Advances in Research of Astrocyte-neuron Transformation in Vivo
-
摘要: 星形胶质细胞-神经元转化(星元转化)是21世纪神经科学的重要发现。星形胶质细胞在胶质细胞中数量最多,与神经元起源于相同的前体细胞,其向神经元转化的潜能为以神经元受损或丢失为特征的各类神经系统疾病的治疗带来新的希望。体外星元转化已有众多成功的实验,而体内星元转化的探索刚刚起步。现已发现可用转录因子、药物、MicroRNA等在模型动物体内诱导星元转化,阿尔茨海默病、脊髓损伤、局灶性中风、帕金森病等病理情况可诱发星元转化。对星形胶质细胞在正常及有关疾病模型动物体内转化为神经元的研究现状进行系统阐述,对星形胶质细胞重编程、向神经元转化并补充整合到受损的神经环路中的可能机制进行梳理。Abstract: Astrocyte-neuron transformation (ANT) is an important discovery in neuroscience field in the 21st century. Astrocytes are the largest number of glial cells and originate from the same precursor cells as neurons. Their potential to transform into neurons has brought new hope for the treatment of various neurological diseases characterized by neuronal damage or loss. There have been many successful experiments on the transformation of astrocyte-neuron in vitro, but the exploration in vivo is just beginning. Transcription factors, drugs, and microRNAs have been found to induce this transformation in animal models. Meanwhile, astrocyte-neuron transformation can be induced by pathological conditions such as Alzheimer’ s disease, spinal cord injury, focal stroke, and Parkinson’ s disease. In this paper, we systematically review the current status of studies on the transformation of astrocytes into neurons in normal and related disease animal models, and sort out the possible mechanisms of astrocytes’ reprogramming, neuronal transformation, then supplement and integration into damaged neural circuits.
-
Key words:
- Astrocytes /
- Neuron /
- Astrocytes neuron transformation /
- Reprogramming /
- Central nervous system diseases
-
肝内胆管癌是一种来源于肝内胆管上皮细胞的恶性肿瘤,具有高度恶性、高病死率、低诊断率特点,严重威胁患者生命健康[1-2]。我国胆管癌发病率为0.01%~0.46%,且调查显示其占恶性肿瘤总数的2%,好发于中老年人。由于胆管癌早期容易侵袭周围组织器官以及出现远处转移是预后差、手术切除率低的根本原因,目前诊断和治疗水平尚无取得突破性进展,且具体病机制尚未完全明确,而从肿瘤生物学角度寻求更好的预防以及治疗方法是研究热点[3-4]。近年来研究发现,细胞间粘附分子-1(ICAM-1)、基质金属蛋白酶-9(MMP-9)及NF-κB与恶性肿瘤发生、发展密切相关[5-6]。髓源性抑制细胞(myeloid-derived suppressor cells,MDSCs)是近年来发现的具有免疫调节功能的一类免疫细胞亚群,在自身免疫、炎症及肿瘤中发挥重要作用。本文研究旨在探讨ICAM-1、MMP-9及NF-κB在胆管癌中的表达及与外周血中CD14+CD11b+HAL-DR-MDSC的关系。
1. 资料与方法
1.1 一般资料
选取昆明医科大学附属甘美医院于2017年12月至2019年12月收治的胆管癌患者60例研究对象,均行根治性手术治疗,且均经病理学证实,患者均未采取抗肿瘤治疗,及3个月未使用免疫抑制剂。60例患者中,男性38例,女性22例;年龄36~78岁,平均(58.39±10.21)岁;临床分期:I~II期19例,III~IV期41例;病理分级:低分化34例,中高分化26例;淋巴结转移21例。经昆明医科大学附属甘美医院伦理委员会审查同意开展研究。
诊断标准:依据《胆管癌诊断与治疗--外科专家共识》[7]关于肝内胆管癌诊断标准,临床表现出现腹部不适、腹痛、上腹肿块、乏力、恶心、发热等,经超声检查证实肝内局限性肿块。纳入标准:(1)符合肝内胆管癌诊断标准,均行根治性手术治疗,且经病理学证实为肝内胆管癌;(2)均未采取抗肿瘤治疗;(3)3个月未使用免疫抑制剂。排除标准:(1)其他类型胆管癌及合并其他恶性肿瘤者;(2)临床资料和随访资料不完整。
1.2 主要试剂和仪器
主要试剂:鼠抗人ICAM-1抗体,兔抗MMP-9单克隆抗体,兔抗NF-κB单克隆抗体,均购自武汉博士德生物试剂公司。主要仪器:美国BD公司流式细胞仪。
1.3 方法
(1)免疫组织化学技术检测ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白:取患者癌组织和癌旁正常组织标本,经10%福尔马林液固定,石蜡包埋,4 μm厚连续切片,按照免疫组化SP法进行实验操作,检测ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白,以PBS代替一抗作为阴性对照,试剂公司提供的阳性着色图片为阳性对照。于光学显微镜下观察染色结果,着色的结果判定采用半定量法,首先以细胞着色强弱度评分[1]:以无着色者为计分0分,以浅黄色者为计分1分,以棕黄色者计分为2分,以棕褐色者计分为3分。且记录镜下阳性细胞数所占的百分比:无阳性细胞者为计分0分,阳性细胞≤10%者为计分1分,阳性细胞数为计分11%~50%者为计分2分,在51%~75%者为计分4分。再按照上述两者所得评分相乘结果划分等级:其中以积分≤3分即为“-”,以积分3~5分为“+”,以积分5~8分为“++”,以积分9~12分则为“+++”[1]。
(2)流式细胞术检测外周血中CD14+CD11b+HAL-DR-MDSC比例:所有研究对象均于入院第2 d清晨空腹采集患者3 mL外周静脉血,以肝素抗凝,取抗凝全血100 μL,以红细胞裂解液充分裂解后,根据试剂盒说明书量取不同荧光标记抗体直接标记,对外周血 CD14、CD11b和HLA-DR抗原表达检测,且标记同型对照,放置于4 ℃下避光孵育30 min,采用流式缓冲液洗涤2次后上机检测。圈取CD14+CD11b+的细胞群,再选择HLA-DR-细胞群即为MDSC。
1.4 观察指标
(1)观察胆管癌组织与癌旁组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达;(2)观察不同病理特征ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达;(3)观察不同病理特征外周血中CD14+CD11b+HAL-DR-MDSC比例;(4)分析ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达与外周血中CD14+CD11b+HAL-DR-MDSC比例相关性。
1.5 统计学处理
采用统计学软件SPSS 22.0进行数据处理分析,计数资料比较采用χ2检验,以率表示,计量资料比较采用t检验,以均数±标准差表示。采用Pearson相关性分析 ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例相关性。以P < 0.05为差异具有统计学意义。
2. 结果
2.1 胆管癌组织与癌旁正常组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达比较
胆管癌组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达阳性率均高于癌旁正常组,差异均有统计学意义(P < 0.05),见 表1和图1~图3。
表 1 胆管癌组织与癌旁正常组织ICAM-1蛋白、MMP-9蛋白和NF-κB蛋白表达比较[n(%)]Table 1. Comparison of ICAM-1 protein, MMP-9 protein and NF- κ B protein expression between cholangiocarcinoma and adjacent normal tissues [n(%)]组别 n ICAM-1蛋白阳性率 MMP-9蛋白阳性率 NF-κB蛋白阳性率 胆管癌组织 60 41(68.33) 38(63.33) 47(78.33) 癌旁正常组织 60 11(18.33) 6(10.00) 8(13.33) χ2 - 30.543 36.746 51.054 P - < 0.001* < 0.001* < 0.001* *P< 0.05。 2.2 不同病理特征ICAM-1蛋白、MMP-9蛋白、NF-κB蛋白以及CD14+CD11b+HAL-DR-MDSC表达比较
不同性别、年龄、病理分级和淋巴结转移ICAM-1蛋白表达比较无明显差异(P > 0.05);III~IV期ICAM-1蛋白表达阳性率高于I~II期( P < 0.05)。不同性别、年龄、病理分级和临床分期MMP-9蛋白表达比较无明显差异( P > 0.05);淋巴结转移MMP-9蛋白表达阳性率高于无淋巴结转移( P < 0.05)。不同性别、年龄、病理分级和淋巴结转移NF-κB蛋白表达比较无明显差异( P > 0.05);III~IV期NF-κB蛋白表达阳性率高于I~II期( P < 0.05)。不同性别、年龄、病理分级和淋巴结转移CD14 +CD11b+HAL-DR-MDSC比例比较无明显差异(P > 0.05);III~IV期CD14 +CD11b+HAL-DR-MDSC比例高于I~II期(P < 0.05),见 表2。
表 2 不同病理特征ICAM-1蛋白、MMP-9蛋白、NF-κB蛋白以及CD14+CD11b+HAL-DR-MDSC表达比较[n(%)]Table 2. Comparison of ICAM-1 protein MMP-9 protein NF-κB protein and NF-κB protein expression in different pathological features [n(%)]病理特征(例) ICAM-1
蛋白阳性χ2/P MMP-9
蛋白阳性χ2/P NF-κB
蛋白阳性χ2/P CD14+CD11b+HAL-DR−
MDSC比例(%)t/P 性别 男性(38) 28(73.68) 1.371/0.242 24(63.16) 0.001/0.970 32(84.21) 1.271/0.260 3.19 ± 0.92 0.243/0.809 女性(22) 13(59.09) 14(63.64) 15(68.18) 3.10 ± 0.95 年龄 > 60岁(26) 19(73.08) 0.447/0.490 19(73.08) 1.876/0.171 21(80.77) 0.160/0.689 3.23 ± 0.98 0.739/0.463 ≤60岁(34) 22(64.71) 19(55.88) 26(76.47) 3.05 ± 0.90 临床分期 I~II期(19) 6(31.58) 17.358/< 0.001* 9(47.37) 3.052/0.081 9(47.37) 13.152/< 0.001* 2.32 ± 0.83 6.069/< 0.001* III~IV期(41) 35(83.37) 29(70.73) 38(92.68) 3.97 ± 1.04 病理分级 低分化(34) 26(76.47) 2.401/0.121 23(67.65) 0.629/0.428 24(70.59) 2.773/0.096 3.20 ± 0.89 0.488/0.627 中高分化(26) 15(57.69) 15(57.69) 23(88.46) 3.08 ± 1.01 淋巴结转移 有(21) 15(71.43) 0.143/0.705 15(71.43) 7.959/0.005* 15(71.43) 0.390/0.533 3.28 ± 1.02 1.590/0.117 无(39) 26(66.67) 13(33.33) 32(82.05) 2.89 ± 0.84 *P < 0.05。 2.3 ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例相关性
ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例呈线性正相关,见表3。
表 3 ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例相关性Table 3. Expression of ICAM-1 protein, MMP-9 protein and NF- κB protein and its correlation with the proportion of CD14 + CD11b + HAL-DR-MDSC蛋白 CD14+CD11b+HAL-DR-MDSC比例 r P ICAM-1蛋白 0.819 <0.001* MMP-9蛋白 0.528 0.010* NF-κB蛋白 0.736 0.002* *P< 0.05。 3. 讨论
胆管癌是常见的一种胆道恶性肿瘤,通常情况下其症状出现晚,且具有较高发病率和病死率,严重威胁患者生命健康[7-9]。因此,采取及时有效的诊断和治疗胆管癌方法尤为重要。
ICAM-1人体正常组织中表达极低,仅某些淋巴细胞、上皮细胞少量表达。ICAM-1主要通过街道肿瘤细胞与白细胞黏附,导致原发肿瘤分离和坏死,增加转移和浸润;血循环中瘤细胞/白细胞结合体,容易在毛细血管床滞留着床[10]。通常情况下,高表达ICAM-1瘤细胞经人淋巴细胞功能相关抗原(LFA-1)结合,从而抑制免疫细胞对肿瘤细胞的杀灭和识别[11]。此外,ICAM-1参与肿瘤与基质的粘附,以及促进癌细胞生长和转移,并且与胆管癌预后关系紧密[12]。本文研究发现,胆管癌患者胆管癌组织中ICAM-1高表达,且于临床分期密切相关。基质金属蛋白酶(MMPs)是形成和影响肿瘤微环境的一种蛋白水解酶家族,其中MMP-9是MMPs中分子量最大成员。MMP-9最初主要以酶原形式分泌而产生,而其被激活后形成IV型胶原酶,使肿瘤表面细胞外基质和基底膜降解、破坏,且可使IV、V、VII和X型胶原降解,以及使肿瘤细胞沿缺失的基膜浸润周围,而造成肿瘤细胞的侵袭和转移,进而促进演变恶性肿瘤[13-15]。研究报道显示,MMP-9的阳性表达与胆管癌组织分化程度、临床分期和转移复发呈正相关[16]。而本文研究发现,胆管癌患者胆管癌组织中MMP-9高表达,且与淋巴结转移密切相关,而与上述研究存在一些差异,其原因可能是由于本文样本量相对较少,还需后续增加样本量进一步研究。NF-κB是细胞内重要的一种转录因子,通常于静息状态下以异源或同源二聚体形式与抑制蛋白结合存在于细胞质中,当细胞受外源性刺激,抑制蛋白与NF-κB剥离,进入细胞核,从而发挥其调控作用[17]。研究报道显示,NF-κB是肿瘤与连续持续炎症的重要中介因子[18]。此外,研究报道显示,NF-κB在胆管癌组织中呈过表达,以及其在肿瘤组中表达水平高于正常组与胆管结石炎症组[19]。本文研究发现,胆管癌患者胆管癌组织NF-κB高表达,且与临床分期密切相关。MDSC是近年来研究发现的具有免疫调节功能一种免疫细胞亚群,能够通过多种途径抑制机体的免疫应答反应且在移植免疫、炎症、肿瘤及自身免疫中发挥重要作用。同时,MDSC限制肿瘤免疫治疗的效果,且参与肿瘤的免疫逃逸。研究报道显示,肿瘤患者外周血中免疫抑制细胞的比例增加,且可促进肿瘤的免疫逃逸[20]。本文研究发现,胆管癌患者中外周血中CD14+CD11b+HAL-DR-MDSC比例升高,且与临床分期密切相关。
综上所述,ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表在胆管癌中高表达,外周血中CD14+CD11b+HAL-DR-MDSC比例升高,且ICAM-1蛋白、MMP-9蛋白及NF-κB蛋白表达与CD14+CD11b+HAL-DR-MDSC比例呈线性正相关。
-
[1] Li H D,Chen G. In vivo reprogramming for CNS repair:Regenerating neurons from endogenous glial cells[J]. Neuron,2016,91(4):728-738. doi: 10.1016/j.neuron.2016.08.004 [2] Barker R A,Gotz M,Parmar M. New approaches for brain repair-from rescue to reprogramming[J]. Nature,2018,557(7705):329-334. doi: 10.1038/s41586-018-0087-1 [3] Lei W,Li W,Ge L,et al. Non-engineered and engineered adult nurogenesis in mammalian brains[J]. Front Neurosci,2019,13(13):131. [4] Olof T,Ulrich P,Daniel A,et al. Generation of induced neurons via direct conversion in vivo[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(17):7038-7043. doi: 10.1073/pnas.1303829110 [5] Liu Y G,Miao Q L,Yuan J C,et al. Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo[J]. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2015,35(25):9336-9355. doi: 10.1523/JNEUROSCI.3975-14.2015 [6] Li S L,Shi Y H,Yao X,et al. Conversion of astrocytes and fibroblasts into functional noradrenergic neurons[J]. Cell Reports,2019,28(3):682-697. doi: 10.1016/j.celrep.2019.06.042 [7] Brulet R,Matsuda T,Zhang L,et al. Neuron1 instructs neuronal conversion in non-reactive astrocytes[J]. Stem Cell Reports,2017,8(6):1506-1515. doi: 10.1016/j.stemcr.2017.04.013 [8] Niu W,Zang T,Smith D K,et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain[J]. Stem Cell Reports,2015,4(5):780-794. doi: 10.1016/j.stemcr.2015.03.006 [9] Yin J C,Zhang L,Ma N X,et al. Chemical Conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways[J]. Stem Cell Reports,2019,12(3):488-501. doi: 10.1016/j.stemcr.2019.01.003 [10] Liu M H,Li W,Zheng J J,et al. Differential neuronal reprogramming induced by NeuroD1 from astrocytes in grey matter versus white matter[J]. Neural Regen Res,2020,15(2):342-351. doi: 10.4103/1673-5374.265185 [11] Guo Z Y,Zhang L,Wu Z,et al. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’ s disease model[J]. Cell Stem Cell,2014,14(2):188-202. doi: 10.1016/j.stem.2013.12.001 [12] Su Z,Niu W,Liu M L,et al. In vivo conversion of astrocytes to neurons in the injured adult spinal cord[J]. Nat Commun,2014,5:3338. doi: 10.1038/ncomms4338 [13] Zarei-Kheirabadi M,Hesaraki M,Kiani S,et al. In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor[J]. Stem Cell Res Ther,2019,10(1):644-653. [14] Yang T,Dai Y,Chen G,et al. Dissecting the dual role of the glial scar andscar-forming astrocytes in spinal cord injury[J]. Front Cell Neurosci,2020,14:78. [15] Yang T,Xing L,Yu W,et al. Astrocytic reprogramming combined with rehabilitation strategy improves recovery from spinal cord injury[J]. FASEB J,2020,34(11):15504-15515. doi: 10.1096/fj.202001657RR [16] Shen S W,Duan C L,Chen X H,et al. Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature neurons in rat brains after stroke[J]. Neuropharmacology,2016,108:451-461. doi: 10.1016/j.neuropharm.2015.11.012 [17] Yamashita T,Shang J,Nakano Y,et al. In vivo direct reprogramming of glial linage to mature neurons after cerebral ischemia[J]. Sci Rep,2019,9(1):10956. doi: 10.1038/s41598-019-47482-0 [18] Chen Y C,Ma N X,Pei Z F,et al. A NeuroD1 AAV-Based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion[J]. Mol Ther,2020,28(1):217-234. doi: 10.1016/j.ymthe.2019.09.003 [19] Rivetti di Val Cervo P,Romanov R A,Spigolon G,et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model[J]. Nat Biotechnol,2017,35(5):444-452. doi: 10.1038/nbt.3835 [20] Israel Z,Asch N. Reversing a Model of Parkinson's disease with in situ converted nigral neurons[J]. Mov Disord,2020,35(11):1955. doi: 10.1002/mds.28306 [21] Wu Z,Parry M,Hou X Y,et al. Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’ s disease[J]. Nat Commun,2020,11(1):1105. doi: 10.1038/s41467-020-14855-3 [22] Mo J L,Liu Q,Kou Z W,et al. MicroRNA-365 modulates astrocyte conversion into neuron in adult rat brain after stroke by targeting Pax6[J]. Glia,2018,66(7):1346-1362. doi: 10.1002/glia.23308 [23] Ghasemi-Kasman M,Hajikaram M,Baharvand H,et al. MicroRNA-Mediated in vitro and in vivo direct conversion ofastrocytes to neuroblasts[J]. PLoS One,2015,10(6):e0127878. doi: 10.1371/journal.pone.0127878 [24] Magnusson J P,Göritz C,Tatarishvili J,et al. A latent neurogenic program in astrocytes regulated by Notch signaling in the mouse[J]. Science,2014,346 (6206):237-241. doi: 10.1126/science.346.6206.237 [25] Zamboni M,Llorens-Bobadilla E,Magnusson J P,et al. A widespread neurogenic potential of neocortical astrocytes is induced by injury[J]. Cell Stem Cell,2020,27(4):605-617. doi: 10.1016/j.stem.2020.07.006 [26] Cieślar-Pobuda Artur,Knoflach Viktoria,Ringh Mikael V,et al. Transdifferentiation and reprogramming:Overview of the processes,their similarities and differences[J]. Biochimica et Biophysica Acta,2017,1864(7):1359-1369. doi: 10.1016/j.bbamcr.2017.04.017 [27] 徐磊,王晓冬. 星形胶质细胞诱导分化为神经细胞的研究进展[J]. 神经解剖学杂志,2018,34(3):409-412. 期刊类型引用(1)
1. 林青,孙明华,王佳佳,秦丹丹,何斌,葛英辉. 射血分数保留肥厚型心肌病基于心肌节段厚度的磁共振心肌应变特征. 中华实用诊断与治疗杂志. 2024(12): 1268-1273 . 百度学术
其他类型引用(0)
-

计量
- 文章访问数: 3278
- HTML全文浏览量: 2288
- PDF下载量: 35
- 被引次数: 1