[J]. Cell Rep,2019,26(2):429-437. doi: 10.1016/j.celrep.2018.12.047
    [22] Zhao Y,Shi J,Shao F. Inflammatory caspases:Activation and cleavage of gasdermin-D in vitro and during pyroptosis[J]. Methods Mol Biol,2018,1714(11):131-148.
    [23] Xue Y,Enosi Tuipulotu D,Tan W H,et al. Emerging activators and regulators of inflammasomes and pyroptosis[J]. Trends Immunol,2019,40(11):1035-1052. doi: 10.1016/j.it.2019.09.005
    [24] Cookson B T,Brennan M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol,2001,9(3):113-114.
    [25] Xu Y,Yao J,Zou C,et al. Asiatic acid protects against hepatic ischemia/reperfusion injury by inactivation of kupffer cells via PPARgamma/NLRP3 inflammasome signaling pathway[J]. Oncotarget,2017,8(49):86339-86355. doi: 10.18632/oncotarget.21151
    [26] Xu Y J,Zheng L,Hu Y W,et al. Pyroptosis and its relationship to atherosclerosis[J]. Clinica Chimica Acta,2018,476(1):28-37.
    [27] Xing L,Zhibin Z,Jianbin R,et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature,2016,535(7610):153-158. doi: 10.1038/nature18629
    [28] Wang S,Yuan Y H,Chen N H,et al. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease[J]. Int Immunopharmacol,2019,67(3):458-464. doi: 10.1016/j.intimp.2018.12.019
    [29] Shi J,Gao W,Shao F. Pyroptosis:Gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci,2017,42(4):245-254. doi: 10.1016/j.tibs.2016.10.004
    [30] Okondo M C,Johnson D C,Sridharan R,et al. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis[J]. Nat Chem Biol,2017,13(1):46-53. doi: 10.1038/nchembio.2229
    [31] Schauvliege R,Vanrobaeys J,Schotte P,et al. Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription(STAT)1[J]. J Biol Chem,2002,277(44):41624-41630. doi: 10.1074/jbc.M207852200
    [32] Reiling J,Bridle K R,Gijbels M,et al. Low-dose lipopolysaccharide causes biliary injury by blood biliary barrier impairment in a rat hepatic ischemia/reperfusion model[J]. Liver Transpl,2017,23(2):194-206. doi: 10.1002/lt.24681
    [33] Kayagaki N,Wong M T,Stowe I B,et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4[J]. Science,2013,341(6151):1246-1249. doi: 10.1126/science.1240248
    [34] Yi Y S. Caspase-11 non-canonical inflammasome:A critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses[J]. Immunology,2017,152(2):207-217. doi: 10.1111/imm.12787
    [35] Chen Y,Qin X,An Q,et al. Mesenchymal stromal cells directly promote inflammation by canonical NLRP3 and non-canonical caspase-11 inflammasomes[J]. EBioMedicine,2018,32(6):31-42.
    [36] Deng M,Tang Y,Li W,et al. The endotoxin delivery protein HMGB1 mediates caspase-11-dependent lethality in sepsis[J]. Immunity,2018,49(4):740-753. doi: 10.1016/j.immuni.2018.08.016
    [37] Gao Y L,Zhai J H,Chai Y F. Recent Advances in the molecular mechanisms underlying pyroptosis in sepsis[J]. Mediators Inflamm,2018,2018(9):5823823.
    [38] Wang J X,Zhang X J,Li Q,et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD[J]. Circulation Research,2015,117(4):352-363. doi: 10.1161/CIRCRESAHA.117.305781
    [39] Lou Yunpeng,Wang Shiying,Qu Jinlong,et al. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis[J]. International Journal of Clinical and Experimental Pathology,2018,11(7):3222-3235.
    [40] Qiu Z,Lei S,Zhao B,et al. NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats[J]. Oxid Med Cell Longev,2017,2017(9):9743280.
    [41] Ma Y B,Chang H Y. Caspase work model during pathogen infection[J]. Virol Sin,2011,26(6):366-375. doi: 10.1007/s12250-011-3218-5
    [42] Chen Xiang Chen,Jing Huang,Ga Qi Tu,et al. NAMPT inhibitor protects ischemic neuronal injury in rat brain via anti-neuroinflammation[J]. Neuroscience,2017,356(7):193-206.
    [43] Han Bingbing,Lu Yan,Zhao Haijun,et al. Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/NF-κB signaling pathway in microglia[J]. International Journal of Clinical and Experimental Pathology,2015,8(9):11199-111205.
    [44] Zhang D,Qian J,Zhang P,et al. Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro[J]. J Neurosci Res,2019,97(6):645-660. doi: 10.1002/jnr.24385
    [45] Pannen B H. New insights into the regulation of hepatic blood flow after ischemia and reperfusion[J]. Anesth Analg,2002,94(6):1448-1457.
    [46] Mirshafiee V,Sun B,Chang C H,et al. Toxicological profiling of metal oxide nanoparticles in liver context reveals pyroptosis in kupffer cells and macrophages versus apoptosis in hepatocytes[J]. ACS Nano,2018,12(4):3863-3852.
    [47] Lee B L,Stowe I B,Gupta A,et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation[J]. J Exp Med,2018,215(9):2279-2288. doi: 10.1084/jem.20180589
    [48] Niu X,Yao Q,Li W,et al. Harmine mitigates LPS-induced acute kidney injury through inhibition of the TLR4-NF-kappaB/NLRP3 inflammasome signalling pathway in mice[J]. Eur J Pharmacol,2019,842(4):160-169.
    [49] Yang J R,Yao F H,Zhang J G,et al. Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway[J]. Am J Physiol Renal Physiol,2014,306(1):F75-84. doi: 10.1152/ajprenal.00117.2013
    [50] Kim H Y,Kim S J,Lee S M. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion[J]. FEBS J,2015,282(2):259-270. doi: 10.1111/febs.13123
    [51] Liu Z J,Yan L N,Li S W,et al. Glycine blunts transplantative liver ischemia-reperfusion injury by downregulating interleukin 1 receptor associated kinase-4[J]. Acta Pharmacol Sin,2006,27(11):1479-1486. doi: 10.1111/j.1745-7254.2006.00413.x
    [52] Jiang L,Zhang L,Kang K,et al. Resveratrol ameliorates LPS-induced acute lung injury via NLRP3 inflammasome modulation[J]. Biomed Pharmacother,2016,84(12):130-138.
    [53] Mcauliffe J J,Joseph B,Vorhees C V. Isoflurane-delayed preconditioning reduces immediate mortality and improves striatal function in adult mice after neonatal hypoxia-ischemia[J]. Anesth Analg,2007,104(5):1066-1077. doi: 10.1213/01.ane.0000260321.62377.74
    [54] Z Y Li,F Z Zhao,Y G Cao,et al. DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway[J]. Eur J Pharmacol,2018,835(2018):1–10.
    [55] Qiu Zhen,Lei Shaoqing,Zhao Bo,et al. NLRP3 Inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats.[J]. Oxidative Medicine and Cellular Longevity,2017,2017(6):1-17.
    [56] 王小莹,刘作金,申丽娟. 异氟醚预处理通过抑制Caspase-11相关的非经典细胞焦亡途径减轻小鼠肝脏缺血再灌注损伤[J].南方医科大学学报,2020,40(05):670-675.
    [57] Flondor M,Hofstetter C,Boost K A,et al. Isoflurane inhalation after induction of endotoxemia in rats attenuates the systemic cytokine response[J]. Eur Surg Res,2008,40(1):1-6.
  • [1] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [2] 王静, 米弘瑛, 张熠, 李丽, 余建华, 刘丽巧, 刘庆瑜, 王立伟.  细胞焦亡参与早期子鼠坏死性小肠结肠炎的发病, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230124
    [3] 王峰, 杨伟, 钱佃伦, 梅松, 王文杰, 冯科翔, 白向锋.  miR-582-5p调控Notch1减轻心肌缺血再灌注损伤的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221207
    [4] 王小云, 王巧云, 顾明华, 丁昱, 关雨雯, 张继兰.  miR-373通过P2X7R影响抑郁症小鼠行为的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211030
    [5] 龙熙翠, 刘贝贝, 卢绍波, 李志红, 金文娇, 陆金芝, 韩雪松.  细胞焦亡因子Caspase-1、IL-1β与IL-18在子宫内膜息肉组织中的表达和意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210917
    [6] 赵恒, 许彬, 赵广周, 李荣杰, 周百灵, 刘叶, 世淑兰.  脑脊液可溶性髓系细胞触发受体-1、白介素-6及白介素-10在儿童化脓性脑膜炎中的诊断价值, 昆明医科大学学报.
    [7] 王增涛, 张洁, 郭涛.  七氟烷预处理对大鼠脑缺血再灌注损伤时细胞凋亡以及能量代谢的影响, 昆明医科大学学报.
    [8] 杨斐, 谢婧, 缪薇, 韩剑虹.  后适应对大鼠脑缺血再灌注后自噬相关基因表达的影响, 昆明医科大学学报.
    [9] 马旭东, 孙锋, 段永庆, 吴雪松, 李薇.  大鼠肝脏缺血再灌注损伤对COX-2和micorRNA-101的表达, 昆明医科大学学报.
    [10] 边立功, 钟莲梅, 艾青龙, 陈鑫月, 许文凯, 闫润淇, 邱进, 陆地.  人参皂苷Rg1调控Nrf2在SD大鼠脑缺血再灌注损伤后的抗氧化作用, 昆明医科大学学报.
    [11] 李俊杰.  脑缺血-再灌注损伤大鼠脑组织中TNF-α,IL-6和IL-1β的表达, 昆明医科大学学报.
    [12] 何凤蝶.  盆腔炎患者血清C反应蛋白、白介素-2、单核细胞趋化蛋白-1及血液流变学的变化, 昆明医科大学学报.
    [13] 张玮.  SGK1对脑缺血再灌注损伤的保护机制, 昆明医科大学学报.
    [14] 杨力.  脑缺血再灌注大鼠脑内Mrp1的表达变化, 昆明医科大学学报.
    [15] 张海燕.  P38信号通路在肝脏缺血再灌注损伤中作用的研究进展, 昆明医科大学学报.
    [16] 卿德科.  己酮可可碱预处理拮抗肝叶切除患者肝脏的缺血再灌流损害, 昆明医科大学学报.
    [17] 孙海梅.  缺血后处理对猪急性心肌梗死后的抗氧化作用, 昆明医科大学学报.
    [18] 乌司他丁对急性下肢动脉缺血术后再灌注损伤的治疗体会, 昆明医科大学学报.
    [19] 刁畅.  不阻断体循环及门脉系统大鼠胰十二指肠移植模型的建立, 昆明医科大学学报.
    [20] 李国栋.  七叶皂甙钠抗大鼠视网膜缺血-再灌注后视网膜细胞凋亡的保护作用, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2875
  • HTML全文浏览量:  2148
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-14
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回