留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

心房颤动与心房代谢重构的研究进展

李昊 王静 杨萍

梁碧娟, 李华, 王志敏, 顾俊, 杨磊, 苏建培. 营养干预联合抗阻运动对老年肌少症的影响[J]. 昆明医科大学学报, 2023, 44(6): 92-96. doi: 10.12259/j.issn.2095-610X.S20230613
引用本文: 李昊, 王静, 杨萍. 心房颤动与心房代谢重构的研究进展[J]. 昆明医科大学学报, 2021, 42(3): 149-154. doi: 10.12259/j.issn.2095-610X.S20210335
Bijuan LIANG, Hua LI, Zhimin WANG, Jun GU, Lei YANG, Jianpei SU. Effect of Nutritional Intervention Combined with Resistance Exercise on Senile Sarcopenia[J]. Journal of Kunming Medical University, 2023, 44(6): 92-96. doi: 10.12259/j.issn.2095-610X.S20230613
Citation: Hao LI, Jing WANG, Ping YANG. Research Progress of Atrial Fibrillation and Atrial Metabolic Remodeling[J]. Journal of Kunming Medical University, 2021, 42(3): 149-154. doi: 10.12259/j.issn.2095-610X.S20210335

心房颤动与心房代谢重构的研究进展

doi: 10.12259/j.issn.2095-610X.S20210335
基金项目: 国家自然科学基金资助项目(81960069)
详细信息
    作者简介:

    李昊(1994~),男,云南昆明人,在读硕士研究生,主要从事心血管内科、心脏起搏及心律失常射频消融、心房颤动所致代谢重构研究工作

    通讯作者:

    杨萍,E-mail: 15877990331@163.com

  • 中图分类号: R54

Research Progress of Atrial Fibrillation and Atrial Metabolic Remodeling

  • 摘要: 心房颤动(简称房颤)是最常见的心律失常之一,常导致高致残率和高致死率。心房电重构、结构重构、代谢重构等是房颤发生的主要原因,重构又促进房颤发生和维持,由此形成恶性循环。主要介绍与房颤相关的代谢重构及针对代谢重构干预的研究进展。
  • 肌少症属于老年综合征常见类型,随年龄增长,骨骼肌细胞体积及数量均明显减少,肌力降低,致使躯体功能减弱,从而诱发跌倒等并发症[1]。欧洲学者Beaudart等[2]实施Meta分析,结果显示:患有肌少症者机体功能减退概率、死亡率更高,分别为未患有肌少症者3倍、4倍。我国学者罗旺辉等[3]开展Meta分析,结果显示:社区老年人中肌少症发生率为11%,亚洲地区发病率为9%,亚洲以外地区发病率为13%,女性发病率为16%,男性发病率为11%。如何帮助老年群体减慢肌肉流失速度,降低肌少症发生风险,提高老年群体生命质量是临床工作者亟须解决的问题[4]。营养干预通过调整饮食结构,培养患者养成健康饮食习惯,不仅能维持正常营养摄入量,同时还可以避免进食过多可加重病情的食物,有助于控制病情进展[5]。抗阻运动为肌肉战胜外来阻力而开展的主动运动方式,针对缺乏锻炼的老年群体,经短时间抗阻运动,其蛋白合成率与神经肌肉适应性反应能达到与年轻群体相似水平[6]。但目前临床关于营养干预联合抗阻运动对老年肌少症患者营养水平及日常生活能力影响报道较少,故本研究重点分析营养干预联合抗阻运动对老年肌少症患者营养水平及日常生活能力的影响,现报道如下。

    采用目的抽样法,选取2020年8月至2022年5月在昆明市第二人民医院老年病科收治的50例老年肌少症患者为研究对象。纳入标准:(1)符合《肌少症亚洲诊断标准更新》[7]中关于肌少症相关诊断标准;(2)年龄60~71岁;(3)具备基本理解与沟通能力;(4)近期未进行规律体育活动。排除标准:(1)无法参与抗阻运动者;(2)近3个月内服用含VD制剂药物者;(3)心脏安装起搏器;(4)合并四肢或脊柱等骨关节病;(5)血糖、血压、尿酸控制不佳者。脱落标准:(1)发生不良反应;(2)因诸多因素未完成本次研究而中途退出者。依据病案号前后次序将其分为观察组与对照组,各25例,2组均维持慢性病常规药物治疗。2组患者一般资料见表1。患者个人信息比较无明显差异,具有可比性(P > 0.05)。课题符合《赫尔辛基宣言》要求,患者签署知情同意书。

    表  1  2组患者常规信息对比($\bar x \pm s $
    Table  1.  Comparison of basic information between the two groups ($\bar x \pm s $
    项目对照组(n = 25)观察组(n = 25)t/χ2P
    年龄(岁) 65.87 ± 5.19 65.31 ± 5.16 0.276 0.784
    性别(n,男/女) 13/12 14/11 0.081 0.777
    体质量指数(kg/m2 18.51 ± 3.46 18.45 ± 3.54 0.061 0.952
    体重(kg) 64.64 ± 11.63 65.68 ± 10.96 0.325 0.747
    脂肪含量(%) 13.58 ± 4.52 13.17 ± 4.43 0.324 0.747
    握力(kg) 24.03 ± 7.44 25.28 ± 8.71 0.546 0.588
    骨骼肌质量指数(kg/m2 4.99 ± 0.49 4.89 ± 0.29 0.878 0.384
    下载: 导出CSV 
    | 显示表格
    1.2.1   对照组

    采用常规饮食及传统康复锻炼,具体措施:(1)医护人员应依据患者每日能量需求提供充足蛋白质与热量,并帮助其纠正不良生活与饮食结构,尽量戒烟戒酒;(2)传统康复锻炼包括:①物理因子治疗;②运动治疗(坐位及站立位平衡训练等);③传统康复治疗(针灸、中药膏摩、推拿及药棒穴位按摩等);④日常生活活动治疗;⑤慢性疾病知识宣教及护理指导。(3)医护人员应指导患者及家属熟练掌握药物使用方法,详细讲解用药过程中较易发生的毒副作用,告知其预防方法,邀请患者及家属定期参与健康教育知识讲座,避免多重用药;(4)医护人员应依据患者年龄、身高、BMI及SMI等基本情况实施个性化诊疗。

    1.2.2   观察组

    在对照组基础上采用增加营养干预,给予个体化膳食配比(必需氨基酸、维生素D等营养物质的有效摄入)的同时采用抗阻运动。具体措施:(1)创建医护小组:借助昆明市第二人民医院牵头成立的昆明市医养协会整合现有营养示范病房的医疗资源,组内成员包含老年医学部各科室、康复医学科及营养科的医生、护士及护工,依据组内成员自身优势合理分配任务,确保分工明确,同时,在治疗、康复及护理期间,组内成员应加强关注患者情绪变化,及时沟通,了解其心理状态,并针对性帮助其缓解焦虑或抑郁等情绪,促进其身心健康。(2)营养干预:①制定营养方案:组内成员应每周开展病例研讨会,汇报患者近期营养水平综合评估结果,营养科医生依据患者日常饮食习惯及膳食结构,结合其营养水平评估结果及吞咽情况等,再充分听取患者本人及家属建议,与组内成员进行讨论,共同制定营养方案;②营养宣教:组内成员应基于中国居民膳食指南(2021版)指导患者均衡饮食,确保其每日能量与蛋白质摄入量分别为30 kcal/kg与1.2~1.5 g/kg,碳水化合物与脂类摄入比例分别为60%与24%,同时,营养科医生应一对一指导患者制定个性化饮食方案,给予个体化膳食配比(必需氨基酸、维生素D等营养物质的有效摄入),并通过定期随访进行监督,确保患者各营养素摄入比例符合本课题要求;③营养支持:组内成员应建议患者随餐服用乳清蛋白,10 g/次,3次/d,并将鱼油与VD制成胶囊(每粒胶囊含300 mg二十碳五烯酸、200 mg二十二碳六烯酸及250IU维生素D3),分别在早餐及晚餐后30 min服用,2粒/次。(3)抗阻运动:①器材:组内成员可选用康复弹力带作为运动器材,不同颜色、磅数及长度阻力效果不同,从茶色→黄色→红色→绿色→蓝色→黑色阻力依次增加25%,能较好地实施渐进性抗阻运动;②模式:组内成员可选取动作简单的全身大肌群为主要训练方式,包括扩胸运动、拳击、手肘弯曲、招财猫、大鹏展翅及背水一战等6项上肢动作,抬腿、外展髋关节、踢腿、髋后伸、抬腿提膝及腿屈伸等6项下肢动作;③强度:组内成员应依据患者初始肌力推荐其选取适宜运动强度,运动结束后运用主观疲劳评定量表(rating of perceived exertion,RPE)[8]评估其运动后疲劳程度,以患者锻炼时轻微发汗且未见显著疲劳为宜;④频率:组内成员应要求患者每次对12项训练动作进行3~4组训练,每周进行3~4次训练,组间可适当休息25~30 s,每次训练持续20~25 min;⑤注意事项:开展锻炼前应实施8~12 min热身,可实施屈颈、耸肩、扩胸、抬腿、展髋及坐位踏步等锻炼方式,锻炼后再开展5~8 min肌肉放松,可实施深呼吸或拍打等方式。

    1.3.1   营养水平

    护理前后分别采集患者空腹静脉血5 mL,并放置到含促凝剂采血管中,运用3000 r/min离心机处理10 min,取血清运用全自动生化分析仪(贝克曼,型号:AU5811)联合配套原装进口试剂(安图生物,型号A2000plus)测定血红蛋白(Hb)、白蛋白(ALB)及维生素D(VD)水平;并运用Ottery[9]改编的整体营养评定量表(PG-SGA)评估患者营养情况,使用likert 5级评分法,1月内体重丢失,大于10%记4分,5%~9.9%记3分,3%~4.9%记2分,2%~2.9%记1分,0~1.9%记0分;是否存在创伤、褥疮等疾病,存在一项记1分,得分介于0~10分,重测信度为 0.708,Cronbach’s α数值为0.951,营养状况与得分呈现负相关。

    1.3.2   日常生活能力

    护理前后分别运用改良Barthel指数量表评分[10],包含穿脱衣物、二便控制、平地行走、上下楼梯、独立进食及独立洗漱,使用likert 5级评分法,完全依赖记0分,最大帮助记1分,中等帮助记2分,最小帮助记3分,完全独立记4分,得分介于0~10分,重测信度为 0.891,Cronbach’s α数值为0.928,独立能力与得分呈现正相关。

    运用SPSS 25.0统计软件(IBM公司,美国)实施统计学分析,计数资料采用例数(%)表示,结果采用χ²检验;计量资料运用($\bar x \pm s $)表示,结果采用t检验,P < 0.05代表差异有统计学意义。

    干预前,营养水平比较(P > 0.05);干预2个月后,2组Hb、ALB及VD均高于干预前,PG-SGA评分低于干预前(P < 0.05);且观察组Hb、ALB及VD高于对照组,PG-SGA评分低于对照组(P < 0.05),见表2

    表  2  2组患者营养水平比较($\bar x \pm s $
    Table  2.  Comparison of nutritional levels between the two groups ($\bar x \pm s $
    指标时间对照组(n = 25)观察组(n = 25)
    Hb(g/L) 干预前 112.86 ± 11.18 114.72 ± 9.89
    干预后 120.07 ± 11.32* 128.32 ± 14.49*#
    ALB(g/L) 干预前 30.77 ± 4.55 31.08 ± 4.23
    干预后 34.09 ± 5.89* 38.46 ± 6.01*#
    VD(ng/mL) 干预前 17.01 ± 5.34 17.34 ± 5.72
    干预后 21.34 ± 7.01* 25.89 ± 6.71*#
    PG-SGA评分(分) 干预前 8.61 ± 0.74 8.64 ± 0.49
    干预后 5.05 ± 1.16* 2.04 ± 0.91*#
      与本组干预前相比,*P < 0.05;与对照组相比,#P < 0.05。
    下载: 导出CSV 
    | 显示表格

    干预前,日常生活能力比较(P > 0.05);干预2个月后,2组日常生活能力均高于干预前(P < 0.05);且观察组日常生活能力高于对照组(P < 0.05),见表3

    表  3  2组患者日常生活能力比较(分,$\bar x \pm s $
    Table  3.  Comparison of daily living ability between the two groups (points,$\bar x \pm s $
    指标时间对照组(n = 25)观察组(n = 25)
    穿脱衣物 干预前 4.58 ± 0.56 4.76 ± 0.47
    干预后 6.75 ± 0.69* 9.49 ± 0.44*#
    二便控制 干预前 4.17 ± 0.91 4.12 ± 0.89
    干预后 6.34 ± 0.27* 9.49 ± 0.37*#
    平地行走 干预前 4.81 ± 0.92 4.95 ± 0.87
    干预后 6.98 ± 0.91* 9.33 ± 0.39*#
    上下楼梯 干预前 4.46 ± 0.72 4.24 ± 0.95
    干预后 6.69 ± 0.54* 9.27 ± 0.32*#
    独立进食 干预前 4.05 ± 0.23 4.17 ± 0.38
    干预后 6.21 ± 0.29* 9.39 ± 0.21*#
    独立洗漱 干预前 4.58 ± 0.64 4.74 ± 0.72
    干预后 6.51 ± 0.59* 9.77 ± 0.21*#
      与本组干预前相比,*P < 0.05;与对照组相比,#P < 0.05。
    下载: 导出CSV 
    | 显示表格

    目前,临床主要运用药物治疗、营养支持及运动康复等措施治疗或延缓肌少症,以营养与运动为核心的生活方式干预能够预防及延缓肌少症发生与发展[11]。董欣等[12]研究表明,健身器材等常规抗阻运动对参与锻炼者体能素质拥有一定要求,普遍存在极高锻炼风险,而弹力带抗阻运动不受身体素能或锻炼场地影响,具有操作简单、安全性好及灵活度高等显著优势。但单一运动方案虽能在一定程度上改善肌肉供血量,但在提高肌肉质量与促进肌肉细胞增殖等方面效果并不理想,从本质上讲,肌少症发生与机体新陈代谢率降低、年龄高等存在一定相关性[13],而肌肉功能降低最主要因素为长时间营养物质摄入不足致使肌肉蛋白合成减弱,因此,对于能自主进食的老年肌少症者予以优质膳食管理,可在一定程度上提高其生理状态,恢复其胃肠功能,从而提高其肌肉蛋白质合成能力,进而提升肌肉功能[14]。本研究中,昆明市第二人民医院通过整合医疗资料,创建医护小组,组内成员通过在治疗与护理过程中关注患者情绪变化,增加沟通交流频率,更为全面地掌握其心理状态,并实施个性化心理支持,有助于促进其身心健康,从而提高其治疗及护理依从性,加快康复进程;营养科医生依据患者饮食喜好制定个性化饮食方案,并开展营养支持与饮食宣教,有助于保障均衡摄入各营养素,从而提升患者营养水平;此外,运用康复弹力带行抗阻运动,能够更好地调动全身肌肉群参与到锻炼过程中,改善肌群间配合度,有助于提高肌肉力量。本次研究显示,观察组患者采取营养干预联合抗阻运动后Hb、ALB及VD高于对照组,PG-SGA评分低于对照组(P < 0.05),提示针对老年肌少症患者运用营养干预联合抗阻运动,可明显改善其营养水平。雷娅辉等[15]研究显示:舞蹈运动治疗法可恢复老年肌少症患者营养状况,并提高其肌肉力量,与本次研究结果相似。

    国内外大量研究表明,老年群体通过适宜抗阻运动能避免或延迟衰老期间肌肉质量降低[16-17]。既往多项研究表明[18-19],肌力在诸多慢性病发病、发展及预防等方面拥有重要作用,高肌力能明显减少心血管疾病相关死亡概率,低肌力为老年群体丧失基本生活能力等独立危险因素。联合饮食干预能明显改善老年群体新陈代谢,提高肌肉蛋白合成量,有助于提升肌肉质量及功能,进而恢复日常生活能力[20]。本次研究显示,干预后观察组日常生活能力优于对照组,差异有统计学意义(P < 0.05),提示针对老年肌少症患者运用营养干预联合抗阻运动,可明显提升其日常生活能力。王光辉等[21]研究发现,短期弹力带抗阻运动训练能够为老年肌少症患者提供更为优质护理措施,极大程度上改善其握力与步速,并提高其生活质量,进而恢复其日常生活能力,与本次研究结果相似。分析原因为开展营养干预联合抗阻运动,通过实施营养干预,帮助患者在思想方面更为注重肌少症危害与预防重要性,确保机体摄入充足热量及蛋白质,有助于改善肌肉量及肌力,纠正肌少症,从而增加老年群体体质量,降低病死率;通过实施抗阻运动,可快速提高肌蛋白与糖原储备量,刺激横纹肌血液循环,有利于加快横纹肌代谢能力,从而提高骨骼肌力量,进而提高患者日常生活能力。

    综上所述,营养干预联合抗阻运动可改善老年肌少症患者营养水平,并恢复其日常生活能力。但本次研究也存在一定局限性:(1)本研究对象均为昆明市第二人民医院,样本来源较为单一,可能影响结果客观性。(2)本研究在测量人体组成基础上,还应将身体功能相关指标纳入分析,有助于显示营养干预与抗阻运动在临床实践中意义。故后续应积极开展本领域大样本、高质量随机对照研究,并运用更为全面的结局指标开展深入研究。

  • [1] Chugh S S,Havmoeller R,Narayanan K,et al. Worldwide epidemiology of atrial fibrillation:A global burden of disease 2010 study[J]. Circulation,2014,129(8):837-847. doi: 10.1161/CIRCULATIONAHA.113.005119
    [2] Morin D P,Bernard M L,Madias C,et al. The state of the art:Atrial fibrillation epidemiology,prevention,and treatment[J]. Mayo Clinic Proceedings,2016,91(12):1778-1792. doi: 10.1016/j.mayocp.2016.08.022
    [3] Staerk L,Sherer J A,Ko D,et al. Atrial fibrillation:Epidemiology,pathophysiology,and clinical outcomes[J]. Circulation Research,2017,120(9):1501-1517. doi: 10.1161/CIRCRESAHA.117.309732
    [4] Kelly A van Bragt,Nasrallah H M,Marion K,et al. Atrial supply-demand balance in healthy adult pigs:coronary blood flow,oxygen extraction,and lactate production during acute atrial fibrillation[J]. Cardiovascular Research,2014,101(1):9-19. doi: 10.1093/cvr/cvt239
    [5] van Bilsen M,Smeets P J,Gilde A J,et al. Metabolic remodelling of the failing heart:the cardiac burn-out syndrome?[J]. Cardiovasc Res,2004,61(2):218-260. doi: 10.1016/j.cardiores.2003.11.014
    [6] Maria Z,Campolo A R,Lacombe V A. Diabetes Alters the expression and translocation of the insulin-sensitive glucose transporters 4 and 8 in the atrial[J]. PLoS One,2015,10(12):e0146033. doi: 10.1371/journal.pone.0146033
    [7] Lenski M,Schleider G,Kohlhaas M,et al. Arrhythmia causes lipid accumulation and reduced glucose uptake[J]. Basic Res Cardiol,2015,110(4):1-19.
    [8] 孙殿珉,郑哲,杨克明,等. 心房肌葡萄糖转运体-3的水平对冠心病患者冠脉旁路移植术后新发房颤风险的影响[J]. 中国分子心脏病学杂志,2009,9(3):161-163.
    [9] Ono N,Hayashi H,Kawase A,et al. Spontaneous atrial fibrillation initiated by triggered activity near the pulmonary veins in aged rats subjected to glycolytic inhibition[J]. AJP Heart and Circulatory Physiology,2007,292(1):H639-648. doi: 10.1152/ajpheart.00445.2006
    [10] Davogustto G,Dillon W,Salazar R,et al. The warburg effect in the heart:increased glucose metabolism drives cardiomyocyte hypertrophy in response to adrenergic stimulation[J]. Journal of the American College of Cardiology,2018,71(11):A802-812. doi: 10.1016/S0735-1097(18)31343-3
    [11] Hu H J,Zhang C,Tang Z H,et al. Regulating the Warburg effect on metabolic stress and myocardial fibrosis remodeling and atrial intracardiac waveform activity induced by atrial fibrillation[J]. Biochem Biophys Res Commun,2019,516(3):653-660. doi: 10.1016/j.bbrc.2019.06.055
    [12] Liu Y,Bai F,Liu N,et al. Metformin improves lipid metabolism and reverses the Warburg effect in a canine model of chronic atrial fibrillation[J]. BMC Cardiovasc Disord,2020,20(1):50-56. doi: 10.1186/s12872-020-01359-7
    [13] Kourliouros A,Yin X,Didangelos A,et al. Substrate modifications precede the development of atrial fibrillation after cardiac surgery:A proteomic study[J]. Annals of Thoracic Surgery,2011,92(1):104-110. doi: 10.1016/j.athoracsur.2011.03.071
    [14] Neglia D,Caterina A D,Marraccini P,et al. Impaired myocardial metabolic reserve and substrate selection flexibility during stress in patients with idiopathic dilated cardiomyopathy[J]. AJP Heart and Circulatory Physiology,2008,293(6):H3270-3278.
    [15] Bonnet D,Martin D,Lonlay P D,et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children[J]. Circulation,1999,100(22):2248-2253. doi: 10.1161/01.CIR.100.22.2248
    [16] Lim S,Lee K S,Lee J E,et al. Effect of a new PPAR-gamma agonist,lobeglitazone,on neointimal formation after balloon injury in rats and the development of atherosclerosis[J]. Atherosclerosis,2015,243(1):107-119. doi: 10.1016/j.atherosclerosis.2015.08.037
    [17] Liu G Z,Hou T T,Yuan Y,et al. Fenofibrate inhibits atrial metabolic remodeling in atrial fibrillation through PPAR-α/Sirt1/PGC-1α pathway[J]. Br J Pharmacol,2016,173(6):1095-1109. doi: 10.1111/bph.13438
    [18] Chao T F,Leu H B,Huang C C,et al. Thiazolidinediones can prevent new onset atrial fibrillation in patients with non-insulin dependent diabetes[J]. International Journal of Cardiology,2012,156(2):199-202. doi: 10.1016/j.ijcard.2011.08.081
    [19] Shingu Y,Yokota T,Takada S,et al. Decreased gene expression of fatty acid binding protein 3 in the atrium of patients with new onset of atrial fibrillation in cardiac perioperative phase[J]. Journal of Cardiology,2017,71(1):156-172.
    [20] Rader F,Pujara A C,Pattakos G,et al. Perioperative heart-type fatty acid binding protein levels in atrial fibrillation after cardiac surgery[J]. Heart Rhythm,2013,10(2):153-157. doi: 10.1016/j.hrthm.2012.10.007
    [21] Jie Q Q,Li G,Duan J B,et al. Remodeling of myocardial energy and metabolic homeostasis in a sheep model of persistent atrial fibrillation[J]. Biochem Biophys Res Commun,2019,517(1):8-14. doi: 10.1016/j.bbrc.2019.05.112
    [22] Neuman R B,Bloom H L,Shukrullah I,et al. Oxidative stress markers are associated with persistent atrial fibrillation[J]. Clinical Chemistry,2007,53(9):1652-1657. doi: 10.1373/clinchem.2006.083923
    [23] Shimano M,Shibata R,Inden Y,et al. Reactive oxidative metabolites are associated with atrial conduction disturbance in patients with atrial fibrillation[J]. HEART RHYTHM,2009,6(7):935-940. doi: 10.1016/j.hrthm.2009.03.012
    [24] Emelyanova L,Ashary Z,Cosic M,et al. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation[J]. American Journal of Physiology - Heart and Circulatory Physiology,2016,311(1):H54-H63. doi: 10.1152/ajpheart.00699.2015
    [25] Slagsvold K H,Johnsen A B,Rognmo O,et al. Mitochondrial respiration and microRNA expression in right and left atrium of patients with atrial fibrillation[J]. Physiological Genomics,2014,46(14):505-511. doi: 10.1152/physiolgenomics.00042.2014
    [26] Chen G,Guo H,Song Y,et al. Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes[J]. Molecular Medicine Reports,2016,14(6):5311-5317. doi: 10.3892/mmr.2016.5893
    [27] Soltész B,Urbancsek R,Pis O,et al. Quantification of peripheral whole blood,cell-free plasma and exosome encapsulated mitochondrial DNA copy numbers in patients with atrial fibrillation[J]. J Biotechnol,2019,299:66-71. doi: 10.1016/j.jbiotec.2019.04.018
    [28] Dong J,Zhao J,Zhang M,et al. 3-Adrenoceptor impairs mitochondrial biogenesis and energy metabolism during rapid atrial pacing-induced atrial fibrillation[J]. Journal of Cardiovascular Pharmacology and Therapeutics,2015,21(1):114-126.
    [29] UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34)[J]. Lancet,1998,352(9131):854-865. doi: 10.1016/S0140-6736(98)07037-8
    [30] Milton Packer. Disease treatment interactions in the management of patients with obesity and diabetes who have atrial fibrillation:the potential mediating influence of epicardial adipose tissue[J]. Cardiovascular Diabetology,2019,18(1):121-147. doi: 10.1186/s12933-019-0927-9
    [31] Chang S H,Wu L S,Chiou M J,et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus:A population-based dynamic cohort and in vitro studies[J]. Cardiovascular Diabetology,2014,13(1):462-476.
    [32] Adam O,Lavall D,Theobald K,et al. Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation[J]. Journal of the American College of Cardiology,2010,55(5):469-480. doi: 10.1016/j.jacc.2009.08.064
    [33] Khan J A,Laurikka J O,Jrvinen O H,et al. Early postoperative statin administration does not affect the rate of atrial fibrillation after cardiac surgery[J]. Eur J Cardiothorac Surg,2020,13(1):262-281.
    [34] Tseng C H,Chung W J,Li C Y,et al. Statins reduce new-onset atrial fibrillation after acute myocardial infarction:A nationwide study[J]. Medicine (Baltimore),2020,99(2):185-202.
    [35] Lan F,Weikel,K A,Cacicedo,J M,et al. Resveratrol-induced AMP-activated protein kinase activation is cell-type dependent:Lessons from basic research for clinical application[J]. Nutrients,2017,9(7):751-753. doi: 10.3390/nu9070751
    [36] Chong E,Chang S L,Hsiao Y W,et al. Resveratrol,a red wine antioxidant,reduces atrial fibrillation susceptibility in the failing heart by PI3K/AKT/eNOS signaling pathway activation[J]. Heart Rhythm,2015,12(5):1046-1056. doi: 10.1016/j.hrthm.2015.01.044
    [37] Wang Z,Cao Y,Yin Q,et al. Activation of AMPK alleviates cardiopulmonary bypass-induced cardiac injury via ameliorating acute cardiac glucose metabolic disorder[J]. Cardiovasc Ther,2018,36(6):124-152.
    [38] Zhang H,Liu B,Li T,et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia[J]. Int J Mol Med,2018,41(1):69-76.
    [39] Zhang Z,Zhang X,Korantzopoulos P,et al. Thiazolidinedione use and atrial fibrillation in diabetic patients:a meta-analysis[J]. BMC Cardiovascular Disorders,2017,17(1):96-102. doi: 10.1186/s12872-017-0531-4
    [40] Nakamura H,Niwano S,Niwano H,et al. Liraglutide suppresses atrial electrophysiological changes[J]. Heart Vessels,2019,34(8):1389-1393. doi: 10.1007/s00380-018-01327-4
    [41] Zhang X,Zhang Z,Zhao Y,et al. Alogliptin,a dipeptidyl peptidase-4 inhibitor,alleviates atrial remodeling and improves mitochondrial function and biogenesis in diabetic rabbits[J]. J Am Heart Assoc,2017,6(5):128-136.
  • [1] 王宇, 彭睿, 田倪妮, 赵晓丽, 郑松青, 贾永全, 苗文清, 刘巧梅.  心房颤动患者外周淋巴细胞LINC02009、LOC107984895表达水平的临床研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250311
    [2] 杨曼, 赵兴安, 葛芸娜, 秦娟, 王玺雅, 陶四明.  基于综合生物信息分析鉴定心房颤动相关炎症基因及其与免疫细胞浸润的关联, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240303
    [3] 刘宛书, 邓芙蓉, 杨萍, 田欣, 周光丽, 赵玲敏, 张学庭, 张可意.  2型糖尿病患者发生心房颤动相关影响因素的研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241208
    [4] 马子林, 马文妮, 马懿, 范咏诗, 金艳, 黄英.  基于Kano模型的心房颤动射频消融术患者健康教育需求调查分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240225
    [5] 苏勇, 龙佑玲, 王秀琼, 戴静, 李娟, 卢僖, 熊霖.  利用Lorenz RR散点图快速诊断急危重心律失常, 昆明医科大学学报.
    [6] 魏巍, 杨蓓, 韩明华, 陶四明, 杨志刚.  房颤患者抗凝治疗华法林剂量—INR值的相关性, 昆明医科大学学报.
    [7] 白向锋, 陶杰, 蒙俊, 杨伟.  左心室重建术对左心室重构的影响, 昆明医科大学学报.
    [8] 皮静虹, 陈文敏, 贾政, 那竹惠, 杨佳, 付琼芬.  瓣膜置换术后早期并发恶性心律失常致患者心脏骤停, 昆明医科大学学报.
    [9] 李奕林.  动态心电图对老年人右束支阻滞监测的临床意义, 昆明医科大学学报.
    [10] 伏忠阳.  胺碘酮与普罗帕酮治疗心律失常的疗效对比分析, 昆明医科大学学报.
    [11] 俸永红.  护理干预对冠心病并发心律失常患者治疗效果的影响, 昆明医科大学学报.
    [12] 李波.  DDD起搏器植入后不同患者的动态心电图的表现及其临床意义, 昆明医科大学学报.
    [13] 王碧成.  双黄连与利多卡因抗乌头碱诱发大鼠心律失常的疗效对比, 昆明医科大学学报.
    [14] 尹昵.  封堵器治疗室间隔缺损并发心律失常与腔内传导参数的关系, 昆明医科大学学报.
    [15] 郝应禄.  三维电标测指导下室性心律失常的射频消融治疗临床研究, 昆明医科大学学报.
    [16] 鲁一兵.  继发孔型房缺封堵术前后心律失常的变化, 昆明医科大学学报.
    [17] 两种β受体阻滞剂对碘-131治疗Graves病伴快速心律失常的疗效观察, 昆明医科大学学报.
    [18] 周友俊.  两种β受体阻滞剂对碘-131治疗Graves病伴快速心律失常的疗效观察, 昆明医科大学学报.
    [19] 阵发性心房颤动射频消融治疗60例临床分析, 昆明医科大学学报.
    [20] 郝应禄.  阵发性心房颤动射频消融治疗60例临床分析, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3534
  • HTML全文浏览量:  1937
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 刊出日期:  2021-03-25

目录

/

返回文章
返回