留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

间充质干细胞外泌体在口腔组织再生中的研究进展

马丽娅 饶南荃 杨禾丰

马丽娅, 饶南荃, 杨禾丰. 间充质干细胞外泌体在口腔组织再生中的研究进展[J]. 昆明医科大学学报, 2021, 42(5): 147-153. doi: 10.12259/j.issn.2095-610X.S20210527
引用本文: 马丽娅, 饶南荃, 杨禾丰. 间充质干细胞外泌体在口腔组织再生中的研究进展[J]. 昆明医科大学学报, 2021, 42(5): 147-153. doi: 10.12259/j.issn.2095-610X.S20210527
Li-ya MA, Nan-quan RAO, He-feng YANG. Research Progress of Mesenchymal Stem Cell Exosomes in Oral Tissue Regeneration[J]. Journal of Kunming Medical University, 2021, 42(5): 147-153. doi: 10.12259/j.issn.2095-610X.S20210527
Citation: Li-ya MA, Nan-quan RAO, He-feng YANG. Research Progress of Mesenchymal Stem Cell Exosomes in Oral Tissue Regeneration[J]. Journal of Kunming Medical University, 2021, 42(5): 147-153. doi: 10.12259/j.issn.2095-610X.S20210527

间充质干细胞外泌体在口腔组织再生中的研究进展

doi: 10.12259/j.issn.2095-610X.S20210527
基金项目: 国家自然科学基金资助项目(81760197)
详细信息
    作者简介:

    马丽娅(1994~),女,回族,云南大理人,在读硕士研究生,主要从事牙周组织再生研究工作

    通讯作者:

    杨禾丰,E-mail:yanghefeng2008@163.com

  • 中图分类号: R780.1

Research Progress of Mesenchymal Stem Cell Exosomes in Oral Tissue Regeneration

  • 摘要: 基于间充质干细胞的细胞治疗是组织再生与修复的重要策略之一。近年的研究表明外泌体作为间充质干细胞分泌的重要产物可以起到类似于亲本间充质干细胞的作用。作为细胞间传递信息的重要途径,外泌体(Exosomes)参与多种生理病理过程,在促进组织修复与再生中发挥重要作用,为组织工程提供了新思路。
  • [1] Kwon S G,Kwon Y W,Lee T W,et al. Recent advances in stem cell therapeutics and tissue engineering strategies[J]. Biomater Res,2018,22(19):36-43.
    [2] Cruz I B,Severo A L,Azzolin V F,et al. Regenerative potential of the cartilaginous tissue in mesenchymal stem cells:Update,limitations,and challenges[J]. Rev Bras Ortop,2017,52(1):2-10. doi: 10.1016/j.rbo.2016.02.007
    [3] Strong A L,Neumeister M W,Levi B. Stem cells and tissue engineering:Regeneration of the skin and its contents[J]. Clin Plast Surg,2017,44(3):635-650. doi: 10.1016/j.cps.2017.02.020
    [4] Rani S,Ryan A E,Griffin M D,et al. Mesenchymal stem cell-derived extracellular vesicles:Toward cell-free therapeutic applications[J]. Mol Ther,2015,23(5):812-823. doi: 10.1038/mt.2015.44
    [5] Johnstone R M,Adam M,Pan B T. The fate of the transferrin receptor during maturation of sheep reticulocytes in vitro[J]. Can J Biochem Cell Biol,1984,62(11):1246-1254. doi: 10.1139/o84-159
    [6] Johnstone R M,Adam M,Hammond J R,et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes)[J]. J Biol Chem,1987,262(19):9412-9420. doi: 10.1016/S0021-9258(18)48095-7
    [7] Jalalian S H,Ramezani M,Jalalian S A,et al. Exosomes,new biomarkers in early cancer detection[J]. Anal Biochem,2019,15(571):1-13.
    [8] Raposo G,Stoorvogel W. Extracellular vesicles:exosomes,microvesicles,and friends[J]. J Cell Biol,2013,200(4):373-83. doi: 10.1083/jcb.201211138
    [9] Tkach M,Thery C. Communication by extracellular vesicles:Where we are and where we need to go[J]. Cell,2016,164(6):1226-1232. doi: 10.1016/j.cell.2016.01.043
    [10] Yu B,Zhang X,Li X. Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci,2014,15(3):4142-4157. doi: 10.3390/ijms15034142
    [11] Goodarzi P,Larijani B,Alavi-Moghadam S,et al. Mesenchymal stem cells-derived exosomes for wound regeneration[J]. Adv Exp Med Biol,2018,1119(251):119-131.
    [12] Zhang B,Wang M,Gong A,et al. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing[J]. Stem Cells,2015,33(7):2158-2168. doi: 10.1002/stem.1771
    [13] Shi Q,Qian Z,Liu D,et al. GMSC-derived exosomes combined with a chitosan/silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model[J]. Front Physiol,2017,8(7):904-920.
    [14] Wang C,Wang M,Xu T,et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics,2019,9(1):65-76. doi: 10.7150/thno.29766
    [15] Hu L,Wang J,Zhou X,et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts[J]. Sci Rep,2016,6(12):32993-33004.
    [16] Wang L,Hu L,Zhou X,et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling[J]. Sci Rep,2017,7(1):13321-13333. doi: 10.1038/s41598-017-12919-x
    [17] Fang S,Xu C,Zhang Y,et al. Umbilical cord-derived mesenchymal stem cell-derived exosomal microRNAs suppress myofibroblast differentiation by inhibiting the transforming growth factor-beta/SMAD2 pathway during wound healing[J]. Stem Cells Transl Med,2016,5(10):1425-1439. doi: 10.5966/sctm.2015-0367
    [18] Baht G S,Vi L,Alman B A. The role of the immune cells in fracture healing[J]. Curr Osteoporos Rep,2018,16(2):138-145. doi: 10.1007/s11914-018-0423-2
    [19] Sui B D,Hu C H,Liu A Q,et al. Stem cell-based bone regeneration in diseased microenvironments:Challenges and solutions[J]. Biomaterials,2019,196(3):18-30.
    [20] Zheng C,Chen J,Liu S,et al. Stem cell-based bone and dental regeneration:A view of microenvironmental modulation[J]. Int J Oral Sci,2019,11(3):23-38. doi: 10.1038/s41368-019-0060-3
    [21] Li W,Liu Y,Zhang P,et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J]. ACS Appl Mater Interfaces,2018,10(6):5240-5254. doi: 10.1021/acsami.7b17620
    [22] Zhang Y,Hao Z,Wang P,et al. Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1alpha-mediated promotion of angiogenesis in a rat model of stabilized fracture[J]. Cell Prolif,2019,52(2):12570-12582. doi: 10.1111/cpr.12570
    [23] Wei F,Li Z,Crawford R,et al. Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis[J]. J Tissue Eng Regen Med,2019,13(11):1978-1991. doi: 10.1002/term.2947
    [24] Huang C C,Kang M,Lu Y,et al. Functionally engineered extracellular vesicles improve bone regeneration[J]. Acta Biomater.,2020,109(6):182-194.
    [25] Xu T,Luo Y,Wang J,et al. Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5[J]. J Nanobiotechnology,2020,18(1):47-65. doi: 10.1186/s12951-020-00601-w
    [26] Cui Y,Luan J,Li H,et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression[J]. FEBS Lett,2016,590(1):185-192. doi: 10.1002/1873-3468.12024
    [27] Chen S,Tang Y,Liu Y,et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration[J]. Cell Prolif,2019,52(5):12669-12683.
    [28] Wang X D,Zhang J N,Gan Y H,et al. Current understanding of pathogenesis and treatment of TMJ osteoarthritis[J]. J Dent Res,2015,94(5):666-673. doi: 10.1177/0022034515574770
    [29] Pourakbari R,Khodadadi M,Aghebati-Maleki A,et al. The potential of exosomes in the therapy of the cartilage and bone complications; emphasis on osteoarthritis[J]. Life Sci,2019,236(1):116861-116890.
    [30] Wang Y,Yu D,Liu Z,et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix[J]. Stem Cell Res Ther,2017,8(1):189-202. doi: 10.1186/s13287-017-0632-0
    [31] Zhang S,Chuah S J,Lai R C,et al. MSC exosomes mediate cartilage repair by enhancing proliferation,attenuating apoptosis and modulating immune reactivity[J]. Biomaterials,2018,156(11):16-27.
    [32] Cosenza S,Ruiz M,Toupet K,et al. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis[J]. Sci Rep,2017,7(1):16214-16226. doi: 10.1038/s41598-017-15376-8
    [33] Zhang S,Teo K Y W,Chuah S J,et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials,2019,200(2):35-47.
    [34] Tofino-Vian M,Guillen M I,Perez Del Caz M D,et al. Extracellular vesicles from adipose-derived mesenchymal stem cells downregulate senescence features in osteoarthritic osteoblasts[J]. Oxid Med Cell Longev,2017,2017(4):7197598-7197610.
    [35] Wu J,Kuang L,Chen C,et al. miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis[J]. Biomaterials,2019,206(3):87-100.
    [36] Luo P,Jiang C,Ji P,et al. Exosomes of stem cells from human exfoliated deciduous teeth as an anti-inflammatory agent in temporomandibular joint chondrocytes via miR-100-5p/mTOR[J]. Stem Cell Res Ther,2019,10(1):216-228. doi: 10.1186/s13287-019-1341-7
    [37] Jin Z,Ren J,Qi S. Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2[J]. Int Immunopharmacol,2020,78(1):105946-105959.
    [38] Ramseier C A,Rasperini G,Batia S,et al. Advanced reconstructive technologies for periodontal tissue repair[J]. Periodontol,2000,2012,59(1):185-202.
    [39] Chen F M,Zhang J,Zhang M,et al. A review on endogenous regenerative technology in periodontal regenerative medicine[J]. Biomaterials,2010,31(31):7892-7927. doi: 10.1016/j.biomaterials.2010.07.019
    [40] Mohammed E,Khalil E,Sabry D. Effect of adipose-derived stem cells and their exo as adjunctive therapy to nonsurgical periodontal treatment:A histologic and histomorphometric study in rats[J]. Biomolecules,2018,8(4):8040167-8040178.
    [41] Wang M,Li J,Ye Y,et al. SHED-derived conditioned exosomes enhance the osteogenic differentiation of PDLSCs via Wnt and BMP signaling in vitro[J]. Differentiation,2020,111(10):1-11.
    [42] Chew J R J,Chuah S J,Teo K Y W,et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration[J]. Acta Biomater,2019,89(3):252-264.
    [43] Wang R,Ji Q,Meng C,et al. Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions[J]. Int Immunopharmacol,2020,81(4):106030-106038.
    [44] Zheng Y,Dong C,Yang J,et al. Exosomal microRNA-155-5p from PDLSCs regulated Th17/Treg balance by targeting sirtuin-1 in chronic periodontitis[J]. J Cell Physiol,2019,234(11):20662-20674. doi: 10.1002/jcp.28671
    [45] Yang J,Yuan G,Chen Z. Pulp regeneration:Current approaches and future challenges[J]. Front Physiol,2016,7(3):58-66.
    [46] Huang C C,Narayanan R,Alapati S,et al. Exosomes as biomimetic tools for stem cell differentiation:Applications in dental pulp tissue regeneration[J]. Biomaterials,2016,111(9):103-115.
    [47] Kaukua N,Shahidi M K,Konstantinidou C,et al. Glial origin of mesenchymal stem cells in a tooth model system[J]. Nature,2014,513(7519):551-554. doi: 10.1038/nature13536
    [48] Li J,Ju Y,Liu S,et al. Exosomes derived from lipopolysaccharide- preconditioned human dental pulp stem cells regulate Schwann cell migration and differentiation[J]. Connect Tissue Res,2019,62(3):277-286.
    [49] Zhang R,Cooper P R,Smith G,et al. Angiogenic activity of dentin matrix components[J]. J Endod,2011,37(1):26-30. doi: 10.1016/j.joen.2010.08.042
    [50] Xian X,Gong Q,Li C,et al. Exosomes with Highly Angiogenic Potential for Possible Use in Pulp Regeneration[J]. J Endod,2018,44(5):751-758. doi: 10.1016/j.joen.2017.12.024
    [51] Liang X,Zhang L,Wang S,et al. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a[J]. J Cell Sci.,2016,129(11):2182-2189. doi: 10.1242/jcs.170373
    [52] Agrahari V,Agrahari V,Burnouf P A,et al. Extracellular microvesicles as new industrial therapeutic frontiers[J]. Trends Biotechnol,2019,37(7):707-729. doi: 10.1016/j.tibtech.2018.11.012
    [53] Konala V B,Mamidi M K,Bhonde R,et al. The current landscape of the mesenchymal stromal cell secretome:A new paradigm for cell-free regeneration[J]. Cytotherapy,2016,18(1):13-24. doi: 10.1016/j.jcyt.2015.10.008
  • [1] 朱磊, 李瑞雪, 鲍长磊, 黄晨宸, 梁书鑫, 赵振林, 朱洪.  MSC-exo一种新型细胞递送工具转运靶向基因调控胰腺癌增殖效应分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240206
    [2] 杨镕羽, 宋飞, 黄浩, 段开文, 向盈盈.  骨髓间充质干细胞在口腔医学中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230323
    [3] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  M2巨噬细胞来源的外泌体miR-1246调控胃癌细胞的生长和侵袭, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230724
    [4] 曹诗杰, 安红伟.  MSC来源外泌体治疗缺血性脑卒中机制及进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230913
    [5] 顾君, 何泽喜, 栾婷, 王海峰, 王剑松, 丁明霞.  外泌体长链非编码RNA在膀胱癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220110
    [6] 张天红, 杨红菊.  外泌体miRNA在肝细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220221
    [7] 蔡啸, 扆雪涛, 姚菁青, 戴昕妤, 汤忠泉, 欧婷, 赵晓敏, 李云涛.  人骨髓间充质干细胞分泌的外泌体调控恶性胶质瘤相关巨噬细胞的极化, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210101
    [8] 魏韩笑, 张爱君, 李强, 金培生.  血管内皮祖细胞外泌体调控骨髓间充质干细胞基因表达谱芯片, 昆明医科大学学报.
    [9] 殷顺会, 詹烨明, 贾凤梅, 冉丽权, 张明珠.  高通量测序筛查特发性牙龈纤维瘤和正常牙龈外泌体miRNAs差异表达, 昆明医科大学学报.
    [10] 贾凤梅, 殷顺会, 冉丽权, 田明彤, 张明珠.  特发性牙龈纤维瘤来源外泌体对正常牙龈细胞周期的影响, 昆明医科大学学报.
    [11] 於晓东, 龙江.  12外泌体对体外血脑屏障模型功能的影响, 昆明医科大学学报.
    [12] 杨丹.  间充质干细胞的旁分泌作用对糖尿病肾病的影响, 昆明医科大学学报.
    [13] 唐帮丽.  脐带间充质干细胞移植治疗狼疮性肾炎的疗效与机制, 昆明医科大学学报.
    [14] 易敏.  兔骨髓间充质干细胞的培养及初步鉴定, 昆明医科大学学报.
    [15] 邰文琳.  骨髓间充质干细胞抗肺泡上皮细胞凋亡作用研究, 昆明医科大学学报.
    [16] 戚宗泽.  兔骨髓间充质干细胞的分离、体外培养、鉴定及成脂诱导, 昆明医科大学学报.
    [17] 王殿华.  骨髓间充质干细胞移植治疗急性肺损伤研究进展, 昆明医科大学学报.
    [18] 邰文琳.  小鼠骨髓间充质干细胞体外扩增的实验研究, 昆明医科大学学报.
    [19] 黄颖.  人脐带间充质干细胞对再生障碍性贫血患者T细胞相关因子调节的体外研究, 昆明医科大学学报.
    [20] 杨锋.  两种培养方法在猪自体骨髓间充质干细胞培养的比较研究, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3620
  • HTML全文浏览量:  2272
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 网络出版日期:  2021-06-03
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回