Traditional Chinese Medicine Transcriptome Analysis of Characteristic Distribution of Scorpion Genes in Venomous Glands
-
摘要:
目的 研究东亚钳蝎Buthus martensii Karsch转录组信息特征。 方法 以山东省临沂地区特色东亚钳蝎为研究对象,利用二代高通量测序平台Illumina HiSeq 4000 150PE分别对东亚钳蝎的前腹部、后腹部、毒液腺进行转录组测序。利用测定的转录组数据将毒液腺基因分别与前腹部和后腹部基因集进行比较,然后取两两比较之后的交集进行分析,筛选差异基因集进行GO和KO分析。 结果 GO功能分类共有60个大项,含有23个生物学途径,13个细胞组分和24个分子功能。富集最显著的前20个KEGG通路中与毒素密切相关的为钙离子信号通路、磷脂酶信号通路。 结论 通过无参转录组测序,构建了东亚钳蝎转录组序列数据库,为今后东亚钳蝎功能基因的挖掘提供了序列基础并为代谢产物的生物合成提供了数据支撑,为传统中药在临床应用乃至精准医学方面提供了新的思路。 Abstract:Objective To obtain the transcriptome dataset of Buthus martensii. Methods Taking the characteristic Buthus martensii in Linyi area of Shandong Province as the research object, the second-generation high-throughput sequencing platform Illumina HiSeq 4000 150PE was used to sequence the transcriptome of the anterior abdomen, posterior abdomen and venom gland of Buthus martensii. The venom gland genes were compared with the preabdomen and the postabdomen gene sets, and then the intersection of the two comparison was analyzed. The screening differential gene sets were analyzed by GO and KO. Results There were 60 major categories of GO functional classification, containing 23 biological pathways, 13 cellular components, and 24 molecular functions. Among the first 20 KEGG pathways that were most significantly enriched, the calcium ion signaling pathway and phospholipase signaling pathway were closely related to toxins. Conclusion In this study, we have constructed the transcriptome sequence database of B. martensii by nonparticipating transcriptome sequencing, which provids the sequence basis for the future research on the gene mining function of Buthus martensii and the research basis for the biosynthesis of metabolites. -
Key words:
- Buthus martensii /
- Venom gland /
- Preabdomen /
- Postabdomen /
- Transcriptome sequencing
-
表 1 测序数据的统计结果
Table 1. Summary of transcriptome sequencing date and transcriptome assembly
样本 原始数据 有效数据 碱基数目(G) 错误率(%) Q20(%) Q30(%) 前腹部 46977080 46593018 6945967490 0.02 98.26 94.29 后腹部 45682534 45222188 6735593318 0.02 98.27 94.3 毒液腺 51173286 50641874 7463605213 0.02 98.26 94.36 表 2 差异表达基因的 GO 功能分类
Table 2. GO functional categories of Buthus martensii Unigenes
GO序列号 数目 功能描述 GO分类 GO:0044260 8 cellular macromolecule metabolic process BP GO:0009987 26 cellular process BP GO:0090304 1 nucleic acid metabolic process BP GO:0044237 22 cellular metabolic process BP GO:0043170 15 macromolecule metabolic process BP GO:0016055 7 Wnt signaling pathway BP GO:0034641 14 cellular nitrogen compound metabolic process BP GO:0006177 4 GMP biosynthetic process BP GO:0046037 4 GMP metabolic process BP GO:0006807 19 nitrogen compound metabolic process BP GO:0008150 71 biological_process BP GO:0044763 19 single-organism cellular process BP GO:0007275 10 multicellular organism development BP GO:1901360 13 organic cyclic compound metabolic process BP GO:0006725 13 cellular aromatic compound metabolic process BP GO:0009059 1 macromolecule biosynthetic process BP GO:0046483 13 heterocycle metabolic process BP GO:0006139 13 nucleobase-containing compound metabolic process BP GO:1901070 4 guanosine-containing compound biosynthetic process BP GO:0009225 4 nucleotide-sugar metabolic process BP GO:0034645 1 cellular macromolecule biosynthetic process BP GO:1901135 17 carbohydrate derivative metabolic process BP GO:0005975 15 carbohydrate metabolic process BP GO:0005615 25 extracellular space CC GO:0044421 29 extracellular region part CC GO:0044424 17 intracellular part CC GO:0032991 5 macromolecular complex CC GO:0044464 31 cell part CC GO:0044446 4 intracellular organelle part CC GO:0044422 4 organelle part CC GO:0044444 6 cytoplasmic part CC GO:0043226 8 organelle CC GO:0043229 8 intracellular organelle CC GO:0005578 6 proteinaceous extracellular matrix CC GO:0043234 5 protein complex CC GO:0031012 6 extracellular matrix CC GO:0030414 23 peptidase inhibitor activity MF GO:0061134 23 peptidase regulator activity MF GO:0030234 23 enzyme regulator activity MF GO:0004866 22 endopeptidase inhibitor activity MF GO:0061135 22 endopeptidase regulator activity MF GO:0004857 23 enzyme inhibitor activity MF GO:0003676 11 nucleic acid binding MF GO:0008238 12 exopeptidase activity MF GO:0098772 23 molecular function regulator MF GO:0097159 35 organic cyclic compound binding MF GO:1901363 35 heterocyclic compound binding MF GO:0004177 9 aminopeptidase activity MF GO:0004553 10 hydrolase activity,hydrolyzing O-glycosyl compounds MF GO:0016798 10 hydrolase activity,acting on glycosyl bonds MF GO:0008237 14 metallopeptidase activity MF GO:0003938 3 IMP dehydrogenase activity MF GO:0042813 3 Wnt-activated receptor activity MF GO:0009032 2 thymidine phosphorylase activity MF GO:0016154 2 pyrimidine-nucleoside phosphorylase activity MF GO:0005102 8 receptor binding MF GO:0004697 3 protein kinase C activity MF GO:0046914 25 transition metal ion binding MF GO:0008241 2 peptidyl-dipeptidase activity MF GO:0003824 102 catalytic activity MF -
[1] 李钟杰,吴文澜,王勇. 东亚钳蝎多肽资源的药理活性研究进展[J]. 中草药,2018,49(21):5179-5190. doi: 10.7501/j.issn.0253-2670.2018.21.033 [2] 毛歆,刘辉,李文鑫,等. 马氏正钳蝎的形态和结构特征[J]. 动物学杂志,2017,52(3):468-477. [3] Chippaux J P,Goyffon M. Epidemiology of scorpionism:A global appraisal[J]. Acta Tropica,2008,107(2):71-79. doi: 10.1016/j.actatropica.2008.05.021 [4] 杨彬,高文远,张艳军. 基于转录组学-蛋白质组学-多肽组学整合关联分析策略的动物药蛋白多肽类成分研究思路及方法[J]. 中草药,2019,50(5):1033-1038. doi: 10.7501/j.issn.0253-2670.2019.05.001 [5] 王巍杰,王涛. 蓖麻基因组毒素家族的生物信息学分析[J]. 基因组学与应用生物学,2017,36(8):3083-3090. [6] 张博,苏杭,任献青,等. 基于高通量转录组测序的菟丝子黄酮改善雷公藤多苷片致大鼠生殖损伤的机制研究[J]. 中国中药杂志,2019,44(16):3478-3485. [7] 吴昕怡,严媛,刘小莉. 基于高通量测序的青叶胆转录组研究[J]. 中国现代应用药学,2018,35(3):363-369. [8] 吴超,彭娟,向林,等. 基于高通量测序的铁皮石斛叶片转录组分析[J]. 分子植物育种,2016,14(12):3334-3346. [9] Grabherr M G,Haas B J,Yassour M,et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology,2011,29(7):644-652. doi: 10.1038/nbt.1883 [10] 贾岩,张福生,肖淑贤,等. 款冬花不同发育阶段的代谢组学和比较转录组学分析[J]. 中国生物化学与分子生物学报,2017,33(6):615-623. [11] 冯陈晨,王文龙,红梅,等. 骆驼斯氏副柔线虫雌虫和雄虫比较转录组学分析[J]. 中国农业大学学报,2017,22(7):61-70. doi: 10.11841/j.issn.1007-4333.2017.07.008 [12] 江灵敏,王碧霞,孟蕾. 小叶女贞叶片转录组研究[J]. 中国现代应用药学,2018,35(11):1670-1674. [13] Ali Mortazavi,Brian A Williams,Kenneth McCue,et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods,2008,5(7):621-628. doi: 10.1038/nmeth.1226 [14] Ye J,Fang L,Zheng H,et al. WEGO:A web tool for plotting GO annotations[J]. Nucleic Acids Res,2006,34(2):293-297. [15] Anders S,Huber W. Differential expression analysis for sequence count data[J]. Genome Biol,2010,11(10):R106. doi: 10.1186/gb-2010-11-10-r106 [16] Conesa A,Gotz S,et al. Blast2GO:A universal tool for annotation,visualization and analysis in functional genomics research[J]. Bioinformatics,2005,21(18):3674-3676. doi: 10.1093/bioinformatics/bti610 [17] 罗辉,叶华,肖世俊,等. 转录组学技术在水产动物研究中的运用[J]. 水产学报,2015,39(4):598-607. [18] 马赛箭,安超,薛文娇,等. 基于高通量测序的出芽短梗霉转录组学研究[J]. 基因组学与应用生物学,2016,35(4):931-941. [19] 蒋可人,马峥,郑航,等. 转录组与蛋白质组整合分析在生物学研究中的应用[J]. 生物技术通报,2018,34(12):50-55. [20] 展波,高媛媛,林维平,等. 中华大蟾蜍皮肤Cathelicidin家族新型抗菌肽的鉴定及其抗菌活性[J]. 中国中药杂志,2016,41(4):630-635. [21] RA Dueñas-Cuellar,Santana C,ACM Magalhães,et al. Scorpion toxins and ion channels:Potential applications in cancer therapy[J]. Toxins,2020,12(5):326-327. doi: 10.3390/toxins12050326 [22] 陈惠,辛丽丽,龚婕宁. 基于全转录组测序技术的转录组学在中医药领域的应用前景分析[J]. 环球中医药,2013,6(10):759-763. doi: 10.3969/j.issn.1674-1749.2013.10.014 [23] 张晓萌,李健春,王琼,等. 转录组测序技术在中医药领域的应用[J]. 中国现代中药,2016,18(8):1084-1087. [24] 肖炜卓,张龙,王晓冬,等. 慢性牙周炎患者龈下菌斑宏转录组学分析[J]. 中国医药导报,2019,16(21):21-23.