Advances in Extracellular Polymeric Substances in Biofilm
-
摘要: 生物膜胞外聚合物是生物膜形成过程中由微生物产生,导致生物膜内细菌致病性增强的基础物质,在改变生物膜中微生物行为、毒力及耐药性等方面发挥着至关重要的作用。现对生物膜胞外聚合物的成分、结构、功能、研究方法及针对胞外聚合物的生物膜感染治疗策略的进展做一综述。Abstract: Biofilm extracellular polymeric substances are the basic substances produced by microorganisms in the biofilm formation process, which lead to the enhancement of bacterial pathogenicity, playing an important role in change of microbial behavior, virulence and drug resistance. In this paper, the component, structure, function, research methods of extracellular polymeric substances and treatment strategy of biofilm infection targeting on extracellular polymeric substances are reviewed.
-
Key words:
- Biofilm /
- Infection /
- Extracellular polymeric substances /
- Research methods
-
[1] Gupta P,Sarkar S,Das B,et al. Biofilm,pathogenesis and prevention-a journey to break the wall:a review[J]. Arch Microbiol,2016,198(1):1-15. doi: 10.1007/s00203-015-1148-6 [2] Ramirez-Mora T,Retana-Lobo C,Valle-Bourrouet G. Biochemical characterization of extracellular polymeric substances from endodontic biofilms[J]. PLoS One,2018,13(11):e0204081. doi: 10.1371/journal.pone.0204081 [3] Flemming H C,Wingender J,Szewzyk U,et al. Biofilms:an emergent form of bacterial life[J]. Nat Rev Microbiol,2016,14(9):563-575. doi: 10.1038/nrmicro.2016.94 [4] Koo H,Yamada K M. Dynamic cell-matrix interactions modulate microbial biofilm and tissue 3D microenvironments[J]. Curr Opin Cell Biol,2016,28(42):102-112. [5] Harimawan A,Ting Y P. Investigation of extracellular polymeric substances(EPS)properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion[J]. Colloids Surf B Biointerfaces,2016,24(146):459-467. [6] Sharma G,Sharma S,Sharma P,et al. Escherichia coli biofilm:Development and therapeutic strategies[J]. J Appl Microbiol,2016,121(2):309-319. doi: 10.1111/jam.13078 [7] Zhang Y P,Wang F,Zhu X S,et al. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation[J]. Bioresour Technol,2015,25(193):274-280. [8] Rabin N,Zheng Y,Opoku Temeng C,et al. Biofilm formation mechanisms and targets for developing antibiofilm agents[J]. Future Med Chem,2015,7(4):493-512. doi: 10.4155/fmc.15.6 [9] Jennings L K,Storek K M,Ledvina H E,et al. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix[J]. Proc Natl Acad Sci U S A,2015,112(36):11353-11358. doi: 10.1073/pnas.1503058112 [10] Liu B H,Yu LC. In-situ,Time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm[J]. Colloids Surf B Biointerfaces,2017,16(150):98-105. [11] Yan L,Zhang X,Hao G,et al. Insight into the roles of tightly and loosely bound extracellular polymeric substances on a granular sludge in ammonium nitrogen removal[J]. Bioresour Technol,2016,26(222):408-412. [12] Koo H,Falsetta M L,Klein M I. The exopolysaccharide matrix:A virulence determinant of cariogenic biofilm[J]. J Dent Res,2013,92(12):1065-1073. doi: 10.1177/0022034513504218 [13] Mark Welch J L,Rossetti B J,Rieken CW,et al. Biogeography of a human oral microbiome at the micron scale[J]. Proc Natl Acad Sci U S A,2016,113(6):791-800. doi: 10.1073/pnas.1522149113 [14] Stacy A,Mcnally L,Darch S E,et al. The biogeography of polymicrobial infection[J]. Nat Rev Microbiol,2016,14(2):93-105. doi: 10.1038/nrmicro.2015.8 [15] Guo L,Mclean J S,Lux R,et al. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans[J]. Sci Rep,2015,5(5):18015. [16] Xiao Y,Zhang E H,Zhang J D,et al. Extracellular polymeric substances are transient media for microbial extracellular electron transfer[J]. Sci Adv,2017,3(7):e1700623. doi: 10.1126/sciadv.1700623 [17] Bowen W H,Burne R A,Wu H,et al. Oral biofilms:Pathogens,matrix,and polymicrobial interactions in microenvironments[J]. Trends Microbiol,2018,26(3):229-242. doi: 10.1016/j.tim.2017.09.008 [18] Frieri M,Kumar K,Boutin A. Antibiotic resistance[J]. J Infect Public Health,2017,10(4):369-378. doi: 10.1016/j.jiph.2016.08.007 [19] Liu Y,Kamesh A C,Xiao Y,et al. Topical delivery of low-cost protein drug candidates made in chloroplasts for biofilm disruption and uptake by oral epithelial cells[J]. Biomaterials,2016,37(105):156-166. [20] Di Martino P. Extracellular polymeric substances,a key element in understanding biofilm phenotype[J]. AIMS Microbiol,2018,4(2):274-288. doi: 10.3934/microbiol.2018.2.274 [21] Yang G,Lin J,Zeng E Y,et al. Extraction and characterization of stratified extracellular polymeric substances in Geobacter biofilms[J]. Bioresour Technol,2019,29(276):119-126. [22] Jachlewski S,Jachlewski W D,Linne U,et al. Isolation of extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acidocaldarius[J]. Front Bioeng Biotechnol,2015,3(1):123. [23] Stewart T J,Traber J,Kroll A,et al. Characterization of extracellular polymeric substances(EPS)from periphyton using liquid chromatography-organic carbon detection-organic nitrogen detection(LC-OCD-OND)[J]. Environ Sci Pollut Res Int,2013,20(5):3214-3223. doi: 10.1007/s11356-012-1228-y [24] Lai C Y,Dong Q Y,Chen J X,et al. Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate[J]. Environ Sci Technol.,2018,52(18):10680-10688. doi: 10.1021/acs.est.8b02374 [25] Li Q,Dong F,Dai Q,et al. Surface properties of PM2.5 calcite fine particulate matter in the presence of same size bacterial cells and exocellular polymeric substances(EPS)of Bacillus mucitaginosus[J]. Environ Sci Pollut Res Int,2018,25(23):22429-22436. doi: 10.1007/s11356-017-0829-x [26] Seviour T,Derlon N,Dueholm M S,et al. Extracellular polymeric substances of biofilms:suffering from an identity crisis[J]. Water Res,2019,53(151):1-7. [27] Huang X,Zhang K,Deng M,et al. Effect of arginine on the growth and biofilm formation of oral bacteria[J]. Arch Oral Biol,2017,59(82):256-262. [28] Desmond P,Best JP,Morgenroth E,et al. Linking composition of extracellular polymeric substances(EPS)to the physical structure and hydraulic resistance of membrane biofilms[J]. Water Res,2018,52(132):211-221. [29] Ciofu O,Rojo-Molinero E,Macia MD,et al. Antibiotic treatment of biofilm infections[J]. APMIS,2017,125(4):304-319. doi: 10.1111/apm.12673 [30] Wolfmeier H,Pletzer D,Mansour SC,et al. New perspectives in biofilm eradication[J]. ACS Infect Dis,2018,4(2):93-106. doi: 10.1021/acsinfecdis.7b00170 [31] Roy R,Tiwari M,Donelli G,et al. Strategies for combating bacterial biofilms:A focus on anti-biofilm agents and their mechanisms of action[J]. Virulence,2018,9(1):522-524. doi: 10.1080/21505594.2017.1313372 [32] Shukla SK,Rao TS. Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins[J]. Indian J Med Res,2017,146(Supplement):S1-S8. [33] Banar M,Emaneini M,Satarzadeh M,et al. Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections[J]. PLoS One,2016,11(10):e0164622. doi: 10.1371/journal.pone.0164622 [34] Mugita N,Nambu T,Takahashi K,et al. Proteases,actinidin,papain and trypsin reduce oral biofilm on the tongue in elderly subjects and in vitro[J]. Arch Oral Biol,2017,16(82):233-240.
点击查看大图
计量
- 文章访问数: 3725
- HTML全文浏览量: 2275
- PDF下载量: 80
- 被引次数: 0