Research Progress of Orphan Receptor GPR88 in Related Diseases
-
摘要: GPR88是一种A类视紫红质家族孤儿受体,属于G蛋白偶联受体(G protein-coupled receptors,GPCRs)家族。现有研究表明其参与多种疾病的发生和发展,同时作为潜在的治疗靶点引起了研究者广泛的兴趣。通过对近年来GPR88受体在高血压、酒精使用障碍、焦虑、精神分裂症、运动障碍等相关疾病与激动剂的研究新进展进行综述,旨在为GPR88蛋白的更深层次的研究提供理论基础。Abstract: GPR88 is an orphan receptor of the Class A rhodopsin family, belonging to the G protein-coupled receptors (GPCRs) family. Existing studies have shown that it is involved in the occurrence and development of a variety of diseases, and at the same time as a potential therapeutic target has aroused widespread interest of researchers. This article reviews the recent research progress of GPR88 receptors in hypertension, alcohol use disorder, anxiety, schizophrenia, movement disorders and other related diseases and agonists, and aims to provide a deeper level of research on GPR88protein Theoretical basis.
-
[1] Alexander S P,Fabbro D,Kelly E,et al. The concise guide to Pharmacology 2017/18:Enzymes[J]. British Journal of Pharmacology,2017,17(4):272-359. [2] Niimura Y. Evolutionary dynamics of olfactory receptor genes in chordates:interaction between environments and genomic contents[J]. Human Genomics,2009,4(2):107-118. doi: 10.1186/1479-7364-4-2-107 [3] Lagerström M,Schiöth H. Structural diversity of G protein-coupled receptors and significance for drug discovery[J]. Nature Reviews Drug Discovery,2008,7(4):339-357. doi: 10.1038/nrd2518 [4] Surgand J S,Rodrigo J,Kellenberger E,et al. A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors[J]. Proteins:Structure,Function,and Bioinformatics,2006,62(2):509-538. [5] Kakarala K K,Jamil K. Sequence-structure based phylogeny of GPCR class a rhodopsin receptors[J]. Molecular Phylogenetics and Evolution,2014,74(3):66-96. [6] Jacoby E,Bouhelal R,Gerspacher M,et al. The 7 TM G-protein-coupled receptor target family[J]. Chemmedchem,2006,1(8):761-782. [7] Calderón-Zamora L,Ruiz-Hernandez A,Romero-Nava R,et al. Possible involvement of orphan receptors GPR88 and GPR124 in the development of hypertension in spontaneously hypertensive rat[J]. Clinical and Experimental Hypertension (New York,NY:1993),2017,39(6):513-519. doi: 10.1080/10641963.2016.1273949 [8] Vaneps N,Altenbach C,Caro L,et al. G-and G-coupled GPCRs show different modes of G-protein binding[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(10):2383-2388. doi: 10.1073/pnas.1721896115 [9] Mizushima K,Miyamoto Y,Tsukahara F,et al. A novel G-protein-coupled receptor gene expressed in striatum[J]. Genomics,2000,69(3):314-321. doi: 10.1006/geno.2000.6340 [10] Sgourakis N,Bagos P,Hamodrakas S. Prediction of the coupling specificity of GPCRs to four families of G-proteins using hidden Markov models and artificial neural networks[J]. Bioinformatics (Oxford,England),2005,21(22):4101-4106. doi: 10.1093/bioinformatics/bti679 [11] Abela L,Kurian M. Postsynaptic movement disorders:clinical phenotypes,genotypes,and disease mechanisms[J]. Journal of Inherited Metabolic Disease,2018,41(6):1077-1091. doi: 10.1007/s10545-018-0205-0 [12] Becker J,Befort K,Blad C,et al. Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala[J]. Neuroscience,2008,156(4):950-965. doi: 10.1016/j.neuroscience.2008.07.070 [13] Massart R,Mignon V,Stanic J,et al. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat:Establishment of a dual nuclear-cytoplasmic localization[J]. Journal of Comparative Neurology,2016,524(14):2776-2802. doi: 10.1002/cne.23991 [14] Jin C,Decker A,Harris D,et al. Effect of substitution on the aniline moiety of the GPR88 agonist 2-PCCA:Synthesis,structure-activity relationships,and molecular modeling studies[J]. ACS Chemical Neuroscience,2016,7(10):1418-1432. doi: 10.1021/acschemneuro.6b00182 [15] Li J,Thorn D A,Jin C. The GPR88 receptor agonist 2-PCCA does not alter the behavioral effects of methamphetamine in rats[J]. European Journal of Pharmacology,2013,698(1-3):272-277. doi: 10.1016/j.ejphar.2012.10.037 [16] Jin C,Decker A,Langston T. Design,synthesis and pharmacological evaluation of 4-hydroxyphenylglycine and 4-hydroxyphenylglycinol derivatives as GPR88 agonists[J]. Bioorganic& Medicinal Chemistry,2017,25(2):805-812. [17] Jin C,Decker A M,Huang X P,et al. Synthesis,pharmacological characterization,and structure–activity relationship studies of small molecular agonists for the orphan GPR88 receptor[J]. ACS Chemical Neuroscience,2014,5(7):576-587. doi: 10.1021/cn500082p [18] Dzierba C,Bi Y,Dasgupta B,et al. Design,synthesis,and evaluation of phenylglycinols and phenyl amines as agonists of GPR88[J]. Bioorganic & Medicinal Chemistry letters,2015,25(7):1448-1452. [19] Chobanian A,Bakris G,Black H,et al. The seventh report of the joint national committee on prevention,detection,evaluation,and treatment of high blood pressure:the JNC 7 report[J]. JAMA,2003,289(19):2560-2572. doi: 10.1001/jama.289.19.2560 [20] Olczak K,Taylor-Bateman V,Nicholls H,et al. Hypertension genetics past,present and future applications[J]. Journal of Internal Medicine,2021,24:52-59. [21] Feldman M D,Copelas L,Gwathmey J K,et al. Deficient production of cyclic AMP:pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure[J]. Circulation,1987,75(2):331-339. doi: 10.1161/01.CIR.75.2.331 [22] Gong H,Sun H,Koch W J,et al. Specific β2AR blocker ICI 118,551 actively decreases contraction through a Gi-coupled form of the β2AR in myocytes from failing human heart[J]. Circulation,2002,105(21):2497-2503. doi: 10.1161/01.CIR.0000017187.61348.95 [23] Della bruna R,Pinet F,Corvol P,et al. Regulation of renin secretion and renin synthesis by second messengers in isolated mouse juxtaglomerular cells[J]. Cellular Physiology and Biochemistry,1991,1(2):98-110. doi: 10.1159/000154598 [24] Maisel N,Blodgett J,Wilbourne P,et al. Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders:when are these medications most helpful?[J]. Addiction (Abingdon,England),2013,108(2):275-293. doi: 10.1111/j.1360-0443.2012.04054.x [25] Zeng J,Yu S,Cao H,et al. Neurobiological correlates of cue-reactivity in alcohol-use disorders:a voxel-wise meta-analysis of fMRI studies[J]. Neuroscience and Biobehavioral Reviews,2021,24:83-87. [26] Spanagel R. Alcoholism:a systems approach from molecular physiology to addictive behavior[J]. Physiological Reviews,2009,89(2):649-705. doi: 10.1152/physrev.00013.2008 [27] Mulholland P,Chandler L,Kalivas P. Signals from the fourth dimension regulate drug relapse[J]. Trends in Neurosciences,2016,39(7):472-485. doi: 10.1016/j.tins.2016.04.007 [28] Ben Hamida S,Mendonça-Netto S,Arefin T,et al. Increased alcohol seeking in mice lacking Gpr88 involves dysfunctional mesocorticolimbic networks[J]. Biological Psychiatry,2018,84(3):202-212. doi: 10.1016/j.biopsych.2018.01.026 [29] Purves K,Coleman J,Meier S,et al. A major role for common genetic variation in anxiety disorders[J]. Molecular Psychiatry,2020,25(12):3292-3303. doi: 10.1038/s41380-019-0559-1 [30] Aupperle R,Paulus M. Neural systems underlying approach and avoidance in anxiety disorders[J]. Dialogues Clin Neurosci,2010,12(4):517-531. doi: 10.31887/DCNS.2010.12.4/raupperle [31] Meirsman A,Le Merrer J,Pellissier L,et al. Mice lacking GPR88 show motor deficit,improved spatial learning,and low anxiety reversed by delta opioid antagonist[J]. Biological Psychiatry,2016,79(11):917-927. doi: 10.1016/j.biopsych.2015.05.020 [32] Meirsman A,Robé A,De Kerchove D'exaerde A,et al. GPR88 in A2AR neurons enhances anxiety-like behaviors[J]. ENEURO,2016,3(4):16-20. [33] Winship I,Dursun S,Baker G,et al. An overview of animal models related to schizophrenia[J]. Canadian Journal of Psychiatry Revue Canadienne de Psychiatrie,2019,64(1):5-17. [34] Kim Y,Leventhal B. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders[J]. Biological Psychiatry,2015,77(1):66-74. doi: 10.1016/j.biopsych.2014.11.001 [35] Logue S,Grauer S,Paulsen J,et al. The orphan GPCR,GPR88,modulates function of the striatal dopamine system:a possible therapeutic target for psychiatric disorders?[J]. Molecular and Cellular Neurosciences,2009,42(4):438-447. doi: 10.1016/j.mcn.2009.09.007 [36] 罗涛,吕品,刘筠,等. 甲基苯丙胺所致精神障碍男性患者GPR88基因启动子区甲基化水平变化的研究[J]. 中国医药,2019,14(05):779-782. doi: 10.3760/j.issn.1673-4777.2019.05.034 [37] Ingallinesi M,Le Bouil L,Biguet N,et al. Local inactivation of Gpr88 in the nucleus accumbens attenuates behavioral deficits elicited by the neonatal administration of phencyclidine in rats[J]. Mol Psychiatry,2015,20(8):951-958. doi: 10.1038/mp.2014.92 [38] Quintana A,Sanz E,Wang W,et al. Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors[J]. Nature Neuroscience,2012,15(11):1547-1555. doi: 10.1038/nn.3239 [39] Alkufri F,Shaag A,Abu-Libdeh B,et al. Deleterious mutation in GPR88 is associated with chorea,speech delay,and learning disabilities[J]. Neurology,2016,2(3):64. [40] Lobo M. Molecular profiling of striatonigral and striatopallidal medium spiny neurons past,present,and future[J]. International Review of Neurobiology,2009,89(11):1-35. [41] Sesack S,Grace A. Cortico-Basal Ganglia reward network:microcircuitry[J]. Neuropsychopharmacology,2010,35(1):27-47. doi: 10.1038/npp.2009.93 [42] Rocher A,Gubellini P,Merienne N,et al. Synaptic scaling up in medium spiny neurons of aged BACHD mice:A slow-progression model of Huntington's disease[J]. Neurobiology of Disease,2016,86(1):131-139. [43] Ye N,Song Z,Zhang A. Dual ligands targeting dopamine D2 and serotonin 5-HT1A receptors as new antipsychotical or anti-Parkinsonian agents[J]. Current Medicinal Chemistry,2014,21(4):437-457. [44] Zhang H,Ye N,Zhou S,et al. Identification of N-propylnoraporphin-11-yl 5-(1,2-dithiolan-3-yl)pentanoate as a new anti-Parkinson's agent possessing a dopamine D2 and serotonin 5-HT1A dual-agonist profile[J]. Journal of Medicinal Chemistry,2011,54(13):4324-4338. doi: 10.1021/jm200347t [45] Massart R,Guilloux J,Mignon V,et al. Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents[J]. The European Journal of Neuroscience,2009,30(3):397-414. doi: 10.1111/j.1460-9568.2009.06842.x [46] Girault J,Nairn A. DARPP-32 40 years later[J]. Advances in Pharmacology,2021,90:67-87.
点击查看大图
计量
- 文章访问数: 3782
- HTML全文浏览量: 2011
- PDF下载量: 36
- 被引次数: 0