留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-373通过P2X7R影响抑郁症小鼠行为的作用机制

王小云 王巧云 顾明华 丁昱 关雨雯 张继兰

陈一晗, 张善勇, 丁昱, 张莉. 颞下颌关节骨关节炎分子致病机制的研究进展[J]. 昆明医科大学学报, 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701
引用本文: 王小云, 王巧云, 顾明华, 丁昱, 关雨雯, 张继兰. miR-373通过P2X7R影响抑郁症小鼠行为的作用机制[J]. 昆明医科大学学报, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
Yihan CHEN, Shanyong ZHANG, Yu DING, Li ZHANG. Research Progress on the Molecular Pathogenesis of Temporomandibular Joint Osteoarthritis[J]. Journal of Kunming Medical University, 2024, 45(7): 1-5. doi: 10.12259/j.issn.2095-610X.S20240701
Citation: Xiao-yun WANG, Qiao-yun WANG, Ming-hua GU, Yu DING, Yu-wen GUANG, Ji-lan ZHANG. Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R[J]. Journal of Kunming Medical University, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030

miR-373通过P2X7R影响抑郁症小鼠行为的作用机制

doi: 10.12259/j.issn.2095-610X.S20211030
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目[2018FE001(-223)]
详细信息
    作者简介:

    王小云(1974~),女,云南楚雄人,大学本科,主治医师,主要从事精神相关疾病研究及诊疗工作

  • 中图分类号: R749.92

Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R

  • 摘要:   目的  探讨miR-373对抑郁症小鼠模型抑郁样行为,小胶质细胞激活和焦亡的影响。  方法  采用慢性不可预知应激构建抑郁症小鼠模型。蔗糖偏好,强迫游泳,尾部悬挂和社会实验评估小鼠的抑郁样行为。免疫荧光双染小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42以评估小鼠海马层中小胶质细胞增殖和活化状态。TUNEL试剂盒检测小胶质细胞的凋亡。荧光定量PCR检测miR-373的表达水平。蛋白质印记检测P2X7R和细胞焦亡相关蛋白的表达水平。双荧光素酶报告基因实验验证miR-373和P2X7R的靶向关系。  结果  慢性不可预知应激处理的小鼠,蔗糖偏好度和社交时间显著下调,并且强迫游泳和尾部悬挂不动时间显著增加(P < 0.05)。miR-373在抑郁症模型小鼠中异常高表达,且能够缓解小鼠的抑郁样行为(P < 0.05)。miR-373靶向负调控小鼠海马层小胶质细胞中P2X7R的表达水平(P < 0.01)。miR-373抑制小鼠海马层中小胶质细胞增殖和激活(P < 0.01)。miR-373抑制小胶质细胞中Caspase-1,C-caspase-1,NLRP3,IL-1β和IL-18表达,并抑制小胶质细胞凋亡(P < 0.05)。  结论  miR-373通过靶向抑制P2X7R的表达,从而缓解抑郁症小鼠模型的抑郁样行为,并抑制其海马层中小胶质细胞活化和焦亡。
  • 颞下颌关节骨关节炎(temporomandibular joint osteoarthritis,TMJOA)通常由颞下颌关节盘移位、关节创伤、功能性超负荷和发育异常等引起,表现为关节区的疼痛、僵硬、活动受限等,严重影响患者的生活质量[12]。经全球疾病评估表明,TMJOA患者中男性约9.6%,女性18%因其临床症状而影响日常生活[3]。数十年来,大量学者对骨关节炎的病因、发病过程、治疗方法进行了研究。随着研究方法的进步,学者对TMJOA的研究深入到基因层面,基于分子生物的致病机制更多地被提出。本文将对近年来基于分子层面颞下颌关节骨关节炎发病机制研究的进展进行综述。

    TMJOA常可伴发滑膜炎或关节囊炎,当颞下颌关节滑膜受损时,从颞颌关节滑膜细胞产生许多炎性细胞因子,分泌到颞下颌关节滑膜液中[4]。Sanchez-Lopez等[56]研究发现TMJOA患者颞下颌关节区大量巨噬细胞等炎性细胞浸润。巨噬细胞作为滑膜组织的重要组成细胞,能通过分泌各种促炎细胞因子,产生细胞氧化应激,导致活性氧的释放,从而加速炎症反应[7]。学者们通过探索关节区产生炎性细胞浸润的原因,发现TMJOA中炎症细胞因子或趋化因子的产生和分泌能够刺激促炎细胞因子产生,如白细胞介素-1β(interleukin-1β,IL-1β)或肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)[89]。因此,学者们对于TMJOA炎症相关发病机制的研究重心逐渐转移至各类相关促炎因子及其调节通路上。Scanzello等[10]提出了细胞因子向慢性炎症转变之间关系的可能性,研究结果表明在小鼠疾病模型中,单核细胞趋化蛋白-1 (monocyte chemotactic protein-1,MCP-1)是单核细胞/巨噬细胞向炎症部位迁移的主要趋化因子之一,并且MCP-1可能是导致TMJOA滑膜炎症发生发展的主要因素。Pan等[11]通过对建立TMJOA小鼠模型进行基因测序发现circ-slain2在TMJOA髁突软骨细胞中水平异常降低,通过升高小鼠circ-slain2水平,发现circ-slain2产生抗代谢和抗炎作用。Liu等[12]通过构建的TMJOA小鼠模型,发现toll样受体4(toll-like receptors4,TLR4)与TMJOA病理过程密切相关。而TLR4作为先天免疫反应期间产生的炎症介质,似乎也暗示了先天免疫受体激活引发的炎症反应对TMJOA的发生发展密切相关。

    除此之外,TMJOA中存在未知分子机制参与的可能性。近年来,“炎性体”活化的概念提出并应用于感染、心血管疾病等多种疾病的致病机制研究中[13],其中以IL-1β和IL-18的分泌作为1种新的炎症诱导机制,引起了学者的广泛关注。当细胞感知到特定刺激时,从IL-1β和IL-18的前体到成熟形式的IL-1β和IL-18进入细胞质的活性胱天蛋白酶-1(caspase-1)过程。许多研究报道了IL-1β在TMJOA中可能是最有效的促炎细胞因子[14],且由于TMJOA也存在类似于动脉粥样硬化和阿尔茨海默病的无菌炎症,因此,有学者提出“炎症体” 可能与TMJOA炎症的发生密切相关[14]

    TMJOA其主要病理表现为软骨细胞死亡、细胞外基质降解和软骨下的骨重塑[15]。关节软骨主要由透明软骨组成的1层有一定韧度的组织,其中的软骨细胞被细胞外基质包饶,细胞外基质主要含有Ⅱ型胶原蛋白,蛋白聚糖以及一些非胶原蛋白,这些蛋白在空间和结构上有序排列,使关节软骨获得最佳的拉伸长度和抗压缩能力。目前研究表明,TMJOA的发病机制与软骨破坏密切相关[16]。TMJOA软骨破坏早期可能是由代谢或机械原因引起的颞下颌关节应力发生改变,进而引起该区域的免疫应答。免疫细胞通过释放细胞因子和趋化因子以及其他炎症介质来启动炎症反应的发生[17]。这个过程是伴随着补体系统的激活和软骨降解分子的产生,可产生基质金属蛋白酶(matrix metalloproteinases,MMPs)和前列腺素E(prostaglandin E,PGE),破坏软骨细胞等因子[18]。而MMPs还可和溶栓蛋白产生的血栓蛋白,同期启动TMJOA中的细胞外基质分解[19],而细胞外基质作为软骨对弹性和剪切压力的保护结构,其损伤将对软骨稳态对维持不利[20]。此外,一些与MMPs相关细胞通路亦被证明与TMJOA相关。如通过骨形态发生蛋白通路异常,II型胶原蛋白的降解促进了软骨细胞的肥大,加速TMJOA的进程[21]

    此外,钙相关受体、肿瘤坏死因子和成纤维细胞生长因子受体1(fibroblast growth factor receptor ,FGFR1)均与软骨细胞凋亡密切相关。髁突机械应力改变可导致软骨细胞中的钙浓度改变,高浓度的细胞内钙可以激活诱导型一氧化氮合酶(inducible nitric oxide Synthase,iNOS)[22]。通过释放iNOS产生的细胞色素C和caspase-9,一氧化氮限制了线粒体呼吸并导致软骨细胞死亡[23]。TNF和受体相互作用蛋白1和3介导的(receptor interacting protein1/3,RIP1/RIP3)介导软骨细胞坏死性凋亡加剧了软骨的分解[24]。近年来,NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)炎症小体被提出与TMJOA致病机理密切相关,它通过介导髁突软骨细胞凋亡和滑膜组织中巨噬细胞氧化应激[2526]

    单纯的炎症及软骨破坏不能对TMJOA发生机制做出完整解释,目前越来越多的研究开始关注TMJOA中相关信号通路的异常改变[27]

    近年来大量基于体外动物实验的研究表明Wnt/β-Catenin信号通路参与了骨关节炎的发生发展[2829]。Wnt/β-Catenin信号通路曾被证明与胚胎发育过程中干细胞自我更新、细胞增殖和分化以及成人组织稳态方面密切相关。Wnt/β-Catenin信号通路激活后,小鼠颞颌关节出现关节间隙狭窄和骨退行样变等异常变化[28]。同时,这些小鼠的髁突软骨中发现了较低的细胞增殖和更高的细胞死亡[30]。可见,Wnt/β-Catenin信号通路在TMJOA发生发展中起着至关重要的作用,此信号通路在可能是TMJOA潜在的治疗靶点。

    转化生长因子β(transforming growth factor-β,TGF-β)/骨形态发生蛋白(bone morphogenetic protein,BMP)信号在成骨方面得到了广泛的研究。Li等[31]的研究中提出软骨细胞中TGF-β/Smad3和1-磷酸鞘氨醇(sphingosine-1/3-phosphate,S1P/S1P3)和Smad3/S1P3信号之间的相互作用可能在TMJ OA疾病进展中发挥作用。此外,过表达TGF-β1会导致软骨下骨重塑异常,致使小鼠髁突软骨破坏[28]。大量的体外动物实验表明,TGF-β和BMP信号通路异常对髁突软骨可造成直接的破坏[32],而髁突软骨破坏作为TMJOA的主要病理表现,提示TGF-β和BMP信号传导可作为以保护髁突软骨为出发点的治疗新思路,预防TMJOA的发生。

    成纤维细胞生长因子(fibroblast growth factor,FGF)信号系统控制关节软骨及骨骼的发育。FGF信号通路通过控制关键下游信号分子MEK/ERK与TMJOA的发展有关[28]。Wang等[33]发现小鼠TMJOA模型中FGF信号传导可能会增加,增强表达的FGF信号通路缓解了TMJOA的发展。FGRF1在软骨组织发育中有至关重要,大量动物实验表明,TMJOA小鼠中FGF信号传导异常兴奋,致使FGRF1缺失,并通过病理检查发现小鼠髁突出现骨关节样改变[33]。提示FGRF1作为软骨组织发育过程中的重要分子,日后可作为预防髁突发育改建期TMJOA发生的重要检测指标及治疗靶点。

    Notch信号通路控制着细胞分化与死亡,在关节软骨维持中起着双重功能[3435]。Notch信号在髁突软骨血管生成中至关重要,与髁突发育密切相关[36]。Ashraf等[37]的研究表明,Notch信号过度表达可能会导致 TMJOA。提示通过抑制Notch信号表达,可达到控制TMJOA疾病发展的目的。然而,目前较少关于在TMJOA患者中如何实现抑制Notch信号表达的研究,在日后仍需进一步研究。

    此外,有研究提出Hedgehog信号通路可能通过刺激软骨细胞肥大化加剧TMJOA[3839]。与免疫系统、炎症过程、应激反应、细胞增殖和细胞死亡相关的NF-κB信号通路被认为与TMJOA发生存在相关性[4041]。这些相关信号通路的提出与研究,进一步加深了笔者对TMJOA发病机制的认识,为日后从分子生物层面防控TMJOA疾病提供了新的思路。

    TMJOA是1种多致病因素、发病机制复杂的慢性炎症性疾病,软骨和骨的退行性改变通过复杂机制调控。近年来随着研究水平的提高,分子生物层面的致病机制被广泛研究。基于软骨细胞凋亡及改建下的分子生物研究,结合其相关炎症机理,能更好地理解TMJ骨关节炎的病理机制。更重要的是,异常信号分子可能作为潜在的治疗靶点,帮助医者找到TMJOA的有效疾病策略。由于疼痛常作为TMJOA患者就诊的主诉,目前基于炎症因素下生物分子的研究,对于炎症因子间的转化及与疼痛症状的相关性研究仍缺乏相关证据,还需要进行进一步的深入研究。此外,近年来有学者提出TMJOA与遗传的相关性[42],然而目前缺乏充足的证据。因此,随着基因测序、单细胞测序、3D打印等新技术的应用,未来随着基于分子生物层面的TMJOA致病机制进一步深入研究,将对TMJOA的诊疗有着至关重要的指导意义。

  • 图  1  抑郁症样小鼠模型构建

    A:BALB/c小鼠处理方法和时间示意图。在CUS处理BALB/c小鼠5周后,测量抑郁样行为的结果:B:SPT;C:FST;D:TST;E:SIT。与Con组比较,*P < 0.05,**P < 0.01。

    Figure  1.  Construction of depression-like mice model

    图  2  miR-373缓解抑郁症模型小鼠抑郁样行为

    A和B:RT-qPCR检测小鼠中miR-373表达水平的结果。抑郁症小鼠模型尾静脉注射ago-miR及ago-miR-373,测量抑郁样行为的结果:C:SPT;D:FST;E:TST;F:SIT。注:图2A,与Con组比较,*P < 0.05,**P < 0.01;图2B,与ago-miR(无意义序列)比较,*P < 0.05,**P < 0.01;图2C-F,与CUS组比较,*P < 0.05,**P < 0.01。

    Figure  2.  miR-373 alleviates depression-like behavior in depression model mice

    图  3  P2X7R是miR-373的靶基因

    A:TargetScan预测miR-373与P2X7R潜在结合区域的示意图;B:双荧光素酶验证miR-373与P2X7R的靶向关系;C:Western blotting检测各组小鼠中P2X7R蛋白的表达水平;D:RT-qPCR检测各组小鼠中P2X7R mRNA的表达水平。横线两端所示的2组比较,**P < 0.01。

    Figure  3.  P2X7R is a targe gene of miR-373

    图  4  miR-373抑制小鼠海马层中小胶质细胞的激活

    A:IF双染小鼠海马层中小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42的结果和相对荧光强度统计图,红色箭头表示激活的小胶质细胞;B:IF双染小鼠海马层中P2X7R和Iba-1的结果和相对荧光强度统计图,红色箭头表示表达P2X7R的小胶质细胞。横线两端所示的2组比较,**P < 0.01。

    Figure  4.  miR-373 inhibits the activation of microglia in mice hippocampus

    图  5  miR-373抑制小鼠海马层中小胶质细胞焦亡

    A:Westernblotting检测的结果和蛋白相对表达的统计图。B:RT-qPCR检测的结果和mRNA相对表达的统计图。C:TUNEL实验检测小鼠海马层中小胶质细胞凋亡水平结果及统计图。横线两端所示的两组比较,**P < 0.01。

    Figure  5.  miR-373 inhibits pyroptosis of microglia in mice hippocampus

    表  1  RT-qPCR引物序列

    Table  1.   RT-qPCR Primer Series

    目标正向引物(5′-3′)反向引物(5′-3′)
    miR-373 ACUCAAAAUGGGGGCGGAAAGC CAGTGCGTGTCGTGGAGT
    U6 CCCTTCGGGGACATCCGATA TTTGTGCGTGTCATCCTTGC
    caspase-1 TGGATCTTCACAAGGGCGAC CAACACAGCAACCAGCAGAC
    NLRP3 CAGGATGGCTCTCGCTTCAT CTGACAGAACCGTGGGACTC
    IL-1β TGCCACCTTTTGACAGTGATG TTCTTGTGACCCTGAGCGAC
    IL-18 ACAGGACTGCCATCTTCTGC ATTGTTCCTGGGCCAAGAGG
    β-actin TTCCAGCCTTCCTTCTTG TGTCAACGTCACACTTCA
    下载: 导出CSV
  • [1] Malhi G S,Mann J J. Depression[J]. Lancet,2018,392(10161):2299-2312. doi: 10.1016/S0140-6736(18)31948-2
    [2] Cruz-Pereira J S,Rea K,Nolan Y M,et al. Depression's Unholy Trinity:Dysregulated Stress,Immunity,and the Microbiome[J]. Annu Rev Psychol,2020,71:49-78. doi: 10.1146/annurev-psych-122216-011613
    [3] Spellman T,Liston C. Toward Circuit Mechanisms of Pathophysiology in Depression[J]. Am J Psychiatry,2020,177(5):381-390. doi: 10.1176/appi.ajp.2020.20030280
    [4] Dubovsky S L,Ghosh B M,Serotte J C,et al. Psychotic Depression:Diagnosis,Differential Diagnosis,and Treatment[J]. Psychother Psychosom,2021,90(3):160-177. doi: 10.1159/000511348
    [5] Hammen C. Risk Factors for Depression:An Autobiographical Review[J]. Annu Rev Clin Psychol,2018,14:1-28. doi: 10.1146/annurev-clinpsy-050817-084811
    [6] Menke A,Nitschke F,Hellmuth A,et al. Stress impairs response to antidepressants via HPA axis and immune system activation[J]. Brain Behav Immun,2021,93:132-140. doi: 10.1016/j.bbi.2020.12.033
    [7] Miller A H,Raison C L. The role of inflammation in depression:from evolutionary imperative to modern treatment target[J]. Nat Rev Immunol,2016,16(1):22-34. doi: 10.1038/nri.2015.5
    [8] Beurel E,Toups M,Nemeroff C B. The Bidirectional Relationship of Depression and Inflammation:Double Trouble[J]. Neuron,2020,107(2):234-256. doi: 10.1016/j.neuron.2020.06.002
    [9] Nerurkar L,Siebert S,Mcinnes I B,et al. Rheumatoid arthritis and depression:an inflammatory perspective[J]. Lancet Psychiatry,2019,6(2):164-173. doi: 10.1016/S2215-0366(18)30255-4
    [10] Yirmiya R,Rimmerman N,Reshef R. Depression as a microglial disease[J]. Trends Neurosci,2015,38(10):637-658. doi: 10.1016/j.tins.2015.08.001
    [11] Jia X,Gao Z,Hu H. Microglia in depression:current perspectives[J]. Sci China Life Sci,2020.
    [12] Winkle M,El-Daly S M,Fabbri M,et al. Noncoding RNA therapeutics-challenges and potential solutions[J]. Nat Rev Drug Discov,2021,20(8):629-651. doi: 10.1038/s41573-021-00219-z
    [13] Makarova J,Turchinovich A,Shkurnikov M,et al. Extracellular miRNAs and Cell-Cell Communication:Problems and Prospects[J]. Trends Biochem Sci,2021,46(8):640-651. doi: 10.1016/j.tibs.2021.01.007
    [14] Allen L,Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior[J]. Mol Psychiatry,2020,25(2):308-320. doi: 10.1038/s41380-019-0597-8
    [15] Van Den Berg M M J,Krauskopf J,Ramaekers J G,et al. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders[J]. Prog Neurobiol,2020,185:101732. doi: 10.1016/j.pneurobio.2019.101732
    [16] Surget A,Wang Y,Leman S,et al. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal[J]. Neuropsychopharmacology,2009,34(6):1363-80. doi: 10.1038/npp.2008.76
    [17] Shen J,Li Y,Qu C,et al. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus[J]. J Affect Disord,2019,248:81-90. doi: 10.1016/j.jad.2019.01.031
    [18] Li B,Han L,Cao B,et al. Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model[J]. Drug Deliv,2019,26(1):566-574. doi: 10.1080/10717544.2019.1616236
    [19] Liu Z,Yang J,Fang Q,et al. MiRNA-199a-5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron[J]. Brain Behav,2021,11(8):e02107.
    [20] Yang J,Sun J,Lu Y,et al. Revision to psychopharmacology mRNA and microRNA profiles are associated with stress susceptibility and resilience induced by psychological stress in the prefrontal cortex[J]. Psychopharmacology(Berl),2020,237(10):3067-3093. doi: 10.1007/s00213-020-05593-x
    [21] Mclarnon J G. Roles of purinergic P2X(7)receptor in glioma and microglia in brain tumors[J]. Cancer Lett,2017,402:93-99. doi: 10.1016/j.canlet.2017.05.004
    [22] Illes P,Khan T M,Rubini P. Neuronal P2X7 Receptors Revisited:Do They Really Exist?[J]. J Neurosci,2017,37(30):7049-7062. doi: 10.1523/JNEUROSCI.3103-16.2017
    [23] Yue N,Huang H,Zhu X,et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors[J]. J Neuroinflammation,2017,14(1):102. doi: 10.1186/s12974-017-0865-y
    [24] Albert P R,Le François B,Vahid-Ansari F. Genetic,epigenetic and posttranscriptional mechanisms for treatment of major depression:the 5-HT1A receptor gene as a paradigm[J]. J Psychiatry Neurosci,2019,44(3):164-176. doi: 10.1503/jpn.180209
    [25] Yoshino Y,Roy B,Dwivedi Y. Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects[J]. Neuropsychopharmacology,2021,46(5):900-910. doi: 10.1038/s41386-020-00861-y
    [26] Roy B,Dunbar M,Shelton R C,et al. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder[J]. Neuropsychopharmacology,2017,42(4):864-875. doi: 10.1038/npp.2016.175
    [27] Xu J,Wang R,Liu Y,et al. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats[J]. Journal of Psychiatric Research,2017,95:102-113. doi: 10.1016/j.jpsychires.2017.08.010
    [28] Li C,Feng S,Chen L. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway[J]. Mol Cell Biochem,2021,476(2):699-713. doi: 10.1007/s11010-020-03937-x
    [29] Peng T,Wang T,Liu G,et al. Effects of miR-373 Inhibition on Glioblastoma Growth by Reducing Limk1 In Vitro[J]. J Immunol Res,2020,2020:7671502.
    [30] Slowik A,Lammerding L,Hoffmann S,et al. Brain inflammasomes in stroke and depressive disorders:Regulation by oestrogen[J]. J Neuroendocrinol,2018,30(2):9-12.
    [31] Li Y,Song W,Tong Y,et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis[J]. J Neuroinflammation,2021,18(1):1. doi: 10.1186/s12974-020-02040-8
    [32] Tian D D,Wang M,Liu A,et al. Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway[J]. Mol Neurobiol,2021,58(2):761-776. doi: 10.1007/s12035-020-02144-5
    [33] Arioz B I,Tastan B,Tarakcioglu E,et al. Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway[J]. Front Immunol,2019,10:1511. doi: 10.3389/fimmu.2019.01511
    [34] Li X,Luo Z,Gu C,et al. Common variants on 6q16.2,12q24.31 and 16p13.3 are associated with major depressive disorder[J]. Neuropsychopharmacology,2018,43(10):2146-2153. doi: 10.1038/s41386-018-0078-9
    [35] Surprenant A,Rassendren F,Kawashima E,et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7)[J]. Science,1996,272(5262):735-738. doi: 10.1126/science.272.5262.735
    [36] Yang Y,Xing M J,Li Y,et al. Reduced NLRP3 inflammasome expression in the brain is associated with stress resilience[J]. Psychoneuroendocrinology,2021,128:105211. doi: 10.1016/j.psyneuen.2021.105211
    [37] Zunszain P A,Anacker C,Cattaneo A,et al. Interleukin-1β:a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis[J]. Neuropsychopharmacology,2012,37(4):939-949. doi: 10.1038/npp.2011.277
    [38] Su W J,Zhang T,Jiang C L,et al. Clemastine Alleviates Depressive-Like Behavior Through Reversing the Imbalance of Microglia-Related Pro-inflammatory State in Mouse Hippocampus[J]. Front Cell Neurosci,2018,12:412.
    [39] Basso A M,Bratcher N A,Harris R R,et al. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety:relevance for neuropsychiatric disorders[J]. Behav Brain Res,2009,198(1):83-90. doi: 10.1016/j.bbr.2008.10.018
    [40] Tan S,Wang Y,Chen K,et al. Ketamine Alleviates Depressive-Like Behaviors via Down-Regulating Inflammatory Cytokines Induced by Chronic Restraint Stress in Mice[J]. Biol Pharm Bull,2017,40(8):1260-1267. doi: 10.1248/bpb.b17-00131
  • [1] 行浩然, 张曦, 张盈盈, 鲍天昊.  青少年抑郁症使用抗抑郁药物的临床进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240725
    [2] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [3] 段登艾, 张勇辉, 王维, 廖欣菊, 张志雄.  儿童期虐待对青少年首发抑郁症患者非自杀性自伤行为的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230304
    [4] 储召松, 王欣, 和梦鑫, 许秀峰, 王娜, 沈宗霖.  抑郁症自杀相关基因的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230301
    [5] 余蕾, 武文志, 张云桥, 游旭, 曾勇.  HPA轴在抑郁症中的研究概述, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230222
    [6] 王静, 米弘瑛, 张熠, 李丽, 余建华, 刘丽巧, 刘庆瑜, 王立伟.  细胞焦亡参与早期子鼠坏死性小肠结肠炎的发病, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230124
    [7] 朱婷娜, 刘鹏亮, 董文娟, 于浩, 吴亚梅, 黄兆奎, 洪仕君, 赵永娜.  不同剂量天麻素对甲基苯丙胺依赖大鼠条件位置偏爱及海马小胶质细胞激活的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210502
    [8] 龙熙翠, 刘贝贝, 卢绍波, 李志红, 金文娇, 陆金芝, 韩雪松.  细胞焦亡因子Caspase-1、IL-1β与IL-18在子宫内膜息肉组织中的表达和意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210917
    [9] 李仙, 季长亮, 曾淑娥, 杨蜀云, 杨皓棋, 侯亚婷.  不同严重程度抑郁症患者认知功能的比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201226
    [10] 王小莹, 刘作金, 申丽娟.  缺血再灌注损伤与细胞焦亡的相关性研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201240
    [11] 刘畅, 沈宗霖, 程宇琪, 许秀峰.  精神分裂症、双相情感障碍、抑郁症静息态功能磁共振研究的异同, 昆明医科大学学报.
    [12] 尹赛格, 张恒睿, 陈滟, 孙俊.  小鼠小胶质细胞原代培养的高产改良方法, 昆明医科大学学报.
    [13] 乔廷廷, 陈忠义, 董宝莲, 殷燕, 郭玲.  依达拉奉干预LPS介导原代小胶质细胞的激活实验, 昆明医科大学学报.
    [14] 雷喜锋, 侯峰强, 杨少华, 张伟.  miR-373在人肝细胞癌中的表达及其作用, 昆明医科大学学报.
    [15] 傅希玥, 陆地, 边立功, 周莉.  小胶质细胞的激活与癫痫的关系, 昆明医科大学学报.
    [16] 保文莉.  瑜伽运动对高校大学生抑郁症干预效果的研究, 昆明医科大学学报.
    [17] 王剑.  一重和三重脑震荡大鼠损伤后早期小胶质细胞变化的研究, 昆明医科大学学报.
    [18] 杜映荣.  血管紧张素原(AGT)基因M235T多态性与中老年高血压并抑郁症的相关性研究, 昆明医科大学学报.
    [19] 王慧明.  P2X4受体在大鼠脊髓小胶质细胞中的表达, 昆明医科大学学报.
    [20] 唐茂丹.  大鼠视神经切断后视网膜Muller细胞及小胶质细胞变化特点, 昆明医科大学学报.
  • 期刊类型引用(1)

    1. 刘颂,卢杏生. 保留十二指肠的胰头切除术的临床及微创应用进展. 中国普外基础与临床杂志. 2023(11): 1395-1401 . 百度学术

    其他类型引用(0)

  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4098
  • HTML全文浏览量:  2186
  • PDF下载量:  24
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-08-16
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2021-10-30

目录

/

返回文章
返回