留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲基苯丙胺神经毒性作用及机制的研究进展

李媛媛 李娟 杨根梦 黄俭 刘柳 沈宝玉 王婵 许悦 林纾丞 曾晓锋

刘明敏, 王丽春, 梁喜, 杨蕊. 超声引导下乳腺微小病变活检应用于乳腺癌早期诊断[J]. 昆明医科大学学报, 2018, 39(07): 37-40.
引用本文: 李媛媛, 李娟, 杨根梦, 黄俭, 刘柳, 沈宝玉, 王婵, 许悦, 林纾丞, 曾晓锋. 甲基苯丙胺神经毒性作用及机制的研究进展[J]. 昆明医科大学学报, 2021, 42(2): 153-157. doi: 10.12259/j.issn.2095-610X.S20210210
Liu Ming Min , Wang Li Chun , Liang Xi , Yang Rui . Application of Ultrasound-guided Breast Microscopic Lesion Biopsy in the Early Diagnosis of Breast Cancer[J]. Journal of Kunming Medical University, 2018, 39(07): 37-40.
Citation: Yuan-yuan LI, Juan LI, Gen-meng YANG, Jian HUANG, Liu LIU, Bao-yu SHEN, Chan WANG, Yue XU, Shu-cheng LIN, Xiao-feng ZENG. Research Progress on Neurotoxic Effects and Mechanism of Methamphetamine[J]. Journal of Kunming Medical University, 2021, 42(2): 153-157. doi: 10.12259/j.issn.2095-610X.S20210210

甲基苯丙胺神经毒性作用及机制的研究进展

doi: 10.12259/j.issn.2095-610X.S20210210
基金项目: 国家自然科学基金资助项目(81560303, 81660310,81960340);云南省教育厅科学研究基金资助项目(K13225141)
详细信息
    作者简介:

    李媛媛(1993~),女,内蒙古扎兰屯人,在读硕士研生,主要从事毒品神经毒性及滥用机制研究工作

    通讯作者:

    曾晓锋,E-mail:zxf2004033@163.com

  • 中图分类号: R89

Research Progress on Neurotoxic Effects and Mechanism of Methamphetamine

  • 摘要: 甲基苯丙胺(methamphetamine,METH)是一种严重威胁公共健康安全的兴奋性精神刺激药物。长期或高剂量滥用METH会引起明显的神经元损伤和神经毒性。METH诱导神经元损伤机制中,氧化应激、线粒体代谢损伤和神经炎症等神经毒性起重要作用。从METH神经毒性机制进行综述,重点描述反应性胶质细胞神经炎症作用,总结靶向METH诱导神经炎症药物,旨在进一步探讨METH诱导神经毒性的机制,为抑制METH神经毒性和药物研发提供新思路。
  • [1] Kim B,Yun J,Park B. Methamphetamine-induced neuronal damage:Neurotoxicity and neuroinflammation[J]. Biomol Ther(Seoul),2020,28(5):381-388. doi: 10.4062/biomolther.2020.044
    [2] Mcketin R,Leung J,Stockings E,et al. Mental health outcomes associated with of the use of amphetamines:A systematic review and meta-analysis[J]. EClinical Medicine,2019,16:81-97. doi: 10.1016/j.eclinm.2019.09.014
    [3] Ru Q,Xiong Q,Tian X,et al. Tea polyphenols attenuate methamphetamine-induced neuronal damage in PC12 cells by alleviating oxidative stress and promoting DNA repair[J]. Front Physiol,2019,10:1450. doi: 10.3389/fphys.2019.01450
    [4] Moszczynska A,Callan S P. Molecular,behavioral,and physiological consequences of methamphetamine neurotoxicity:Implications for treatment[J]. J Pharmacol Exp Ther,2017,362(3):474-488. doi: 10.1124/jpet.116.238501
    [5] Vargas A M,Rivera-Rodriguez D E,Martinez L R. Methamphetamine alters the TLR4 signaling pathway,NF-kappaB activation,and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells[J]. Mol Immunol,2020,121:159-166. doi: 10.1016/j.molimm.2020.03.013
    [6] Yang T,Zang S,Wang Y,et al. Methamphetamine induced neuroinflammation in mouse brain and microglial cell line BV2:Roles of the TLR4/TRIF/Peli1 signaling axis[J]. Toxicol Lett,2020,333:150-158. doi: 10.1016/j.toxlet.2020.07.028
    [7] Foroughi K,Khaksari M,Rahmati M,et al. Apelin-13 protects PC12 cells against methamphetamine-induced oxidative stress,autophagy and apoptosis[J]. Neurochem Res,2019,44(9):2103-2112. doi: 10.1007/s11064-019-02847-9
    [8] Shaerzadeh F,Streit W J,Heysieattalab S,et al. Methamphetamine neurotoxicity,microglia,and neuroinflammation[J]. J NeurOinflammation,2018,15(1):341. doi: 10.1186/s12974-018-1385-0
    [9] Reyes-Parada M,Iturriaga-Vasquez P,Cassels B K. Amphetamine derivatives as monoamine oxidase inhibitors[J]. Front Pharmacol,2019,10:1590.
    [10] Brown J M,Quinton M S,Yamamota B K. Methamphetamine-induced inhibition of mitochondrial complex II:roles of glutamate and peroxynitrite[J]. J Neurochem,2005,95(2):429-436. doi: 10.1111/j.1471-4159.2005.03379.x
    [11] Permpoonputtana K,Govitrapong P. The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines[J]. Neurotox Res,2013,23(2):189-199. doi: 10.1007/s12640-012-9350-7
    [12] Salamanca S A,Sorrentino E E,Nosanchuk J D,et al. Impact of methamphetamine on infection and immunity[J]. Front Neurosci,2014,8:445.
    [13] Park J H,Seo Y H,Jang J H,et al. Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway[J]. J Neur Oinflammation,2017,14(1):240.
    [14] Lavoie M J,Card J P,Hastings T G. Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity[J]. Exp Neurol,2004,187(1):47-57. doi: 10.1016/j.expneurol.2004.01.010
    [15] Borgmann K,Ghorpade A. HIV-1,methamphetamine and astrocytes at neuroinflammatory crossroads[J]. Front Microbiol,2015,6:1143.
    [16] Du S H,Qiao D F,Chen C X,et al. Toll-Like receptor 4 mediates methamphetamine-induced Neuroinflammation through caspase-11 signaling pathway in astrocytes[J]. Front Mol Neurosci,2017,10:409. doi: 10.3389/fnmol.2017.00409
    [17] Frank M G,Adhikary S,Sobesky J L,et al. The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine[J]. Brain Behav Immun,2016,51:99-108. doi: 10.1016/j.bbi.2015.08.001
    [18] Hamm S,Dehouck B,Kraus J,et al. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts[J]. Cell Tissue Res,2004,315(2):157-166. doi: 10.1007/s00441-003-0825-y
    [19] Robson M J,Turner R C,Naser Z J,et al. SN79,a sigma receptor antagonist,attenuates methamphetamine-induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation[J]. Exp Neurol,2014,254:180-189. doi: 10.1016/j.expneurol.2014.01.020
    [20] Bortell N,Basova L,Semenova S,et al. Astrocyte-specific overexpressed gene signatures in response to methamphetamine exposure in vitro[J]. J Neuroinflammation,2017,14(1):49. doi: 10.1186/s12974-017-0825-6
    [21] Yu C,Narasipura S D,Richards M H,et al. HIV and drug abuse mediate astrocyte senescence in a beta-catenin-dependent manner leading to neuronal toxicity[J]. Aging Cell,2017,16(5):956-965. doi: 10.1111/acel.12593
    [22] Wang X,Northcutt A L,Cochran T A,et al. Methamphetamine activates toll-Like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell[J]. ACS Chem Neurosci,2019,10(8):3622-3634. doi: 10.1021/acschemneuro.9b00225
    [23] Du S H,Zhang W,Yue X,et al. Role of CXCR1 and interleukin-8 in methamphetamine-induced neuronal apoptosis[J]. Front Cell Neurosci,2018,12:230.
    [24] Tocharus J,Khonthun C,Chongthammakun S,et al. Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines[J]. J Pineal Res,2010,48(4):347-352. doi: 10.1111/j.1600-079X.2010.00761.x
    [25] Goncalves J,Baptista S,Martins T,et al. Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus:preventive effect of indomethacin[J]. Eur J Neurosci,2010,31(2):315-326. doi: 10.1111/j.1460-9568.2009.07059.x
    [26] Lee Y W,Son K W,Flor G,et al. Methamphetamine activates DNA binding of specific redox-responsive transcription factors in mouse brain[J]. J Neurosci Res,2002,70(1):82-89. doi: 10.1002/jnr.10370
    [27] Afanador L,Mexhitaj I,Diaz C,et al. The role of the neuropeptide somatostatin on methamphetamine and glutamate-induced neurotoxicity in the striatum of mice[J]. Brain Res,2013,1510:38-47. doi: 10.1016/j.brainres.2013.03.010
    [28] Mozaffari S,Ramezany Yasuj S,Motaghinejad M,et al. Crocin Acting as a Neuroprotective agent against methamphetamine-induced neurodegeneration via CREB-BDNF signaling pathway[J]. Iran J Pharm Res,2019,18(2):745-758.
    [29] Ghanbari F,Khaksari M,Vaezi G,et al. Hydrogen sulfide protects hippocampal neurons against methamphetamine neurotoxicity via inhibition of apoptosis and neuroinflammation[J]. J Mol Neurosci,2019,67(1):133-141. doi: 10.1007/s12031-018-1218-8
    [30] Wen D,Hui R,Wang J,et al. Effects of molecular hydrogen on methamphetamine-induced neurotoxicity and spatial memory impairment[J]. Front Pharmacol,2019,10:823. doi: 10.3389/fphar.2019.00823
  • [1] 朱婷娜, 曹媛媛, 张园, 刘鹏亮, 王一航, 吴亚梅, 李利华, 赵永娜, 洪仕君.  不同剂量天麻素对甲基苯丙胺依赖CPP大鼠海马中TLR4/MyD88/NF-κB炎症信号通路的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230226
    [2] 徐琳, 高开成, 贾杰, 李煜阳, 王华伟, 况轶群, 赵昱.  参苓白术散对甲基苯丙胺诱导小鼠肠道菌群改变的作用机制研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230829
    [3] 毛俊鸿, 鲁丹枫, 徐玉, 代毅聪, 张哲瑞, 李悦, 王昆华.  甲基苯丙胺改变成瘾小鼠突触可塑性基因的甲基化修饰, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220121
    [4] 李俊杰, 蒋海燕, 白文娅, 霍思颖, 孙志生, 邵建林.  沉默RND3表达对氧糖缺失/复氧复糖损伤海马神经细胞炎症反应和细胞凋亡的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211012
    [5] 朱婷娜, 刘鹏亮, 董文娟, 于浩, 吴亚梅, 黄兆奎, 洪仕君, 赵永娜.  不同剂量天麻素对甲基苯丙胺依赖大鼠条件位置偏爱及海马小胶质细胞激活的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210502
    [6] 王一航, 洪仕君, 钟磊磊, 解润芳, 彭艳霞, 李利华.  DA、5-HT及MAO在甲基苯丙胺和氯胺酮联合滥用依赖大鼠CPP效应中的表达量变化, 昆明医科大学学报.
    [7] 沈宝玉, 杨根梦, 李媛媛, 刘柳, 黄俭, 曾晓锋, 李利华.  可卡因诱导神经细胞自噬的研究进展, 昆明医科大学学报.
    [8] 黄兆奎, 石振金, 吴亚梅, 周一卿, 陈立方, 王一航, 闫倩文, 张枫弋, 赵永娜, 李利华, 洪仕君.  甲基苯丙胺不同给药时程及天麻素的干预对建立大鼠条件性位置偏爱模型的影响, 昆明医科大学学报.
    [9] 陈忠义, 乔廷廷, 董宝莲, 郭玲.  LPS介导三种啮齿动物原代胶质细胞炎症氧化反应的研究, 昆明医科大学学报.
    [10] 杨金凤, 蒙国懿, 黄兆奎, 洪仕君, 李利华, 邢豫明, 赵永娜.  甲基苯丙胺对大鼠海马5-HT、IL-6及NF-κB表达的影响, 昆明医科大学学报.
    [11] 马晨丽, 杨根梦, 闫倩文, 张枫弋, 石振金, 周一卿, 王一航, 赵永娜, 张冬先, 李利华, 洪仕君.  天麻素干预甲基苯丙胺依赖大鼠星形胶质细胞、神经元变化及炎性因子IL-6、TNF-α的表达, 昆明医科大学学报.
    [12] 傅希玥, 陆地, 边立功, 周莉.  小胶质细胞的激活与癫痫的关系, 昆明医科大学学报.
    [13] 蒙国懿, 隋念含, 杨金凤, 边立功, 洪仕君, 李利华, 赵永娜.  甲基苯丙胺对大鼠海马TNF-α、IL-1β及CD22表达的影响, 昆明医科大学学报.
    [14] 杨金凤, 蒙国懿, 隋念含, 边立功, 洪仕君, 李利华, 赵永娜.  甲基苯丙胺对大鼠海马DA、5-HT及TNF-α表达的影响, 昆明医科大学学报.
    [15] 李艳明, 郑艳珍, 张冬先, 李娟, 杨根梦, 何永旺, 周一卿, 曾晓锋, 李桢.  甲基苯丙胺与HIV-Tat蛋白协同致大鼠纹状体NMDA受体NR2B亚基和iNOS的表达, 昆明医科大学学报.
    [16] 安媛.  血液净化对脓毒性脑病神经元特异性烯醇化酶的影响, 昆明医科大学学报.
    [17] 曾柏瑞.  甲基苯丙胺与HIV-Tat蛋白协同改变大鼠血脑屏障通透性的氧化应激作用机制, 昆明医科大学学报.
    [18] 于洋.  神经生长因子NGF的神经元保护作用机制及临床应用研究现状, 昆明医科大学学报.
    [19] 刘巨鹏.  BDNF在甲基苯丙胺依赖机制中作用研究进展, 昆明医科大学学报.
    [20] 唐茂丹.  大鼠视神经切断后视网膜Muller细胞及小胶质细胞变化特点, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2959
  • HTML全文浏览量:  2267
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-05
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回