Association between NRG1-Erbb4 Polymor- phism and Focal Epilepsy
-
摘要:
目的 研究云南地区患有局灶性癫痫人群的神经调节因子1(Neuregulin-1,NRG1)及其受体ErbB4基因的多态现象与局灶性癫痫易感性的关系。 方法 采用癫痫病例组和健康对照组对比分析,通过Snapshot检测方法,对云南地区的70例局灶性癫痫患者、64例健康对照者进行基因多态现象检测分析,研究对象样本均来自2020年3月到7月昆明医科大学第一附属医院。 结果 发现局灶性癫痫与NRG1(SNP rs35753505, T > C)的多态现象有相关性,NRG1(SNP rs35753505, T > C)基因型( P = 0.007)和等位基因(P = 0.005)的分布差异有统计学意义(P < 0.05)。与此同时,本研究还对NRG1下游受体ErbB4的基因多态性进行分析,发现ErbB4(SNPrs839523,G > A)基因型( P = 0.026)和等位基因(P = 0.013)、(SNPrs707284,A > G)基因型( P = 0.038)和等位基因(P = 0.018)的分布差异有统计学意义(P < 0.05),并且发现SNP rs707284携带的G/G基因型OR值为3.656(95% CI = 1.160-11.525)。 结论 携带突变纯合子G/G基因型的人群患癫痫的易感性较高,NRG1-ErbB4基因多态现象可能共同参与了局灶性癫痫的发生。 Abstract:Objective To determine the effect of the Neuregulin-1 and its receptor ErbB4(NRG1-ErbB4) polymorphisms on focal epilepsy. Methods Three single nucleotide polymorphisms (SNPs) of NRG1 gene and three single nucleotide polymorphisms (SNPs) of ErbB4 gene in 70 patients with focal epilepsy and 64 healthy persons were analyzed by the PCR-SnapShot genotyping methods.The samples were all from the First Affiliated Hospital of Kunming Medical University from March to July, 2020. Results It was found that focal epilepsy was correlated with polymorphism of NRG1 (SNP rs35753505, T > C), the distribution of genotype ( P = 0.007) and allele (P = 0.005) of NRG1 (SNP rs35753505, T > C) was statistically significant ( P < 0.005). Meanwhile, ErbB4 gene polymorphisms of NRG1 downstream receptors was analyzed firstly, and two SNPs was found to be associated with focal epilepsy, ErbB4 SNP(rs839523, P = 0.026) and its allele (P = 0.013), ErbB4 SNP(rs707284, P = 0.038) and its allele (P = 0.018). However, no statistically significant association was found between NRG1(rs6994992, rs62510682), ErbB4(rs7598440) polymorphisms and focal epilepsy. Conlusions The susceptibility of focal epilepsy carrying NRG1(SNP, rs35753505) and ErbB4(rs839523, rs707284) mutation homozygous has increased. NRG1-ErbB4 polymorphisms might play an important role together in the susceptibility to partial epilepsy. -
Key words:
- Neuregulin-1 /
- Receptors /
- ErbB-4 /
- Partial epilepsy /
- Polymorphism
-
肿瘤患者治疗周期较长,长期化疗药物的静脉输注需物质和高浓度营养素,浅表静脉反复穿刺加大了疼痛和血管损伤[1-2]。外周中心静脉导管(Peripheral central venous catheter)是指通过穿刺头静脉、贵要静脉、或肘部正中静脉,经腋静脉到达上腔静脉的静脉导管[3-4]。PICC有着操作简便、留置时间长、创伤小等优点而在临床上广泛应用[5],因此,它是一种安全有效的肿瘤患者静脉治疗途径,使其能防止因刺激性药物引起血管损伤及反复穿刺疼痛。而PICC不但能减轻穿刺疼痛,而且还能降低药物输注导致的副作用[6-7]。然而,肿瘤患者由于插管期间长时间受到化疗药物刺激,可能会加大导管相关性感染(catheter related infection,CRI)风险[2]。本文旨在探讨肿瘤患者CRI危险原因及其预防措施,具体探讨内容如下。
1. 资料与方法
1.1 一般资料
纳入2019年5月至2020年8月,昆明医科大学第二附属医院肿瘤科收治的PICC置管18岁以上肿瘤患者180例,其中男101例,女79例,纳入研究患者均了解本次研究内容且意识清晰,服从医护人员安排。排除其他感染征象及细菌的培养为阳性、有血栓形成史或者有严重性出血疾病、穿刺位置皮肤损伤者。
1.2 方法
利用本院自制维护记录单,将PICC患者在进行维护期间每次夫人有关信息详细记录下来,主要包括有患者的年龄、性别、PICC导管保持时长、导管重复穿刺数等。将感染患者与未感染患者性别、年龄、化疗次数和合并糖尿病、导管重复穿刺数差异,针对于导管在患者术后出现导管感染的有关危险因素,实施对应的护理措施。
1.3 纳入标准
(1)符合《导管相关性感染诊断参考标准》[8]诊断标准;(2)均了解本次研究内容,自愿加入;(3)意识清晰,无精神类疾病。
1.4 排除标准
(1)伴有心、肝、肾等脏器严重疾病;(2)语言表达存在功能障碍;(3)伴有精神类疾病;(4)不愿意参加本次研究活动。
1.5 统计学处理
选用SPSS26.0统计学软件,计数资料以n(%)表示,χ2或Fisher检验;计量资料以(
$ \bar x \pm s$ )表示,t检验;多因素Logistics回归分析OC影响因素;ROC曲线分析CEA、CA125、HE4对OC的诊断价值;P < 0.05为差异有统计学意义。2. 结果
2.1 分析导致导管相关性感染单因素
180例患者发生导管相关性感染27例,感染率为15%,血流感染3例,局部感染24例,分别占11.11%和88.89%。比较感染组和未感染组在单次置管穿刺次数、PICC留置时长、导管移动、化疗次数、糖尿病等方面,差异有统计学意义(P < 0.01),比较性别、年龄方面差异无统计学意义(P > 0.05),见表1。
表 1 分析PICC 导管相关性感染的危险原因单因素(n,%)Table 1. To analyze the risk factors of PICC catheter-related infection (n,%)项目 感染组(n = 27) 未感染组(n = 153) χ2 P 年龄(岁) 0.337 > 0.05 < 60 12(44.44) 65(42.48) ≥60 15(55.56) 88(57.52) 性别 0.621 > 0.05 男 14(51.85) 80(52.29) 女 13(48.15) 73(47.71) 单次置管穿刺次数(次) 32.656 < 0.01 1 5(18.52) 115(75.16) 2及以上 22(81.48) 38(24.84) PICC留置时间(d) 23.197 < 0.01 < 60 9(33.33) 91(59.48) ≥60 18(66.67) 62(40.52) 导管移动 11.845 < 0.01 无 7(25.93) 101(66.01) 有 20(74.07) 52(33.99) 化疗次数(次) 16.393 < 0.01 < 5 9(33.33) 49(32.03) ≥5 18(66.68) 104(67.97) 糖尿病 11.346 < 0.01 无 10(37.04) 97(63.40) 有 17(62.96) 56(36.6) 2.2 分析导管相关性感染危险因素的多因素
导管移动(OR = 2.421)、化疗次数(OR = 6.475)、合并糖尿病(OR = 3.271)等基础疾病为CRI危险因素见表2。
表 2 导管相关性感染危险因素的多因素分析Table 2. Objective to analyze the risk factors of catheter-related infection变量 SE β Waldχ2 P OR 95%CI 有导管移动 6.231 0.841 11.784 < 0.05 2.421 1.556~3.516 化疗次数≥5 7.486 0.537 16.453 < 0.05 6.475 1.243~2.294 合并糖尿病 5.473 0.639 11.464 < 0.05 3.271 1.196~3.753 3. 讨论
伴随导管技术进展,PICC已经能够完全满足周期性化疗和营养支持需求,广泛应用于肿瘤科[9]。和其他营养支持对比,PICC有保留时间长、成本低、漏液少、安全系数高等优点,PICC三大并发症之一为CRI[10-11]。由于化疗疗程较长、免疫力较低,肿瘤患者是出现CRI的高危人群。还有一个方面就是癌症化疗患者易出现医院感染,感染会严重对化疗疗效造成影响,经济上对患者加大负担[12-13]。针对这些问题,分析肿瘤患者CRI的危险因素,对肿瘤患者 PICC 感染防治意义重大[14-15]。本研究结果显示,对比感染组和未感染组在年龄、性别方面没有显著差异(P > 0.05),单次置管穿刺数、PICC保留时长、导管移动、化疗次数、糖尿病等方面有显著差异,对比两组有统计学意义(P < 0.05);导管移动(OR = 2.421)、化疗次数(OR = 6.475)、合并糖尿病(OR = 3.271)等基础疾病为CRI危险因素。在肿瘤患者中,化疗一般是周期性的,且保留时间长,长时间静脉置管,血栓形成及纤维蛋白沉积可能是细菌定植的条件之一。据报道,导管留置时间28以上CRI导出现几率超过24.0%[4]。与表1数据一致。由于长期反复化疗,患者的免疫功能显著下降,白细胞数量急剧减少,增加了感染几率;表2中Logistic回归分析结果显示,感染组化疗5次以上风险比未感染组高6.475倍。患者置管同时还有别的基础疾病,如糖尿病等,这些疾病会让患者血液黏稠且减慢,这类人比无基础疾病的人在置管后更易感染[5]。本结果表明,糖尿病肿瘤患者PICC导管相关性感染的发生率比未感染组明显更高,表2中Logistic回归分析结果显示,感染组的风险是未感染组的3.271倍,这和兰琪[6]观点一致;反复静脉穿刺对皮肤和血管会造成损伤,破坏防御屏障,细菌容易侵入;浅静脉化疗时,血管内膜会受到化疗药物的损伤,引起血管纤维化,在行PICC置管期间,容出现静脉炎、血栓形成等并发症,加大感染概率[7]。为延长PICC导管利用时长,护理人员对患者可加强健康宣教,提高对导管的依从性,导管维护规范,并尽快取出不需要导管。房间在穿刺前经过紫外线进行消毒,确保环境安全,确保穿刺处周边皮肤清洁、干燥,最大程度上降低局部出现感染。导管外露处可采取施乐卡环固定于患者前臂,防止导管移位,明显降低PICC导管相关感染出现率。在PICC导管置管及更换期间,无菌屏障提供到最大程度的措施,包括操作人员戴无菌手套、无菌帽、口罩及无菌操作衣,且用无菌巾覆盖[8]。肿瘤合并糖尿病等基础疾病患者在导尿时间段应注意饮食方面的护理。在用药及输液期间,要基础病的治疗及导管插入术协调好。此外,选择穿刺处要慎重,应在锁骨下的静脉处穿刺,皮肤菌丝数在此范围内较少,皮肤湿度相对较低,感染几率较小,因此,防止在股静脉采取穿刺。在术后加强护理,对患者实施日常检查,留置导管时细心观察注意静脉导管,防止PICC穿刺点被压迫到。对病人进行针对性健康教育,告知病人在置管时也许会发生的并发症和注意事项,对患者进行详细讲解,并有针对性进行心理干预,改善其负面情绪。告知病人多喝水,并且告诉病人多喝水的重要性及必要性,可以明显经自身血液粘稠度降低,防止病人在治疗期间血栓形成,进而将治疗难度加大。
综上所述,肿瘤患者PICC置管后出现CRI的危险因素有很多,主要是导管移动、化疗频率和糖尿病等。因此,临床上应该采取对应的护理干预策略,能够最大程度防止导管感染的出现。掌握PICC导管感染危险因素的过程,不但有助于护理人员对置管感染预防和治疗策略进行掌握,而且还有助于更好地防止出现其他并发症,对于肿瘤患者采取PICC置管能够提供更全面及更优质的护理,降低PICC置管感染等并发症出现,对患者生活质量提升,有助于能够帮助患者尽快康复。
-
表 1 检测基因引物序列(1)
Table 1. The primer sequence of tested genes (1)
单核苷酸多态性 多态性 引物序列 产物长度/bp GC含量 NRG1 rs35753505 [C/T] 上游引物5′-TTTAAGGCATCAGTTTTCAATAGC-3′
下游引物5′-TGTCTGGAGAAGGTTTGGAATG-3′352 bp 32.1% rs6994992 [C/T] 上游引物5′-AGGATTGGATGTTTGAACCACT-3′
下游引物5′- GGAGGGACAGGGTCATCACA-3′202 bp 50.0% rs62510682 [G/T] 上游引物5′-GCAAAATCAGCAACATCCTTC-3′
下游引物5′-TTCCCACGTTATCTCCTACTCTT-3′194 bp 37.6% ErbB4 rs839523 [A/G] 上游引物5′-CACTTGGAGCATCCTCTTCTG-3′
下游引物5′-ACTTGGCATGGCATTTGG-3′151 bp 38.4% rs7598440 [C/T] 上游引物5′-TCACCGCAGGGAATAAAACA-3′
下游引物5′-CGATGGTAAAAGGCGTGCT-3′245 bp 48.2% rs707284 [A/G] 上游引物5′-CCACAACTGAGGGTTTTAGGAA-3′
下游引物5′-TCAGAGGGTGGACGGTGG-3′387 bp 38.2% 表 1 检测基因引物序列(2)
Table 1. The primer sequence of tested genes (2)
延伸引物方向 延伸产物 延伸引物长度 延伸引物 Nrg1 R AG 22 5′-GGAAGCCATGTATCTTTATTTT-3′ F CT 22 5′-CACCATGCAGGGTTCAAGTGAA-3′ F GT 48 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTATATGTGTGCAAACAGTTCTTA-3′ ErbB4 F AG 32 5′-TTTTTTTTTTATTTGCAGATTATTTGCAGCTT-3′ F CT 32 5′-TTTTTTTTTTGGCTACCCCTGGTAAGAGGGCT-3′ F AG 42 5′-TTTTTTTTTTTTTTTTTTTTACATGTGCATGGAGTTTTTACC-3′ 表 2 NRG1基因多态性与局灶性癫痫易感性关系[n(%)]
Table 2. The relationship between NRG1 gene polymorphism and susceptibility to focal epilepsy [n(%)]
SNP 基因型/等位基因 癫痫组 对照组 Pa OR(95% CI) χ2 Pb rs35753505 T/T 13 (18.6) 19 (29.7) 1 9.996 0.007 C/C 25 (35.7) 8 (12.5) 0.007 0.228 (0.078-0.663) C/T 32 (45.7) 37 (57.8) 0.540 0.767 (0.329-1.790) T 58 (41.4) 75 (58.6) 1 7.881 0.005 C 82 (58.6) 53 (41.4) 0.005 0.500 (0.307-0.813) rs6994992 C/C 13 (18.6) 14 (21.9) 1 4.445 0.108 T/C 30 (42.9) 36 (56.3) 0.869 1.078 (0.441-2.638) T/T 27 (38.6) 14 (21.9) 0.173 0.500 (0.185-1.354) C 56 (40.0) 64 (50.0) 1 2.704 0.100 T 84 (60.0) 64 (50.0) 0.101 0.667 (0.411-1.082) rs62510682 G/G 61 (87.1) 56 (87.5) 1 0.004 0.951 G/T 9 (12.9) 8 (12.5) 0.951 0.968 (0.349-2.683) T/T 0 (0) 0 (0) ----- ----------------- G 131 (93.6) 120 (93.8) 1 0.004 0.952 T 9 (6.4) 8(6.3) 0.952 0.970 (0.363-2.596) 注:a为非条件 logistic 回归分析的P值,b为卡方检验的双侧P值。 表 3 ErbB4基因多态性与局灶性癫痫易感性的关系[n(%)]
Table 3. The relationship between the polymorphism of ErbB4 gene and the susceptibility of focal epilepsy [n(%)]
SNP 基因型/等位基因 癫痫组 对照组 Pa OR(95% CI) χ2 Pb rs839523 G/G 15(21.4) 26(40.6) 1 7.333 0.026 A/A 13(18.6) 5(7.8) 0.015 0.222(0.066~0.745) A/G 42(60.0) 33(51.6) 0.047 0.453(0.207~0.991) G 72(45.0) 85(66.4) 1 6.182 0.013 A 68(55.0) 43(33.6) 0.013 0.536(0.327~0.878) rs7598440 C/C 18(25.7) 12(18.8) 1 1.129 0.569 T/C 39(55.7) 37(57.8) 0.420 1.423(0.604~3.356) T/T 13(18.6) 15(23.4) 0.302 1.731(0.611~4.905) C 75(53.6) 61(47.7) 1 0.936 0.333 T 65(46.4) 67(52.3) 0.334 1.267(0.784~2.049) rs707284 A/A 13(18.6) 6(9.4) 1 6.526 0.038 A/G 41(58.6) 31(48.4) 0.368 1.638(0.560~4.795) G/G 16(22.9) 27(42.2) 0.027 3.656(1.160~11.525) A 67(47.9) 43(33.6) 1 5.622 0.018 G 73(52.1) 85(66.4) 0.018 1.814(1.107~2.975) 注:a为非条件 logistic 回归分析的P值;b为卡方检验的双侧P值。 -
[1] 吴洵昳. 利用膜片钳技术探究内向整流钾离子通道Kir2.3在癫痫发病机制中的作用[C]. 中国抗癫痫协会脑电图与神经电生理分会. 第六届CAAE脑电图与神经电生理大会会刊. 中国抗癫痫协会脑电图与神经电生理分会: 中国抗癫痫协会, 2018: 21. [2] 陈新元, 武羽洁, 季雨伟, 等. NRG1/ErbB4与癫痫相关性及其遗传易感性研究进展[J]. 中国实用神经疾病杂志,2020,23(1):89-92. [3] Chuang S-H, Reddy D S. Genetic and molecular regulation of extrasynaptic gaba-a receptors in the brain: therapeutic insights for epilepsy[J]. The Journal of Pharmacology and Experimental Therapeutics,2018,364(2):180-179. doi: 10.1124/jpet.117.244673 [4] GarciaRosa Sheila, de Freitas Brenha Bianca, da Rocha Vinicius Felipe, et al. Personalized medicine using cutting edge technologies for genetic epilepsies[J]. Curr Neuropharmacol, 2020, 18(期): 1.Garcia Rosa Sheila, de Freitas Brenha Bianca, da Rocha Vinicius Felipe, et al. Personalized medicine using cutting edge technologies for genetic epilepsies[J]. Curr Neuropharmacol,2021,19(6):813-831. [5] Lascano Agustina M, Korff Christian M, Picard fabienne. seizures and epilepsies due to channelopathies and neurotransmitter receptor dysfunction[J]. A Parallel between Genetic and Immune Aspects,2016,7(4):197-209. [6] Scheffer I E, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia,2017,58(4):512-521. doi: 10.1111/epi.13709 [7] Kataria H, Alizadeh A, Karimi-Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair[J]. Prog neurobiol, 2019, 180(期): 101643.Kataria H, Alizadeh A, Karimi Abdolrezaee S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair[J]. Prog neurobiol,2019,180(9):101643. [8] Grieco S F, Wang G, Mahapatra A, et al. Neuregulin and ErbB expression is regulated by development and sensory experience in mouse visual cortex[J]. J Comp Neurol,2020,528(3):419-432. doi: 10.1002/cne.24762 [9] Rahman-Enyart A, Lai C, Prieto A L. Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons[J]. Mol Neurobiol,2020(6):1-21. [10] Barnes A, Isohanni M, Barnett J H, et al. Neuregulin-1 genotype is associated with structural differences in the normal human brain[J]. Neuroimage,2012,59(3):2057-2061. doi: 10.1016/j.neuroimage.2011.10.007 [11] Mei L, Nave K A. Neuregulin-ErbB Signaling in the Nervous System and Neuropsychiatric Diseases[J]. Neuron,2014,83(1):27-49. doi: 10.1016/j.neuron.2014.06.007 [12] Zhu W Y, Jiang P, He X, et al. Contribution of NRG1 Gene Polymorphisms in Temporal Lobe Epilepsy[J]. J Child Neurol,2016,31(3):271-276. doi: 10.1177/0883073815589757 [13] Liang D, Fan F, Ding W, et al. Increased Seizure Susceptibility for Rats Subject to Early Life Hypoxia Might Be Associated with Brain Dysfunction of NRG1-ErbB4 Signaling in Parvalbumin Interneurons[J]. Molecular Neurobiology, 2020, 卷(期): 1-10.Liang D, Fan F, Ding W, et al. Increased Seizure Susceptibility for Rats Subject to Early Life Hypoxia Might Be Associated with Brain Dysfunction of NRG1-ErbB4 Signaling in Parvalbumin Interneurons[J]. Molecular Neurobiology,2020,57(9):5276-5285. [14] 王艳雪, 李坪, 张歆悦, 等. Neuregulin-1及其受体ErbB在中枢神经系统损伤修复中作用的研究进展[J]. 神经解剖学杂志,2019,35(01):83-87. [15] Tan G H, Liu Y Y, Hu X L, et al. Neuregulin 1 represses limbic epileptogenesis through ErbB4 in parvalbumin-expressing interneurons[J]. Nat Neurosci,2012,15(2):258-266. doi: 10.1038/nn.3005 [16] Li K X, Lu Y M, Xu Z H, et al. Neuregulin 1 regulates excitability of fast-spiking neurons through Kv1.1 and acts in epilepsy[J]. Nat Neurosci,2012,15(2):267-273. doi: 10.1038/nn.3006 [17] 黄薇隗, 彭伟, 江蓉, 等. NRG1基因多态性与颞叶癫痫的关系[J]. 神经损伤与功能重建,2018,13(10):531-533. [18] Deng C, Pan B, Engel M, et al. Neuregulin-1 signalling and antipsychotic treatment[J]. Psychopharmacology (Berl.),2013,226(2):201-215. doi: 10.1007/s00213-013-3003-2 [19] Dedeurwaerdere S, Boets S, Janssens P, et al. In the grey zone between epilepsy and schizophrenia: alterations in group II metabotropic glutamate receptors[J]. Acta Neurol Belg,2015,115(3):221-232. doi: 10.1007/s13760-014-0407-7 [20] Amini E, Rezaei M, Mohamed Ibrahim N, et al. A Molecular Approach to Epilepsy Management: from Current Therapeutic Methods to Preconditioning Efforts[J]. Mol Neurobiol,2015,52(1):492-513. doi: 10.1007/s12035-014-8876-5 [21] Liang Shi, Clare M. Bergson. Neuregulin 1: an intriguing therapeutic target for neurodevelopmental disorders, 2020, 10(1): 612-618. [22] Schmitt A, Koschel J, Zink M, et al. Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia[J]. Eur Arch Psychiatry Clin Neurosci,2010,260(2):101-111. doi: 10.1007/s00406-009-0017-1 [23] Butler K M, Moody O A, Elisabeth S, et al. De novo variants in GABRA2 and GABRA5 alter receptor function and contribute to early-onset epilepsy[J]. Brain,2018,141(8):2392-2405. doi: 10.1093/brain/awy171 [24] Lascano A M, Korff C M, Picard F. Seizures and Epilepsies due to Channelopathies and Neurotransmitter Receptor Dysfunction: A Parallel between Genetic and Immune Aspects[J]. Mol Syndromol,2016,7(4):197-209. doi: 10.1159/000447707 [25] Koepp M J, Hammers A, D A Riaño Barros, et al. NMDA receptor binding in focal epilepsies[J]. J Neurol Psychiatry,2015,86(10):1150-1157. doi: 10.1136/jnnp-2014-309897 [26] Backx L, Ceulemans B, Vermeesch J R, et al. Early myoclonic encephalopathy caused by a disruption of the neuregulin-1 receptor ErbB4[J]. Eur J Hum Genet,2009,17(3):378-382. doi: 10.1038/ejhg.2008.180 -