留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

miR-373通过P2X7R影响抑郁症小鼠行为的作用机制

王小云 王巧云 顾明华 丁昱 关雨雯 张继兰

王小云, 王巧云, 顾明华, 丁昱, 关雨雯, 张继兰. miR-373通过P2X7R影响抑郁症小鼠行为的作用机制[J]. 昆明医科大学学报, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
引用本文: 王小云, 王巧云, 顾明华, 丁昱, 关雨雯, 张继兰. miR-373通过P2X7R影响抑郁症小鼠行为的作用机制[J]. 昆明医科大学学报, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
Xiao-yun WANG, Qiao-yun WANG, Ming-hua GU, Yu DING, Yu-wen GUANG, Ji-lan ZHANG. Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R[J]. Journal of Kunming Medical University, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030
Citation: Xiao-yun WANG, Qiao-yun WANG, Ming-hua GU, Yu DING, Yu-wen GUANG, Ji-lan ZHANG. Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R[J]. Journal of Kunming Medical University, 2021, 42(10): 29-37. doi: 10.12259/j.issn.2095-610X.S20211030

miR-373通过P2X7R影响抑郁症小鼠行为的作用机制

doi: 10.12259/j.issn.2095-610X.S20211030
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目[2018FE001(-223)]
详细信息
    作者简介:

    王小云(1974~),女,云南楚雄人,大学本科,主治医师,主要从事精神相关疾病研究及诊疗工作

  • 中图分类号: R749.92

Mechanism of miR-373 on Behaviors of Depression-mice via P2X7R

  • 摘要:   目的  探讨miR-373对抑郁症小鼠模型抑郁样行为,小胶质细胞激活和焦亡的影响。  方法  采用慢性不可预知应激构建抑郁症小鼠模型。蔗糖偏好,强迫游泳,尾部悬挂和社会实验评估小鼠的抑郁样行为。免疫荧光双染小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42以评估小鼠海马层中小胶质细胞增殖和活化状态。TUNEL试剂盒检测小胶质细胞的凋亡。荧光定量PCR检测miR-373的表达水平。蛋白质印记检测P2X7R和细胞焦亡相关蛋白的表达水平。双荧光素酶报告基因实验验证miR-373和P2X7R的靶向关系。  结果  慢性不可预知应激处理的小鼠,蔗糖偏好度和社交时间显著下调,并且强迫游泳和尾部悬挂不动时间显著增加(P < 0.05)。miR-373在抑郁症模型小鼠中异常高表达,且能够缓解小鼠的抑郁样行为(P < 0.05)。miR-373靶向负调控小鼠海马层小胶质细胞中P2X7R的表达水平(P < 0.01)。miR-373抑制小鼠海马层中小胶质细胞增殖和激活(P < 0.01)。miR-373抑制小胶质细胞中Caspase-1,C-caspase-1,NLRP3,IL-1β和IL-18表达,并抑制小胶质细胞凋亡(P < 0.05)。  结论  miR-373通过靶向抑制P2X7R的表达,从而缓解抑郁症小鼠模型的抑郁样行为,并抑制其海马层中小胶质细胞活化和焦亡。
  • 抑郁症(major depressive disorder,MDD)是一种令人衰弱的疾病,其特征在于情绪低落,兴趣减少,认知功能受损和植物性症状,例如睡眠或食欲不振,严重限制了人群的心理社会功能并降低了生活质量[1-2]。在2008年,WHO将MDD列为全球疾病负担的第3大原因,并预测该疾病在2030年将位居首位[3]。目前,MDD的主要治疗手段为心理治疗和药物治疗。对多种增强或联合治疗尝试均无反应的耐治疗性患者,电抽搐治疗是有最佳治疗手段[4]。MDD的危险因素包括遗传因素和环境因素[5]。特别是整个生命周期中的压力事件在MDD的形成中起着关键作用[2, 6]。然而,目前对MDD病理生理学的理解并不能完善的解释该疾病。

    目前,大量文献已表明,炎症和大脑回路之间的相互作用推动了MDD的发展,并可能导致目前的抗抑郁治疗手段无反应[7-9]。小胶质细胞是大脑的免疫细胞,激活的小胶质细胞能够产生大量的促炎因子,进而导致抑郁症[10, 11]。在这方面,与免疫系统和炎症相关的靶向机制和途径可能为MDD治疗开辟新的道路。微小RNAs(MicroRNAs,miRNAs)是一种长度在22 nt左右的非编码RNA,在调节基因表达中起着重要作用[12]。越来越多的证据表明,miRNAs在包括癌症和自身免疫性疾病在内的多种人类疾病中起到重要的调控作用[13]。尽管,最近的研究已经揭示了miRNAs在MDD发病机制中的重要性[14, 15],但miRNAs在MDD发病机制中的具体机制仍不清楚。因此,本研究拟挖掘抑郁症小鼠中差异表达的miRNAs,并阐明miRNAs对抑郁症小鼠抑郁样行为和小胶质细胞表型的具体调控机制。

    成年雄性BALB/c小鼠(24.0~26.0 g,8~10周龄)购买于中国科学院昆明动物所。ago-miR(无意义序列)和ago-miR-373由广州锐博生物设计和合成。TRIzol试剂,PrimeScriptRT reagent Kit和PrimeScript™ RT-PCR Kit购买于大连宝生物。BCA试剂盒及RIPA裂解液购买于上海优宁维生物。P2X7R蛋白质印迹和免疫荧光一抗和二抗抗体购买于美国CST公司。Iba-1和OX-42免疫荧光,caspase-1,c-caspase-1,NLRP3,IL-1β和IL-18免疫印迹一抗和二抗购买于英国abcam公司。TUNEL试剂盒购买于美国Merck。

    1.2.1   抑郁症小鼠模型构建

    本研究参考Surget等的方法[16],采用慢性不可预知应激(Chronic unpredictable stress,CUS)构建抑郁症小鼠模型。简而言之,将BALB/c小鼠随机分为Con组(正常)、CUS组(模型组),CUS+ago-miR组,CUS+ago-miR-373组(每组4只,n = 4)。CUS组小鼠接受一系列不可预测的轻度应激。应激源包括:(1)剥夺食物或水分24 h;(2)夜间照明;(3)笼中24 h没有垫料;(4)用水湿润垫料24 h;(5)分别在8 ℃或40 ℃下冷游泳或热游泳5 min;(6)距尾尖1 cm进行夹尾;(7)身体束缚6 h;(8)45°倾斜12 h。处理5周后,分别通过尾静脉注射ago-miR和ago-miR-373。

    1.2.2   抑郁样行为检测

    笔者采用蔗糖偏好(sucrose preference test,SPT)[17],强迫游泳(Forced swim test,FST)[18],尾部悬挂(tail suspension test,TST)[19]和社会实验(Social interaction test,SIT)[20]评估各组小鼠的抑郁样行为。SPT:在第36 d,将每只小鼠转移到一个笼子中,并训练其适应1%蔗糖溶液(w/v)和自来水24 h。适应后,剥夺小鼠水和食物24 h,然后进行SPT。自来水和蔗糖溶液的摄入量通过从初始重量减去暴露24 h后瓶子的最终重量来量化。蔗糖偏好比 = 蔗糖消耗量/(蔗糖消耗量+水分消耗量)×100%。FST:在第37天,将各组大鼠分别置于高80 cm,直径30 cm的25 ℃的圆柱形水中,强迫游泳15 min进行训练。训练24 h后,再次将大鼠单独置于圆筒中5 min,并检测小鼠的不动时间。不动时间被定义为小鼠停止挣扎,四肢在水中静止漂浮的时间。TST:在第38天,将大鼠悬在离地面50 cm的地方。试验持续时间为6 min,并在每次试验的最后4 min记录大鼠的不动时间。不动时间被定义为除了呼吸引起的运动,小鼠没有任何肢体或身体运动。SIT:在第39天,将小鼠单独置于测量笼中,让其自由探索120 min以适应。然后将一只雄性幼鼠引入笼中,并在3 min内记录与受试成年小鼠进行社交互动(舔,嗅,爬上或爬下另一只小鼠等行为)所花费的时间。

    1.2.3   荧光定量(RT-qPCR)实验

    Trizol试剂提取各组小鼠海马层组织中的总RNA。紫外光谱定量分析后,参考PrimeScriptRT reagent Kit说明书,将总RNA反转录为cDNA。以β-actin和U6为内参,相关引物序列,采用PrimeScript™ RT-PCR Kit检测mRNAs和miR-373的表达水平。qPCR反应体系:5 μL PCR Buffer II,2 μL dNTP Mixture,PCR正反引物各0.5 μL,0.5 μL TaKaRa Ex TaqHS,5 μL DNA模板及H2O2添加至50 μL。qPCR反应条件:94 ℃1 min,94 ℃变性30 s,55 ℃退火30 s,进行35个循环。实验结果采用2-ΔΔCt法进行计算。引物序列见表1

    表  1  RT-qPCR引物序列
    Table  1.  RT-qPCR Primer Series
    目标正向引物(5′-3′)反向引物(5′-3′)
    miR-373 ACUCAAAAUGGGGGCGGAAAGC CAGTGCGTGTCGTGGAGT
    U6 CCCTTCGGGGACATCCGATA TTTGTGCGTGTCATCCTTGC
    caspase-1 TGGATCTTCACAAGGGCGAC CAACACAGCAACCAGCAGAC
    NLRP3 CAGGATGGCTCTCGCTTCAT CTGACAGAACCGTGGGACTC
    IL-1β TGCCACCTTTTGACAGTGATG TTCTTGTGACCCTGAGCGAC
    IL-18 ACAGGACTGCCATCTTCTGC ATTGTTCCTGGGCCAAGAGG
    β-actin TTCCAGCCTTCCTTCTTG TGTCAACGTCACACTTCA
    下载: 导出CSV 
    | 显示表格
    1.2.4   蛋白质印记(Western blotting)实验

    使用RIPA裂解缓冲液提取各组小鼠海马层组织中的总蛋白。BCA试剂盒量化蛋白质浓度后,取10 μg蛋白混合液在10%SDS-PAGE凝胶上电泳分离并转移到PVDF膜上。室温下,在含5%脱脂牛奶的TBST中封闭1 h后,加入P2X7R(1∶1000),caspase-1(1∶1000),c-caspase-1(1∶500),NLRP3(1∶1000),IL-1β(1∶1000)和IL-18(1∶1000)免疫印迹一抗,孵育过夜。然后,加入相应二抗后,室温,5%脱脂牛奶的TBST中封闭1 h。ECL化学发光底物显示蛋白质条带。以内参为β-actin,用ImageJ软件定量分析条带灰度值。

    1.2.5   双荧光素酶报告基因实验

    通过TargetScan(http://www.targetscan.org/vert_72/)数据库预测miR-373的下游靶标,并确定为P2X7R。PCR扩增P2X7 mRNA与miR-373潜在野生结合片段,导入到荧光素酶载体中构建P2X7R野生型质粒。突变miR-373和P2X7R的潜在野生结合片段,扩增和导入荧光素酶载体中获得P2X7R突变型质粒。随后,通过Lipofectamine 2000试剂盒向HEK-293T细胞中分别共转染P2X7R野生型质粒和miR-373 mimic,P2X7R突变型质粒和miR-373 mimic。参考双荧光素酶试剂盒说明书进行染色,以海肾荧光值作为内参,采用酶标仪检测萤火虫和海肾荧光值。

    1.2.6   免疫荧光(Immuno fluorescence,IF)实验

    将小鼠海马层组织固定在4%多聚甲醛中,脱水,冷冻切片机切片(20~30 μm)。然后使用0.1% Triton X-217100透化30 min。5% BSA阻断后,在4 ℃下加入P2X7R(1∶500),Iba-1(1∶500)和OX-42(1∶500)免疫荧光一抗孵育过夜。PBS清洗后,加入相应二抗孵育1 h。随后,使用DAPI进行细胞核染色。在共聚焦显微镜下观察和拍照。采用ImageJ软件进行溶图和荧光强度分析。

    1.2.7   TUNEL实验

    小鼠海马层组织经IF标记Iba-1后,PBS清洗2次。组织用4%多聚甲醛固定15 min,在0.25% Triton-X 100中透化20 min。参考TUNEL试剂盒进行小鼠海马层中小胶质细胞凋亡检测。简单地说,组织首先在37 ℃的末端脱氧核苷酸转移酶(TdT)反应混合物中孵育45 min。DAPI进行细胞核染色。荧光显微镜进行观察和拍照。TUNEL阳性细胞在无明显坏死的随机视野内进行计数。

    实验数据采用SPSS 20.0统计学软件进行分析,相关图片的绘制采用Graphpad 8.0软件进行绘制。2组间比较采用t检验;多组间比较采用单因素方差分析,其中两两比较采用LSD法。P < 0.05表示差异具有统计学意义。

    笔者对BALB/c小鼠进行了5周的CUS方案处理,见图1A,并分别在第36~39天进行SPT,FST,TST和SIT。SPT发现,CUS方案处理小鼠后,小鼠对蔗糖偏爱度显著降低(P < 0.01),见图1B。FST和TST发现,相比于对照组小鼠,CUS中的小鼠不动时间显著增加(P < 0.01,图1C-D)。SIT结果显示,CUS方案处理后,小鼠的社交时间显著降低(P < 0.05,图1E)。这些行为数据表明,采用CUS方案处理的BALB/c小鼠可作为抑郁症的动物模型。

    图  1  抑郁症样小鼠模型构建
    A:BALB/c小鼠处理方法和时间示意图。在CUS处理BALB/c小鼠5周后,测量抑郁样行为的结果:B:SPT;C:FST;D:TST;E:SIT。与Con组比较,*P < 0.05,**P < 0.01。
    Figure  1.  Construction of depression-like mice model

    笔者通过RT-qPCR检测发现,抑郁症模型中miR-373的表达水平显著低于正常小鼠(P < 0.01,图2A)。随后,向抑郁症模型小鼠中注射ago-miR-373以过表达miR-373取探讨对抑郁症模型抑郁样行为的影响。RT-qPCR结果显示,过表达miR-373显著上调模型小鼠中miR-373的表达水平(P < 0.01,图2B)。此外,相比于CUS组,过表达miR-373能够上调模型小鼠的蔗糖偏爱度和社交时间(P < 0.05,图2C和2F),并且下调FST和TST中模型小鼠的不动时间(P < 0.01,图2D-E)。综上数据可知,过表达miR-373能够缓解抑郁症模型小鼠抑郁样行为。

    图  2  miR-373缓解抑郁症模型小鼠抑郁样行为
    A和B:RT-qPCR检测小鼠中miR-373表达水平的结果。抑郁症小鼠模型尾静脉注射ago-miR及ago-miR-373,测量抑郁样行为的结果:C:SPT;D:FST;E:TST;F:SIT。注:图2A,与Con组比较,*P < 0.05,**P < 0.01;图2B,与ago-miR(无意义序列)比较,*P < 0.05,**P < 0.01;图2C-F,与CUS组比较,*P < 0.05,**P < 0.01。
    Figure  2.  miR-373 alleviates depression-like behavior in depression model mice

    笔者通过TargetScan预测miR-373下游靶标发现,P2X7R与miR-373存在潜在的3' UTR结合区域。随后,对潜在的结合区域进行了突变,并且进行了双荧光素酶报告基因实验(图3A)。结果显示,miR-373能够显著抑制野生型载体中P2X7R的荧光素酶活性(P < 0.01,图3B),但是对突变型载体中P2X7R的荧光素酶活性无显著性影响。进一步,笔者检测了小鼠中,miR-373对P2X7R蛋白和mRNA表达的影响。Western blotting结果显示,相比于CUS组,ago-miR-373组中P2X7RR蛋白和mRNA的表达水平显著下调(P < 0.01,图3C-D)。此外,笔者还发现,CUS组中CUS组P2X7RR蛋白和mRNA的表达水平显著高于Con组(P < 0.01,图3C-D)。以上结果表明,P2X7RR在小鼠模型中异常高表达,且miR-373能够靶向负调控P2X7RR的表达水平。

    图  3  P2X7R是miR-373的靶基因
    A:TargetScan预测miR-373与P2X7R潜在结合区域的示意图;B:双荧光素酶验证miR-373与P2X7R的靶向关系;C:Western blotting检测各组小鼠中P2X7R蛋白的表达水平;D:RT-qPCR检测各组小鼠中P2X7R mRNA的表达水平。横线两端所示的2组比较,**P < 0.01。
    Figure  3.  P2X7R is a targe gene of miR-373

    目前,科学界普遍认为抑郁症是一种小胶质细胞疾病,且P2X7R在小胶质细胞的激活中具有积极的意义[21, 22]。因此,笔者进一步探讨miR-373对小鼠大脑海马层小胶质细胞表型的影响。首先我们选择了Iba-1作为小胶质细胞的标志物,OX-42作为小胶质细胞活化的标志物,并且进行了IF双染小鼠海马层。结果显示,Iba-1和OX-42共表达于小胶质细胞核外(图4A)。相比于Con组,CUS组中Iba-1和OX-42的荧光强度显著增强(P < 0.01,图4A),且过表达miR-373能够回复Iba-1和OX-42的荧光强度(P < 0.01,图4A)。随后,笔者通过IF双染了小鼠海马层中的P2X7R和Iba-1,结果显示,抑郁症模型小鼠海马层小胶质细胞中P2X7R的荧光强度显著高于Con组,且过表达miR-373能够显著抑制P2X7R的荧光强度(P < 0.01,图4B)。此结果与之前Western blotting结果一致。由以上数据可知,抑郁症模型小鼠海马层中小胶质细胞呈现异常的高增殖和激活状态,而过表达miR-373能够抑制小胶质细胞的增殖和激活。

    图  4  miR-373抑制小鼠海马层中小胶质细胞的激活
    A:IF双染小鼠海马层中小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42的结果和相对荧光强度统计图,红色箭头表示激活的小胶质细胞;B:IF双染小鼠海马层中P2X7R和Iba-1的结果和相对荧光强度统计图,红色箭头表示表达P2X7R的小胶质细胞。横线两端所示的2组比较,**P < 0.01。
    Figure  4.  miR-373 inhibits the activation of microglia in mice hippocampus

    此前已有文献报道,P2X7R调控小胶质细胞焦亡介导抑郁症的发展进程[23]。因此,笔者进一步探讨了miR-373对小鼠海马层中小胶质细胞焦亡的影响。首先笔者通过Westernblotting和RT-qPCR检测了小鼠海马层中细胞焦亡相关蛋白和mRNA的表达水平。结果显示,相比于Con组,CUS组中caspase-1,NLRP3,IL-1β和IL-18蛋白和mRNA及c-caspase-1蛋白的表达水平均显著上调(P < 0.05,见图5A-B)。此外,相比于CUS组,ago-miR-373组中caspase-1,NLRP3,IL-1β和IL-18蛋白和mRNA及c-caspase-1蛋白的表达水平均显著下调(P < 0.05),见图5A-B。进一步,笔者检测了小鼠海马层中小胶质细胞凋亡水平。结果显示,CUS组中小胶质细胞的凋亡水平显著高于Con组,而ago-miR-373组中小胶质细胞凋亡水平显著低于CUS组(P < 0.01),见图5C。由以上数据可知,miR-373能够缓解抑郁症小鼠海马层中小胶质细胞焦亡。

    图  5  miR-373抑制小鼠海马层中小胶质细胞焦亡
    A:Westernblotting检测的结果和蛋白相对表达的统计图。B:RT-qPCR检测的结果和mRNA相对表达的统计图。C:TUNEL实验检测小鼠海马层中小胶质细胞凋亡水平结果及统计图。横线两端所示的两组比较,**P < 0.01。
    Figure  5.  miR-373 inhibits pyroptosis of microglia in mice hippocampus

    转录调控的改变可能会对MDD和相关精神疾病造成遗传风险[24]。miRNAs通过抑制翻译或诱导目标mRNA降解来负调节基因表达。在哺乳动物中,预估miRNA可调控所有蛋白质编码基因约50%的活性,并且miRNA的表达失调与包括癌症和精神相关疾病在内的多种人类疾病有关[25]。目前,临床研究已经发现MDD中miRNAs表达改变的证据,并且表明其在MDD发展中具有重要的作用[26-27]。miR-373首先被鉴定为人类胚胎干细胞的特异性miRNA之一。随后,它被证实是潜在的新型致癌基因,在神经系统相关的多种恶性肿瘤和炎症相关疾病中具有重要的意义[28-29]。然而,miR-373与MDD的联系还有待阐述。在本研究中,笔者发现了miR-373在抑郁症小鼠模型中异常低表达,而过表达miR-373能够缓解抑郁症小鼠的抑郁样行为,并抑制海马层中小胶质细胞的激活和焦亡。

    患有严重抑郁症的患者表现出炎症反应的所有基本特征,包括外周血和脑脊液中促炎因子及其受体的表达增加以及急性期反应物,趋化因子和可溶性粘附分子的水平升高[7-9]。NLRP3是研究最广泛的NOD样受体之一,在触发小胶质细胞炎症小体介导的神经炎症中发挥重要作用。研究表明,caspase 1和炎症小体NLRP3在DMM患者外周血单个核细胞中的表达增加与血液中IL-1β和IL-18浓度的增加相关,且与DMM的严重程度相关[30]。值得注意的是,caspase 1,NLRP3,IL-1β和IL-18是细胞焦亡途径中重要的调控基因和产物。已有文献表明,小胶质细胞的焦亡会加重DMM的炎症反应,进而促进DMM的发展进程。例如,异寡糖通过抑制miRNA-27a/SYK/NF-κB轴介导的NLRP3表达,从而抑制小胶质细胞焦亡并能够改善DMM表型[31]。芍药苷通过抑制CASP-11/GSDMD通路介导的小胶质细胞焦亡途径具有抗抑郁作用[32]。褪黑激素通过激活SIRT1/Nrf2信号通路抑制小鼠小胶质细胞中NLRP3炎性体的活化和细胞焦亡,从而缓解DMM的抑郁样行为[33]。以上研究均表明,小胶质细胞焦亡在DMM中的重要性。笔者也首次发现了,miR-373对DMM小鼠小胶质细胞焦亡的调控。此外,笔者还发现P2X7R是miR-373的下游靶标。

    人类P2X7R基因位于染色体12q24.31区域,该区域和MDD相关[34]。P2X7R是一个不敏感的阳离子选择性离子通道,直接由ATP控制。然而,P2X7R被ATP重复或长时间激活后,P2X7R会加速NLRP3炎性小体的组装,进而促进caspase-1介导的原发性促炎细胞因子IL-1β和IL-18的加工,并且最终会形成一个非选择性孔,加速IL-1β和IL-18等炎性因子的释放[35]。而P2X7R调控的这个途径正是细胞焦亡中依赖caspase-1的经典途径。此外,脑中高水平的IL-1β与抑郁症[36]和神经变性等疾病相关[37]。已有研究表明,CUS处理小鼠会增强海马和前额内侧皮层中P2X7R的表达[38]。P2X7R基因敲除小鼠的抑郁样行为被抑制[39]。此外,在DMM小鼠中,氯胺酮诱导的抗抑郁样作用与海马P2X7R水平降低有关[40]。因此,P2X7R拮抗剂的开发对MDD的治疗具有重要的意义。综合以上研究结果,笔者确定miR-373通过抑制P2X7R的表达水平,从而抑制抑郁症小鼠模型的抑郁样行为,并且能够抑制海马层小胶质细胞的激活和焦亡。

  • 图  1  抑郁症样小鼠模型构建

    A:BALB/c小鼠处理方法和时间示意图。在CUS处理BALB/c小鼠5周后,测量抑郁样行为的结果:B:SPT;C:FST;D:TST;E:SIT。与Con组比较,*P < 0.05,**P < 0.01。

    Figure  1.  Construction of depression-like mice model

    图  2  miR-373缓解抑郁症模型小鼠抑郁样行为

    A和B:RT-qPCR检测小鼠中miR-373表达水平的结果。抑郁症小鼠模型尾静脉注射ago-miR及ago-miR-373,测量抑郁样行为的结果:C:SPT;D:FST;E:TST;F:SIT。注:图2A,与Con组比较,*P < 0.05,**P < 0.01;图2B,与ago-miR(无意义序列)比较,*P < 0.05,**P < 0.01;图2C-F,与CUS组比较,*P < 0.05,**P < 0.01。

    Figure  2.  miR-373 alleviates depression-like behavior in depression model mice

    图  3  P2X7R是miR-373的靶基因

    A:TargetScan预测miR-373与P2X7R潜在结合区域的示意图;B:双荧光素酶验证miR-373与P2X7R的靶向关系;C:Western blotting检测各组小鼠中P2X7R蛋白的表达水平;D:RT-qPCR检测各组小鼠中P2X7R mRNA的表达水平。横线两端所示的2组比较,**P < 0.01。

    Figure  3.  P2X7R is a targe gene of miR-373

    图  4  miR-373抑制小鼠海马层中小胶质细胞的激活

    A:IF双染小鼠海马层中小胶质细胞标志物Iba-1和小胶质细胞活化标志物OX-42的结果和相对荧光强度统计图,红色箭头表示激活的小胶质细胞;B:IF双染小鼠海马层中P2X7R和Iba-1的结果和相对荧光强度统计图,红色箭头表示表达P2X7R的小胶质细胞。横线两端所示的2组比较,**P < 0.01。

    Figure  4.  miR-373 inhibits the activation of microglia in mice hippocampus

    图  5  miR-373抑制小鼠海马层中小胶质细胞焦亡

    A:Westernblotting检测的结果和蛋白相对表达的统计图。B:RT-qPCR检测的结果和mRNA相对表达的统计图。C:TUNEL实验检测小鼠海马层中小胶质细胞凋亡水平结果及统计图。横线两端所示的两组比较,**P < 0.01。

    Figure  5.  miR-373 inhibits pyroptosis of microglia in mice hippocampus

    表  1  RT-qPCR引物序列

    Table  1.   RT-qPCR Primer Series

    目标正向引物(5′-3′)反向引物(5′-3′)
    miR-373 ACUCAAAAUGGGGGCGGAAAGC CAGTGCGTGTCGTGGAGT
    U6 CCCTTCGGGGACATCCGATA TTTGTGCGTGTCATCCTTGC
    caspase-1 TGGATCTTCACAAGGGCGAC CAACACAGCAACCAGCAGAC
    NLRP3 CAGGATGGCTCTCGCTTCAT CTGACAGAACCGTGGGACTC
    IL-1β TGCCACCTTTTGACAGTGATG TTCTTGTGACCCTGAGCGAC
    IL-18 ACAGGACTGCCATCTTCTGC ATTGTTCCTGGGCCAAGAGG
    β-actin TTCCAGCCTTCCTTCTTG TGTCAACGTCACACTTCA
    下载: 导出CSV
  • [1] Malhi G S,Mann J J. Depression[J]. Lancet,2018,392(10161):2299-2312. doi: 10.1016/S0140-6736(18)31948-2
    [2] Cruz-Pereira J S,Rea K,Nolan Y M,et al. Depression's Unholy Trinity:Dysregulated Stress,Immunity,and the Microbiome[J]. Annu Rev Psychol,2020,71:49-78. doi: 10.1146/annurev-psych-122216-011613
    [3] Spellman T,Liston C. Toward Circuit Mechanisms of Pathophysiology in Depression[J]. Am J Psychiatry,2020,177(5):381-390. doi: 10.1176/appi.ajp.2020.20030280
    [4] Dubovsky S L,Ghosh B M,Serotte J C,et al. Psychotic Depression:Diagnosis,Differential Diagnosis,and Treatment[J]. Psychother Psychosom,2021,90(3):160-177. doi: 10.1159/000511348
    [5] Hammen C. Risk Factors for Depression:An Autobiographical Review[J]. Annu Rev Clin Psychol,2018,14:1-28. doi: 10.1146/annurev-clinpsy-050817-084811
    [6] Menke A,Nitschke F,Hellmuth A,et al. Stress impairs response to antidepressants via HPA axis and immune system activation[J]. Brain Behav Immun,2021,93:132-140. doi: 10.1016/j.bbi.2020.12.033
    [7] Miller A H,Raison C L. The role of inflammation in depression:from evolutionary imperative to modern treatment target[J]. Nat Rev Immunol,2016,16(1):22-34. doi: 10.1038/nri.2015.5
    [8] Beurel E,Toups M,Nemeroff C B. The Bidirectional Relationship of Depression and Inflammation:Double Trouble[J]. Neuron,2020,107(2):234-256. doi: 10.1016/j.neuron.2020.06.002
    [9] Nerurkar L,Siebert S,Mcinnes I B,et al. Rheumatoid arthritis and depression:an inflammatory perspective[J]. Lancet Psychiatry,2019,6(2):164-173. doi: 10.1016/S2215-0366(18)30255-4
    [10] Yirmiya R,Rimmerman N,Reshef R. Depression as a microglial disease[J]. Trends Neurosci,2015,38(10):637-658. doi: 10.1016/j.tins.2015.08.001
    [11] Jia X,Gao Z,Hu H. Microglia in depression:current perspectives[J]. Sci China Life Sci,2020.
    [12] Winkle M,El-Daly S M,Fabbri M,et al. Noncoding RNA therapeutics-challenges and potential solutions[J]. Nat Rev Drug Discov,2021,20(8):629-651. doi: 10.1038/s41573-021-00219-z
    [13] Makarova J,Turchinovich A,Shkurnikov M,et al. Extracellular miRNAs and Cell-Cell Communication:Problems and Prospects[J]. Trends Biochem Sci,2021,46(8):640-651. doi: 10.1016/j.tibs.2021.01.007
    [14] Allen L,Dwivedi Y. MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior[J]. Mol Psychiatry,2020,25(2):308-320. doi: 10.1038/s41380-019-0597-8
    [15] Van Den Berg M M J,Krauskopf J,Ramaekers J G,et al. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders[J]. Prog Neurobiol,2020,185:101732. doi: 10.1016/j.pneurobio.2019.101732
    [16] Surget A,Wang Y,Leman S,et al. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal[J]. Neuropsychopharmacology,2009,34(6):1363-80. doi: 10.1038/npp.2008.76
    [17] Shen J,Li Y,Qu C,et al. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus[J]. J Affect Disord,2019,248:81-90. doi: 10.1016/j.jad.2019.01.031
    [18] Li B,Han L,Cao B,et al. Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model[J]. Drug Deliv,2019,26(1):566-574. doi: 10.1080/10717544.2019.1616236
    [19] Liu Z,Yang J,Fang Q,et al. MiRNA-199a-5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron[J]. Brain Behav,2021,11(8):e02107.
    [20] Yang J,Sun J,Lu Y,et al. Revision to psychopharmacology mRNA and microRNA profiles are associated with stress susceptibility and resilience induced by psychological stress in the prefrontal cortex[J]. Psychopharmacology(Berl),2020,237(10):3067-3093. doi: 10.1007/s00213-020-05593-x
    [21] Mclarnon J G. Roles of purinergic P2X(7)receptor in glioma and microglia in brain tumors[J]. Cancer Lett,2017,402:93-99. doi: 10.1016/j.canlet.2017.05.004
    [22] Illes P,Khan T M,Rubini P. Neuronal P2X7 Receptors Revisited:Do They Really Exist?[J]. J Neurosci,2017,37(30):7049-7062. doi: 10.1523/JNEUROSCI.3103-16.2017
    [23] Yue N,Huang H,Zhu X,et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors[J]. J Neuroinflammation,2017,14(1):102. doi: 10.1186/s12974-017-0865-y
    [24] Albert P R,Le François B,Vahid-Ansari F. Genetic,epigenetic and posttranscriptional mechanisms for treatment of major depression:the 5-HT1A receptor gene as a paradigm[J]. J Psychiatry Neurosci,2019,44(3):164-176. doi: 10.1503/jpn.180209
    [25] Yoshino Y,Roy B,Dwivedi Y. Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects[J]. Neuropsychopharmacology,2021,46(5):900-910. doi: 10.1038/s41386-020-00861-y
    [26] Roy B,Dunbar M,Shelton R C,et al. Identification of MicroRNA-124-3p as a Putative Epigenetic Signature of Major Depressive Disorder[J]. Neuropsychopharmacology,2017,42(4):864-875. doi: 10.1038/npp.2016.175
    [27] Xu J,Wang R,Liu Y,et al. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats[J]. Journal of Psychiatric Research,2017,95:102-113. doi: 10.1016/j.jpsychires.2017.08.010
    [28] Li C,Feng S,Chen L. MSC-AS1 knockdown inhibits cell growth and temozolomide resistance by regulating miR-373-3p/CPEB4 axis in glioma through PI3K/Akt pathway[J]. Mol Cell Biochem,2021,476(2):699-713. doi: 10.1007/s11010-020-03937-x
    [29] Peng T,Wang T,Liu G,et al. Effects of miR-373 Inhibition on Glioblastoma Growth by Reducing Limk1 In Vitro[J]. J Immunol Res,2020,2020:7671502.
    [30] Slowik A,Lammerding L,Hoffmann S,et al. Brain inflammasomes in stroke and depressive disorders:Regulation by oestrogen[J]. J Neuroendocrinol,2018,30(2):9-12.
    [31] Li Y,Song W,Tong Y,et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis[J]. J Neuroinflammation,2021,18(1):1. doi: 10.1186/s12974-020-02040-8
    [32] Tian D D,Wang M,Liu A,et al. Antidepressant Effect of Paeoniflorin Is Through Inhibiting Pyroptosis CASP-11/GSDMD Pathway[J]. Mol Neurobiol,2021,58(2):761-776. doi: 10.1007/s12035-020-02144-5
    [33] Arioz B I,Tastan B,Tarakcioglu E,et al. Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway[J]. Front Immunol,2019,10:1511. doi: 10.3389/fimmu.2019.01511
    [34] Li X,Luo Z,Gu C,et al. Common variants on 6q16.2,12q24.31 and 16p13.3 are associated with major depressive disorder[J]. Neuropsychopharmacology,2018,43(10):2146-2153. doi: 10.1038/s41386-018-0078-9
    [35] Surprenant A,Rassendren F,Kawashima E,et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7)[J]. Science,1996,272(5262):735-738. doi: 10.1126/science.272.5262.735
    [36] Yang Y,Xing M J,Li Y,et al. Reduced NLRP3 inflammasome expression in the brain is associated with stress resilience[J]. Psychoneuroendocrinology,2021,128:105211. doi: 10.1016/j.psyneuen.2021.105211
    [37] Zunszain P A,Anacker C,Cattaneo A,et al. Interleukin-1β:a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis[J]. Neuropsychopharmacology,2012,37(4):939-949. doi: 10.1038/npp.2011.277
    [38] Su W J,Zhang T,Jiang C L,et al. Clemastine Alleviates Depressive-Like Behavior Through Reversing the Imbalance of Microglia-Related Pro-inflammatory State in Mouse Hippocampus[J]. Front Cell Neurosci,2018,12:412.
    [39] Basso A M,Bratcher N A,Harris R R,et al. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety:relevance for neuropsychiatric disorders[J]. Behav Brain Res,2009,198(1):83-90. doi: 10.1016/j.bbr.2008.10.018
    [40] Tan S,Wang Y,Chen K,et al. Ketamine Alleviates Depressive-Like Behaviors via Down-Regulating Inflammatory Cytokines Induced by Chronic Restraint Stress in Mice[J]. Biol Pharm Bull,2017,40(8):1260-1267. doi: 10.1248/bpb.b17-00131
  • [1] 行浩然, 张曦, 张盈盈, 鲍天昊.  青少年抑郁症使用抗抑郁药物的临床进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240725
    [2] 王玲, 秦祥川, 李金秋, 阿仙姑·哈斯木.  CD147通过AIM2炎症小体介导宫颈癌细胞焦亡和增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240103
    [3] 段登艾, 张勇辉, 王维, 廖欣菊, 张志雄.  儿童期虐待对青少年首发抑郁症患者非自杀性自伤行为的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230304
    [4] 储召松, 王欣, 和梦鑫, 许秀峰, 王娜, 沈宗霖.  抑郁症自杀相关基因的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230301
    [5] 余蕾, 武文志, 张云桥, 游旭, 曾勇.  HPA轴在抑郁症中的研究概述, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230222
    [6] 王静, 米弘瑛, 张熠, 李丽, 余建华, 刘丽巧, 刘庆瑜, 王立伟.  细胞焦亡参与早期子鼠坏死性小肠结肠炎的发病, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230124
    [7] 朱婷娜, 刘鹏亮, 董文娟, 于浩, 吴亚梅, 黄兆奎, 洪仕君, 赵永娜.  不同剂量天麻素对甲基苯丙胺依赖大鼠条件位置偏爱及海马小胶质细胞激活的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210502
    [8] 龙熙翠, 刘贝贝, 卢绍波, 李志红, 金文娇, 陆金芝, 韩雪松.  细胞焦亡因子Caspase-1、IL-1β与IL-18在子宫内膜息肉组织中的表达和意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210917
    [9] 李仙, 季长亮, 曾淑娥, 杨蜀云, 杨皓棋, 侯亚婷.  不同严重程度抑郁症患者认知功能的比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201226
    [10] 王小莹, 刘作金, 申丽娟.  缺血再灌注损伤与细胞焦亡的相关性研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201240
    [11] 刘畅, 沈宗霖, 程宇琪, 许秀峰.  精神分裂症、双相情感障碍、抑郁症静息态功能磁共振研究的异同, 昆明医科大学学报.
    [12] 尹赛格, 张恒睿, 陈滟, 孙俊.  小鼠小胶质细胞原代培养的高产改良方法, 昆明医科大学学报.
    [13] 乔廷廷, 陈忠义, 董宝莲, 殷燕, 郭玲.  依达拉奉干预LPS介导原代小胶质细胞的激活实验, 昆明医科大学学报.
    [14] 雷喜锋, 侯峰强, 杨少华, 张伟.  miR-373在人肝细胞癌中的表达及其作用, 昆明医科大学学报.
    [15] 傅希玥, 陆地, 边立功, 周莉.  小胶质细胞的激活与癫痫的关系, 昆明医科大学学报.
    [16] 保文莉.  瑜伽运动对高校大学生抑郁症干预效果的研究, 昆明医科大学学报.
    [17] 王剑.  一重和三重脑震荡大鼠损伤后早期小胶质细胞变化的研究, 昆明医科大学学报.
    [18] 杜映荣.  血管紧张素原(AGT)基因M235T多态性与中老年高血压并抑郁症的相关性研究, 昆明医科大学学报.
    [19] 王慧明.  P2X4受体在大鼠脊髓小胶质细胞中的表达, 昆明医科大学学报.
    [20] 唐茂丹.  大鼠视神经切断后视网膜Muller细胞及小胶质细胞变化特点, 昆明医科大学学报.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4112
  • HTML全文浏览量:  2190
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2021-10-30

目录

/

返回文章
返回