Applications of CT in the Early Prediction of Different Clinical Types of COVID -19 Pneumonia
-
摘要:
目的 探讨新型冠状病毒肺炎(COVID-19)不同临床分型的临床及影像学表现及CT在早期预测不同临床分型的应用价值。 方法 回顾性分析2020年1月至2月云南省确诊的143例COVID-19患者的胸部CT平扫图像及临床资料,根据COVID-19诊疗方案(第7版),将所有患者分为轻型(28例)、普通型(92例)、重型(18例)和危重型(5例),并分析其临床特征及CT表现。比较临床分型与CT表现(病变分布、密度、范围、形态、内部/周围特征、周围血管改变等)间的相关性及各影像特征的预测效能。 结果 临床表现以发热(60/143,41.9%)、咳嗽(57/143,39.9%)症状为主,重型患者更易出现高热表现。重型和危重型患者更常见于老年患者。危重型患者淋巴细胞总数减低[(0.6±0.2)×109/L]个。除轻型患者外,6例患者CT首诊未见明显异常,余109例中,重型(10.8±4.9)个和危重型(10.8±6.4)个患者首次CT检查肺段累及数目较普通型(5.8±4.6)个多(P < 0.001)。病灶形态为楔形病灶(59/109,54.1%)、榕树冠征(35/109,32.1%)、病变内/周围出现血管增粗(87/109,79.8%)、血管集束征(65/109,59.6%)在重型和危重型患者出现概率较高(P < 0.05)。各型患者中病变数目、病变密度、病变形态(类圆形、不规则形),病变内部/周围特征(铺路石征、晕征、支气管扩张)并未显示差异有统计学意义(P > 0.05)。肺段受累数目及出现楔形病变、榕树冠征有较好的预测效能,AUC分别为0.769、0.759、0.697,血管增粗及血管集束征预测效能稍低,AUC分别为0.626,0.667。多指标联合,其预测效能进一步提高,AUC为0.854。 结论 CT不仅在COVID-19的早期诊断起到至关重要的作用,同时能够对患者病情的严重程度及预后进行评估。 Abstract:Objective To investigate the clinical and CT image characteristics of COVID-19 pneumonia, and the predictive value of CT in the early stage of different clinical types. Methods Chest CT and clinical data of confirmed 143 patients with COVID-19 pneumonia in January to February 2020 were enrolled. According to the diagnosis and treatment of COVID-19 pneumonia(trial version 7), all the patients were classified into the mild (n = 28), common (n = 92), severe (n = 36), and critical (n = 5) type, and their clinical findings and CT findings were analyzed. CT features included lesions' distribution, density, extension, shape, interior/ periphery features, vascular changes. Then the prediction performance of image features were analyzed. Results The main clinical manifestations were fever (60/143, 41.9%) and cough (57/143, 39.9%). High fever was more common seen in severe patients. Severe and critical types were more common in elderly patients. And the total number of lymphocytes reduced (0.6±0.2x10^9/L) in critical patients. Except for mild patients, there were 6 cases without the obvious abnormality in the first CT diagnosis. In the remaining 109 cases, the number of pulmonary segments involved in the first CT examination of severe patients was significantly higher than that of common patients (5.88 ± 6)(P < 0.001). Severe and critical COVID-19 showed wedge-shape (59/109, 54.1%) or Ficus crown sign (35/109, 32.1%) lesions more frequently than in common COVID-19 and the thickening of blood vessels (87/109, 79.8%) and vascular clustering signs (65/109, 59.6%) in / around the lesions were more likely to occur in severe and critical types (P < 0.05). There was no significant difference in the number of lesions, lesion density, lesion morphology (round, irregular) and internal/peripheral features of the lesion (crazy-paving sign, halo sign, bronchiectasis)(P > 0.05). Area under the curve (AUC) of the number of involved lung segments, wedge-shape and Ficus crown sign (AUC: 0.769, 0.759, 0.697, respectively) were higher compared with that of thickening of blood vessels and vascular clustering signs (AUC: 0.626, 0.667, respectively). Combined model resulted in a further increased diagnostic performance (AUC: 0.854). Conclusion Chest CT findings not only play an important role in the early diagnosis of COVID-19, but also can evaluate the severity and prognosis of patients. -
Key words:
- COVID-19 pneumonia /
- Computed tomography /
- Clinical types
-
图 1 不同分型的COVID-19患者影像特征
图A、B轻型COVID-19,女,36岁,发热当天就诊,CT轴位(A)和冠状位(B)未见肺炎表现。图C、D普通型COVID-19,男,46岁,咳嗽、发热6 d就诊,CT轴位(C)和冠状位(D)肺窗示右肺下叶及左肺上叶舌段类圆形或不规则磨玻璃密度影,以胸膜下多见。图E、F重型COVID-19,女,64岁,发热、畏寒1 d就诊,首次核酸检测为阴性。CT轴位(E)示双肺下叶背段片状楔形磨玻璃及实性混合密度影,其内可见“铺路石”征,病灶内血管增粗及血管集束征(箭头),冠状位(F)示多个肺叶受累。图G、H危重型COVID-19,男,76岁,发热、咳嗽10 d就诊,CT轴位(G)可见双肺上叶大片状融合磨玻璃密度为主病变,右肺病灶内可见血管增粗及血管集束征(箭头),呈“榕树冠”征表现,冠状面;(H)示双肺广泛病灶。
Figure 1. Image features in different clinical types of COVID -19 pneumonia
表 1 不同临床分型患者临床特征[
$\bar x \pm s$ /n(%)]Table 1. Clinical features of different clinical types of COVID -19 pneumonia [
$\bar x \pm s$ /n(%)]参数 总计(n = 143) 轻型(n = 28) 普通型(n = 92) 重型(n = 18) 危重型(n = 5) F/χ2 P 性别 男 70(48.9) 12 46 9 3 0.709 0.871 女 73(51.1) 16 46 9 2 年龄(岁) 42.1 ± 18.9 26.4 ± 16.7bcd 42.7 ± 16.8acd 55.3 ± 13.5ab 71.2 ± 4.6ab 18.173 < 0.001* 流行病学史 湖北武汉旅居史 107(74.8) 18 71 15 3 3.196 0.306 与确诊病人密切接触史 34(23.8) 10 20 2 2 暴露史不明 2(1.4) 0 1 1 0 首发症状 发烧 60(41.9) 6 37 15 2 17.621 0.001* 乏力 19(13.3) 1 14 2 2 5.762 0.113 头痛 6(4.2) 2 3 1 0 1.107 0.557 咳嗽 57(39.9) 10 37 8 2 0.364 0.943 肌肉酸痛 10(7.0) 1 5 3 1 4.738 0.134 呕吐、腹泻 2(1.4) 0 1 0 1 6.135 0.121 无明显症状 32(22.4) 11 21 0 0 11.250 0.011* 发病到首次CT检查时间(d) 3.3 ± 4.6 3.0 ± 3.6 3.4 ± 5.1 3.8 ± 3.4 1.8 ± 2.9 0.283 0.837 首次核酸检测 阳性 130(90.9) 26 84 15 5 1.896 0.593 阴性 13(9.1) 2 8 3 0 白细胞总数(×109/L) 5.65 ± 2.54 6.6 ± 2.4b 5.2 ± 1.7ac 6.8 ± 4.9b 4.7 ± 1.0 3.703 0.014* 淋巴细胞总数(×109/L) 1.33 ± 0.61 1.7 ± 0.7bcd 1.3 ± 0.5ad 1.2 ± 0.5a 0.6 ± 0.2ab 6.191 0.001* 与轻型组比较,aP < 0.05;与普通型组比较,bP < 0.05;与重型组比较,cP < 0.05;与危重型组比较,dP < 0.05;4组间比较,*P < 0.05。 表 2 不同临床分型COVID-19患者影像特征[
$\bar x \pm s$ /n(%)]Table 2. Image features of different clinical types of COVID -19 pneumonia [
$\bar x \pm s$ /n(%)]发现 总计(n = 109) 普通型(n = 87) 重型(n = 17) 危重型(n = 5) F/χ2 P 病变分布 单发 12(11) 12 0 0 2.497 0.280 多发 97(89.0) 75 17 5 磨玻璃密度及实变 单纯GGO病灶 97(89.0) 76 17 4 2.753 0.252 GGO与实变混合病灶 51(46.8) 41 7 3 0.570 0.752 全实变病灶 16(14.7) 13 2 1 0.233 0.89 病变范围 外周胸膜下 69(63.3) 57 10 2 1.499 0.473 周边与中心同时受累 40(36.7) 30 7 3 肺段受累数目(个) 6.8 ± 5.1 5.8 ± 4.6bc 10.8 ± 4.9a 10.8 ± 6.4a 9.759 < 0.001* 病变形态和内部/周围特征 类圆形 90(82.6) 74 13 3 2.583 0.275 楔形 59(54.1) 38 16 5 19.013 < 0.001* 不规则形 63(57.8) 48 11 4 1.589 0.425 铺路石征 32(29.3) 22 9 1 5.465 0.065 晕征 55(50.4) 47 6 2 2.225 0.329 榕树冠征 35(32.1) 21 11 3 12.606 0.002* 支气管扩张 14(12.8) 8 5 1 5.432 0.066 血管改变 血管增粗 87(79.8) 65 17 5 6.970 0.031* 血管集束征 65(59.6) 46 14 5 8.681 0.013* 其他伴随征象 纵隔淋巴结肿大(横径≥1 cm) 1(0.9) 0 1 0 − 胸膜腔积液 4(3.7) 3 1 0 − 与普通型组比较,bP < 0.05;与重型组比较,cP < 0.05;与危重型组比较,dP < 0.05;3组间比较,*P < 0.05。 表 3 不同分型的COVID-19患者影像特征诊断预测效能
Table 3. Prediction performance of image features in different clinical types of COVID -19 pneumonia
影像特征 肺段受累数 楔形 榕树冠征 血管增粗 血管集束征 多指标联合 曲线下面积 0.769 0.759 0.697 0.626 0.667 0.854 95%CI 0.661~0.877 0.664~0.854 0.569~0.826 0.512~0.741 0.551~0.785 0.782~0.927 敏感度 0.591 0.955 0.636 1.0 0.864 0.909 特异度 0.828 0.563 0.759 0.253 0.471 0.69 -
[1] Xu X,Chen P,Wang J,et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J]. Sci China life sci,2020,63(3):457-460. doi: 10.1007/s11427-020-1637-5 [2] World Health Organization. WHO Director - General’ s remarks at the media briefing on 2019-nCoV on 11 February 2020[EB/OL].(2020-02-11)[2020-02-12]. https://www.who.int/dg/speeches/detail/who-director-gen-eral-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020. [3] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus:Classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nat Microbiol,2020,5(4):536-544. doi: 10.1038/s41564-020-0695-z [4] 国家卫生健康委员会卫生应急办公室. 截至3月6日24时新型冠状病毒肺炎疫情最新情况[EB/OL]. http://www.nhc.gov.cn/yjb/s7860/202003/4cda391851a544279cb36f334944ca6e.shtml [5] 国家卫生健康委员会. 新型冠状病毒感染的肺炎诊疗方案(试行第七版)[EB/OL]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml [6] Ren LL,Wang YM,Wu ZQ,et al. Identification of a novel coronavirus causing severe pneumonia in human:a descriptive study[J]. Chin Med J(Engl),2020,133(9):1015-1024. doi: 10.1097/CM9.0000000000000722 [7] Wan Y, Shang J, Graham R, et al. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS[J/OL]. J Virol, 2020, 94(7): e00127-20. [8] 中国疾病预防控制中心新型冠状病毒肺炎应急响应机制流行病学组. 新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志,2020,41(2):145-151. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003 [9] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J/OL]. Lancet, 2020, 395(10223): 497-506. [10] Chung M, Bernheim A, Mei X, et al. CT imaging features of 2019 novel coronavirus(2019-nCoV)[J/OL]. Radiology, 2020, 295(1): 202-207. [11] Lei J, Li J, Xiaolong Q. CT Imaging of the 2019 Novel Coronavirus(2019-nCoV)Pneumonia[J/OL]. Radiology, 2020, 295(1): 18. [12] Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J/OL]. Lancet Respir Med, 2020, 8(4): 420-422. [13] 黄璐,韩瑞,于朋鑫,等. 新型冠状病毒肺炎不同临床分型间CT和临床表现的相关性研究[J]. 中华放射学杂志,2020,54(4):300-304. doi: 10.3760/cma.j.cn112149-20200205-00087