留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肢端肥大症并发糖尿病的发病机制

钟俊 付景云

钟俊, 付景云. 肢端肥大症并发糖尿病的发病机制[J]. 昆明医科大学学报, 2021, 42(5): 159-164. doi: 10.12259/j.issn.2095-610X.S20210529
引用本文: 钟俊, 付景云. 肢端肥大症并发糖尿病的发病机制[J]. 昆明医科大学学报, 2021, 42(5): 159-164. doi: 10.12259/j.issn.2095-610X.S20210529
Jun ZHONG, Jing-yun FU. The Pathogenesis of Acromegaly Complicated with Diabetes Mellitus[J]. Journal of Kunming Medical University, 2021, 42(5): 159-164. doi: 10.12259/j.issn.2095-610X.S20210529
Citation: Jun ZHONG, Jing-yun FU. The Pathogenesis of Acromegaly Complicated with Diabetes Mellitus[J]. Journal of Kunming Medical University, 2021, 42(5): 159-164. doi: 10.12259/j.issn.2095-610X.S20210529

肢端肥大症并发糖尿病的发病机制

doi: 10.12259/j.issn.2095-610X.S20210529
基金项目: 国家自然科学基金资助项目(81860265);云南省高层次卫生健康技术人才基金资助项目(D-2018035)
详细信息
    作者简介:

    钟俊(1995~),女,云南红河人,在读硕士研究生,主要从事神经内分泌的研究工作

    通讯作者:

    付景云,E-mail:fujy74@sina.com

  • 中图分类号: R584

The Pathogenesis of Acromegaly Complicated with Diabetes Mellitus

  • 摘要: 肢端肥大症过度分泌的生长激素产生胰岛素抵抗,易合并糖尿病。其主要机制是通过生长激素受体发挥一系列作用,影响胰岛素受体和其底物磷酸化水平、磷脂酰肌醇3激酶的调节亚基p85α水平、葡萄糖转运水平及11β-羟基类固醇脱氢酶活性,从而造成血糖代谢紊乱,引起糖尿病发生。
  • [1] Silverstein J M. Need for improved monitoring in patients with acromegaly[J]. Endocr Connect,2015,4(4):R59-R67. doi: 10.1530/EC-15-0064
    [2] Vijayakumar R,Wu Y J,Sun H,et al. Targeted loss of GHR signaling in mouse skeletal muscle protects against high-fat diet–induced metabolic deterioration[J]. Diabetes,2012,61(1):94-103. doi: 10.2337/db11-0814
    [3] Katznelson L,Laws E R,Jr,et al. Acromegaly:An endocrine society clinical practice guideline[J]. J Clin Endocrinol Metab,2014,99(11):3933-3951. doi: 10.1210/jc.2014-2700
    [4] Colao A,Ferone D,Marzullo P,et al. Systemic complications of acromegaly:Epidemiology,pathogenesis,and management[J]. Endocr Rev,2004,25(1):102-152. doi: 10.1210/er.2002-0022
    [5] M H I,C R R,D G G. Factors influencing mortality in acromegaly[J]. J Clin Endocrinol Metab,2004,89(2):667-674. doi: 10.1210/jc.2003-031199
    [6] Foss M C,Saad M J,Paccola G M,et al. Peripheral glucose metabolism in acromegaly[J]. J Clin Endocrinol Metab,1991,72(5):1048-1053. doi: 10.1210/jcem-72-5-1048
    [7] Cheng S,Gomez K,Serri O,et al. The role of diabetes in acromegaly associated neoplasia[J]. PLoS One,2015,10(5):e0127276. doi: 10.1371/journal.pone.0127276
    [8] Andersen M. Management of endocrine disease:GH excess:Diagnosis and medicaltherapy[J]. Eur J Endocrinol,2014,170(1):R31-R41. doi: 10.1530/EJE-13-0532
    [9] Bartke A,Sun L Y,Longo V. Somatotropic signaling:Trade-offs between growth,reproductive development,and longevity[J]. Physiol Rev,2013,93(2):571-598. doi: 10.1152/physrev.00006.2012
    [10] Young J A,List E O,Kopchick J J. Deconstructing the growth hormone receptor (GHR):Physical and metabolic phenotypes of tissue-specific GHR gene-disrupted mice[J]. Prog Mol Biol Transl Sci,2016,138(17):27-39.
    [11] Liu J L,Coschigano K T,Robertson K,et al. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice[J]. Am J Physiol Endocrinol Metab,2004,287(3):E405-E413. doi: 10.1152/ajpendo.00423.2003
    [12] Guo Y,Lu Y,Houle D,et al. Pancreatic islet-specific expression of an insulin-like growth factor-i transgene compensates islet cell growth in growth hormone receptor gene-deficient mice[J]. Endocrinology,2005,146(6):2602-2609. doi: 10.1210/en.2004-1203
    [13] Klover P,Hennighausen L. Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle:A role for autocrine/paracrine insulin-like growth factor I[J]. Endocrinology,2007,148(4):1489-1497. doi: 10.1210/en.2006-1431
    [14] Maedler K,Bonkowski M S,Dominici F P,et al. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity[J]. PLoS ONE,2009,4(2):e4567. doi: 10.1371/journal.pone.0004567
    [15] Gaubitz C,Oliveira T M,Prouteau M,et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2[J]. Mol Cell,2015,58(6):977-988. doi: 10.1016/j.molcel.2015.04.031
    [16] Fang Y,Hill C M,Darcy J,et al. Effects of rapamycin on growth hormone receptor knockout mice[J]. Proc Natl Acad Sci U S A,2018,115(7):E1495-E1503. doi: 10.1073/pnas.1717065115
    [17] Sesti G,Federici M,Hribal M L,et al. Defects of the insulin receptor substrate(IRS)system in human metabolic disorders[J]. FASEB J,2001,15(12):2099-2111. doi: 10.1096/fj.01-0009rev
    [18] Gual P,Le Marchand-Brustel Y,Tanti J-F. Positive and negative regulation of insulin signaling through IRS-1phosphorylation[J]. Biochimie,2005,87(1):99-109. doi: 10.1016/j.biochi.2004.10.019
    [19] Smith T R,Elmendorf J S,David T S,et al. Growth hormone-induced insulin resistance role of the insulin receptor,IRS-I,GLUT-I and GLUT-4[J]. Am J Physiol,1997,272(6pt1):E1071-E1079.
    [20] Thirone A C,Carvalho C R,Brenelli S L,et al. Effect of chronic growth hormone treatment on insulin signal transduction in rat tissues[J]. Mol Cell Endocrinol,1997,130(1-2):33-42. doi: 10.1016/S0303-7207(97)00071-3
    [21] Robertson K,Kopchick J J,Liu J L. Growth hormone receptor gene deficiency causes delayed insulin responsiveness in skeletal muscles without affecting compensatory islet cell overgrowth in obese mice[J]. Am J Physiol Endocrinol Metab,2006,291(3):E491-E498. doi: 10.1152/ajpendo.00378.2005
    [22] Mavalli M D,DiGirolamo D J,Fan Y,et al. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice[J]. J Clin Invest,2010,120(11):4007-4020. doi: 10.1172/JCI42447
    [23] Sasaki-Suzuki N,Arai K,Ogata T,et al. Growth hormone inhibition of glucose uptake in adipocytes occurs without affecting GLUT4 translocation through an insulin receptor substrate-2-phosphatidylinositol 3-kinase-dependent pathway[J]. J Biol Chem,2009,284(10):6061-6070. doi: 10.1074/jbc.M808282200
    [24] Dominici F P,Cifone D,Bartke A,et al. Alterations in the early steps of the insulin-signaling system in skeletal muscle of GH-transgenic mice[J]. Am J Physiol,1999,277(3):E447-E454.
    [25] Takano A,Haruta T,Iwata M,et al. Growth hormone induces cellular insulin resistance by uncoupling phosphatidylinositol 3-kinase and its downstream signals in 3T3-L1 adipocytes[J]. Diabetes,2001,50(8):1891-1900. doi: 10.2337/diabetes.50.8.1891
    [26] Ueki K,Fruman D A,Yballe C M,et al. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling[J]. J Biol Chem,2003,278(48):48453-48466. doi: 10.1074/jbc.M305602200
    [27] Del Rincon J P,Iida K,Gaylinn B D,et al. Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue:Mechanism for growth hormone-mediated insulin resistance[J]. Diabetes,2007,56(6):1638-1646. doi: 10.2337/db06-0299
    [28] Ueki K,Yballe C M,Brachmann S M,et al. Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase[J]. Proc Natl Acad Sci U S A,2002,99(1):419-424. doi: 10.1073/pnas.012581799
    [29] Mauvais-Jarvis F,Ueki K,Fruman D A,et al. Reduced expression of the murine p85αsubunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes[J]. J Clin Invest,2002,109(1):141-149. doi: 10.1172/JCI0213305
    [30] Taniguchi C M,Emanuelli B,Kahn CR. Critical nodes in signalling pathways:Insights into insulin action[J]. Nat Rev Mol Cell Biol,2006,7(2):85-96.
    [31] Yakar S,Setser J,Zhao H,et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice[J]. J Clin Invest,2004,113(1):96-105. doi: 10.1172/JCI200417763
    [32] Fruman D A,Mauvais-Jarvis F,Pollard D A,et al. Hypoglycaemia,liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha[J]. Nature Genetics,2000,26(3):379-382. doi: 10.1038/81715
    [33] Barbour L A,Mizanoor Rahman S,Gurevich I,et al. Increased P85α is a potent negative regulator of skeletal muscle insulin signaling and inducesin vivoinsulin resistance associated with growth hormone excess[J]. J Biol Chem,2005,280(45):37489-37494. doi: 10.1074/jbc.M506967200
    [34] Kohn A D,Summers S A,Birnbaum M J,et al. Expression of a constitutively active akt ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation[J]. J Biol Chem,1996,271(49):31372-31378. doi: 10.1074/jbc.271.49.31372
    [35] Haruta T,Morris A J,Rose D W,et al. Insulin-stimulated GLUT4 translocation is mediated by a divergent intracellular signaling pathway[J]. J Biol Chem,1995,270(47):27991-27994. doi: 10.1074/jbc.270.47.27991
    [36] Yokota I,Hayashi H,Matsuda J,et al. Effect of growth hormone on the translocation of GLUT4 and its relation to insulin-like and anti-insulin action[J]. Biochim Biophys Acta,1998,1404(3):451-456. doi: 10.1016/S0167-4889(98)00077-9
    [37] Dalmolin C,Almeida D V,Figueiredo M A,et al. Expression profile of glucose transport-related genes under chronic and acute exposure to growth hormone in zebrafish[J]. Comp Biochem Physiol A Mol Integr Physiol,2018,221(18):1-6.
    [38] Schwartz J,Carter-Su C. Effects of growth hormone on glucose metabolism and glucose transport in 3T3-F442A cells:Dependence on cell differentiation[J]. Endocrinology,1988,122(5):2247-2256. doi: 10.1210/endo-122-5-2247
    [39] Imamura H,Morimoto I,Etoh S,et al. Skeletal muscle glucose transporter gene expression is not affected by injecting growth-hormone-secreting cells in young rats[J]. Diabetologia,1993,36(6):475-480. doi: 10.1007/BF02743260
    [40] Cartee G D,Bohn E E. Growth hormone reduces glucose transport but not GLUT-l or GLUT-4 in adult and old rats[J]. Am J Physiol,1995,268(5Pt1):E902-E909.
    [41] Napoli R,Cittadini A,Chow J C,et al. Chronic growth hormone treatment in normal rats reduces postprandial skeletal muscle plasma membrane GLUT1 content,but not glucose transport or GLUT4 expression and localization[J]. Biochem J,1996,315(Pt3):959-963.
    [42] Morita J,Hakuno F,Hizuka N,et al. Growth hormone(GH) or insulin-like growth factor(IGF-1)represses 11β-Hydroxysteroid dehydrogenase type 1(HSD1)mRNA expression in 3T3-L1 cells and its activity in their homogenates[J]. Endocrine Journal,2009,56(4):561-570. doi: 10.1507/endocrj.K08E-311
    [43] Li R S,Nakagawa Y,Liu Y J,et al. Growth hormone inhibits the 11β-hydroxysteroid dehydrogenase type 1 gene promoter activity via insulin-like growth factor I in HepG2 cells[J]. Hormone and Metabolic Research,2008,40(4):286-288. doi: 10.1055/s-2008-1058076
    [44] Stewart P M,Toogood A A,Tomlinson J W. Growth hormone,insulin-like growth factor-I and the cortisol-cortisone shuttle[J]. Horm Res,2001,56(Suppl 1):1-6.
    [45] Chowdhury S,Grimm L,Gong Y J,et al. Decreased 11beta-hydroxysteroid dehydrogenase 1 level and activity in murine pancreatic islets caused by insulin-like growth factor I overexpression[J]. PLoS One,2015,10(8):e0136656. doi: 10.1371/journal.pone.0136656
    [46] Mondok A,Varga I,Glaz E,et al. 11beta-hydroxysteroid dehydrogenase activity in acromegalic patients with normal or impaired carbohydrate metabolism[J]. Steroids,2009,74(9):725-729. doi: 10.1016/j.steroids.2009.03.003
  • [1] 秦飞雪, 何娟坤, 刘师, 文斌, 朱宏, 李静, 桂莉, 曹小艳.  住院糖尿病足患者病原菌分布特点与不同Wagner分级相关性研究, 昆明医科大学学报.
    [2] 曾慧娟, 田波, 袁红伶, 何杰, 李冠羲, 茹国佳, 许敏, 詹东.  机器学习算法构建慢性肾脏病伴高血压或糖尿病的预测模型, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240315
    [3] 莫怡, 李会芳, 左春梅, 李锦波, 申静蓉, 吴霞, 蔡乐.  云南省纳西族居民糖尿病患病、知晓、治疗和控制率的变化趋势研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221015
    [4] 郑旭, 谢琛, 付娆, 吴育志, 郭竹玲.  2型糖尿病患者及内分泌医生对牙周炎与糖尿病相关性认知调查, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210323
    [5] 杨舒迪, 蔡乐, 马国玉, 杨家甜, 崔文龙.  昆明市城乡老年人糖尿病流行现状的对比分析, 昆明医科大学学报.
    [6] 余珊, 王波.  糖尿病健康教育研究进展, 昆明医科大学学报.
    [7] 黄晶晶, 杨胜杰, 崔文龙, 李潇, 马志翔, 吴超, 蔡乐.  弥渡县农村老年人糖尿病患病、知晓、治疗、控制及自我管理现状, 昆明医科大学学报.
    [8] 陈前.  糖尿病合并白内障与老年性白内障临床手术比较, 昆明医科大学学报.
    [9] 颜穗珺, 李会芳.  中国糖尿病的患病概况, 昆明医科大学学报.
    [10] 曾晓燕, 吴斌, 杨慧英, 杨春爱, 黄云华.  血清OPG/RANKL与云南地区2型糖尿病性骨质疏松症的相关性, 昆明医科大学学报.
    [11] 陈敏.  RANTES及其受体CCR5与糖尿病的相关研究, 昆明医科大学学报.
    [12] 党艳艳.  奥瑞姆自理理论对老年糖尿病管理及生活质量的影响, 昆明医科大学学报.
    [13] 朱薇.  罗伊适应模式对糖尿病合并白内障患者的护理效果分析, 昆明医科大学学报.
    [14] 彭辉.  成人起病的青少年糖尿病研究进展, 昆明医科大学学报.
    [15] 熊煜欣.  STZ小剂量多次与大剂量单次腹腔注射诱导糖尿病大鼠模型的研究, 昆明医科大学学报.
    [16] 秦敏丽.  RBP4与炎性因子水平对2型糖尿病下肢动脉病变的诊断价值, 昆明医科大学学报.
    [17] 敖磊.  糖尿病对精神分裂症患者认知功能的影响, 昆明医科大学学报.
    [18] 李会芳.  佤族人群CCR5基因59029G/A多态性与糖尿病前期和糖尿病的相关性研究, 昆明医科大学学报.
    [19] 高血压脑出血合并糖尿病的术式选择及围手术期处理, 昆明医科大学学报.
    [20] 成会荣.  肺结核合并糖尿病68例临床特征和疗效分析, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  4281
  • HTML全文浏览量:  2789
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回