云南汉族人群mircoRNA-149、mircoRNA-219、mircoRNA-let-7基因多态性与非小细胞肺癌发生和发展的相关性
doi: 10.12259/j.issn.2095-610X.S20211037
Association of the miR-149,miR-219 and miR-let-7 Polymorphisms with the Occurrence and Development of Non-small Cell Lung Cancer in a Chinese Han Population in Yunnan Province
-
摘要:
目的 探讨mircoRNA基因多态性与云南汉族人群非小细胞肺癌发生发展的相关性。 方法 选取云南地区汉族人群非小细胞肺癌患者415例,健康对照460例,采用Taqman探针基因分型法对3个SNP位点rs2292832 T>C (pre-miR-149)、rs107822 C>T(pre-miR-219a-1),rs629367 C>A (pri-let-7a-1)进行基因分型并分析其等位基因、基因型在非小细胞肺癌患者(按病理分层为鳞癌、腺癌及其他类型肺癌;按临床分期分层为I+II期、III+IV期)及健康对照中的频率差异。 结果 rs2292832、rs107822、rs629367位点的等位基因、基因型频率在非小细胞肺癌组和对照组间的差异没有统计学意义,在分层分析及遗传模式分析中也无显著性差异。 结论 rs2292832、rs107822、rs629367可能与云南汉族人群非小细胞肺癌无相关性。 Abstract:Objectives To investigate the relationship between mircoRNA gene polymorphisms and the occurrence and development of non-small cell lung cancer in Yunnan Han population. Methods A total of 415 lung cancer patients of non-small cell lung cancer and 460 healthy individuals were included from Yunnan Han population. The genotypes of 3 polymorphism loci, rs2292832 T>C(pre-miR-149), rs107822 C>T(pre-miR- 219a-1), rs629367 C>A(pri-let-7a-1)were detected by TaqmanSNP genotyping assay. The distribution of allele and genotype frequency in lung cancer patients and healthy controls were analyzed. Results There was no significant difference of the allele and genotype frequency of 3 SNPs. And in stratification analysis, there was also no significant difference. Conclusions rs2292832, rs107822, rs629367 may not be significantly associated with non-small cell lung cancer in Yunnan Han population. -
Key words:
- Non-small cell lung cancer /
- miRNA /
- SNPs /
- Association /
- Yunnan Han population
-
表 1 3个miRNA的SNP位点在总肺癌病例组和对照组的等位基因和基因型频率[n(%)]
Table 1. Allele and genotype frequencies of three SNPs in miRNA between total lung cancer case group and control group [n(%)]
SNPs 等位基因/基因型 对照组(n = 460) 总肺癌病例(n = 415) P OR(95%CI) rs2292832 T 589(64.0) 563(67.8) 0.093 0.84(0.69~1.03) C 331(36.0) 267(32.2) T/T 193(42.0) 197(47.5) 0.243 T/C 203(44.1) 169(40.7) C/C 64(13.9) 49(11.8) rs107822 T 534(58.0) 475(57.2) 0.731 1.03(0.86~1.25) C 386(42.0) 355(42.8) T/T 162(35.2) 145(34.9) 0.877 T/C 210(45.7) 185(44.6) C/C 88(19.1) 85(20.5) rs629367 A 709(77.1) 643(77.5) 0.840 1.02(0.82~1.28) C 211(22.9) 187(22.5) A/A 277(60.2) 254(61.2) 0.934 A/C 155(0.337) 135(0.325) C/C 28(0.061) 26(0.063) 表 2 分层分析3个miRNA的SNP位点在肺癌病例和对照组中的等位基因和基因型频率差异[n(%)](1)
Table 2. The allele and genotype frequency of three SNPs in lung cancer group and control group by stritification analysis [n(%)] (1)
SNPs 等位基因/基因型 对照组 鳞癌病例 腺癌病例 Ⅰ+Ⅱ期病例 Ⅲ+Ⅳ期病例 (n = 460) (n = 150) (n = 241) (n = 134) (n = 281) rs2292832 T 589(64.0) 203(67.7) 320(66.4) 181(67.5) 382(0.680) C 331(36.0) 97(32.3) 162(33.6) 87(32.5) 180(32.0) T/T 193(42.0) 70(46.7) 110(45.6) 64(47.8) 133(47.3) T/C 203(44.1) 63(42.0) 100(41.5) 53(39.6) 116(41.3) C/C 64(13.9) 17(11.3) 31(12.9) 17(12.7) 32(11.4) rs107822 T 534(58.0) 169(56.3) 274(56.8) 140(52.2) 335(59.6) C 386(42.0) 131(43.7) 208(43.2) 128(47.8) 227(40.4) T/T 162(35.2) 50(33.3) 86(35.7) 38(28.4) 107(38.1) T/C 210(45.7) 69(46.0) 102(42.3) 64(47.8) 121(43.1) C/C 88(19.1) 31(20.7) 53(22.0) 32(23.9) 53(18.9) rs629367 A 709(77.1) 232(77.3) 376(78.0) 213(79.5) 430(76.5) C 211(22.9) 68(22.7) 106(22.0) 55(20.5) 132(23.5) A/A 277(60.2) 92(61.3) 150(62.2) 83(61.9) 171(60.9) A/C 155(33.7) 48(32.0) 76(31.5) 47(35.1) 88(31.3) C/C 28(6.1) 10(6.7) 15(6.2) 4(3.0) 22(7.8) 表 2 分层分析3个miRNA的SNP位点在肺癌病例和对照组中的等位基因和基因型频率差异[n(%)] (2)
Table 2. The allele and genotype frequency of three SNPs in lung cancer group and control group by stritification analysis [n(%)] (2)
鳞癌病例vs对照组 腺癌病例vs对照组 Ⅰ+Ⅱ期病例vs对照组 Ⅲ+Ⅳ期病例vs对照组 P OR(95%CI) P OR(95%CI) P OR(95%CI) P OR(95%CI) 0.251 0.85(0.64~1.12) 0.378 0.90(0.71~1.14) 0.289 0.86(0.64~1.14) 0.121 0.84(0.67~1.05) 0.531 0.644 0.490 0.311 0.603 1.07(0.82~1.40) 0.667 1.05(0.84~1.31) 0.091 1.26(0.96~1.66) 0.553 0.94(0.76~1.16) 0.923 1.02(0.74~1.39) 0.688 1.06(0.81~1.38) 0.404 1.15(0.83~1.61) 0.807 0.97(0.76~1.24) 0.913 0.846 0.375 0.578 表 3 3个SNP位点在不同遗传模式下与肺癌的相关性[n(%)]
Table 3. Iheritance model analysis of the association between lung cancer andthese 3 SNPs [n(%)]
SNPs 遗传模式 基因型 对照组(n = 460) 总肺癌病例组
(n = 415)OR (95% CI) P AIC BIC rs2292832 共显性模式 T/T 193 (42.0) 197 (47.5) 1 0.243 1215.7 1239.6 T/C 203 (44.1) 169 (40.7) 0.81 (0.61~1.08) C/C 64 (13.9) 49 (11.8) 0.75 (0.49~1.15) 显性模式 T/T 193 (42) 197 (47.5) 1 0.101 1213.8 1232.9 T/C-C/C 267 (58.0) 218 (52.5) 0.80 (0.61~1.04) 隐性模式 T/T-T/C 396 (86.1) 366 (88.2) 1 0.354 1215.8 1234.9 C/C 64 (13.9) 49 (11.8) 0.83 (0.56~1.24) 超显性模式 T/T-C/C 257 (55.9) 246 (59.3) 1 0.309 1215.5 1234.6 T/C 203 (44.1) 169 (40.7) 0.87 (0.66~1.13) 逻辑加性模式 --- --- --- 0.85 (0.70~1.03) 0.100 1213.9 1233 rs107822 共显性模式 T/T 162 (35.2) 145 (34.9) 1 0.877 1218.3 1242.2 C/T 210 (45.6) 185 (44.6) 1.00 (0.74~1.35) C/C 88 (19.1) 85 (20.5) 1.09 (0.75~1.59) 显性模式 T/T 162 (35.2) 145 (34.9) 1 0.932 1216.5 1235.6 C/T-C/C 298 (64.8) 270 (65.1) 1.03 (0.78~1.36) 隐性模式 T/T-C/T 372 (80.9) 330 (79.5) 1 0.671 1216.3 1235.4 C/C 88 (19.1 85 (20.5) 1.09 (0.78~1.53) 超显性模式 T/T-C/C 250 (54.4) 230 (55.4) 1 0.750 1216.5 1235.6 C/T 210 (45.6) 185 (44.6) 0.97 (0.74~1.27) 逻辑加性模式 --- --- --- 1.04 (0.87~1.25) 0.680 1216.4 1235.5 rs629367 共显性模式 A/A 277 (60.2) 254 (61.2) 1 0.943 1218.5 1242.3 A/C 155 (33.7) 135 (32.5) 0.96 (0.72~1.28) C/C 28 (6.1) 26 (6.3) 1.01 (0.58~1.77) 显性模式 A/A 277 (60.2) 254 (61.2) 1 0.765 1216.5 1235.6 A/C-C/C 183 (39.8) 161 (38.8) 0.97 (0.74~1.27) 隐性模式 A/A-A/C 432 (93.9) 389 (93.7) 1 0.913 1216.6 1235.7 C/C 28 (6.1) 26 (6.3) 1.02 (0.59~1.78) 超显性模式 A/A-C/C 305 (66.3) 280 (67.5) 1 0.715 1216.5 1235.6 A/C 155 (33.7) 135 (32.5) 0.96 (0.72~1.27) 逻辑加性模式 --- --- --- 0.98 (0.79~1.22) 0.870 1216.5 1235.6 -
[1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [2] 郑荣寿,孙可欣,张思维,等. 2015年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志,2019,(1):19-28. doi: 10.3760/cma.j.issn.0253-3766.2019.01.005 [3] Albright F,Teerlink C,Werner T L,et al. Significant evidence for a heritable contribution to cancer predisposition:a review of cancer familiality by site[J]. BMC Cancer,2012,12:138. doi: 10.1186/1471-2407-12-138 [4] Saliminejad K,Khorram Khorshid H R,Soleymani Fard S,et al. An overview of microRNAs:Biology,functions,therapeutics,and analysis methods[J]. J Cell Physiol,2019,234(5):5451-5465. doi: 10.1002/jcp.27486 [5] Liao J,Shen J,Leng Q,et al. MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC)[J]. Thorac Cancer,2020,11(3):762-768. doi: 10.1111/1759-7714.13337 [6] Ryan B M,Robles A I and Harris C C. Genetic variation in microRNA networks:the implications for cancer research[J]. Nat Rev Cancer,2010,10(6):389-402. doi: 10.1038/nrc2867 [7] Lin J,Zandi R,Shao R,et al. A miR-SNP biomarker linked to an increased lung cancer survival by miRNA-mediated down-regulation of FZD4 expression and Wnt signaling[J]. Sci Rep,2017,7(1):9029. doi: 10.1038/s41598-017-09604-4 [8] Beasley M B,Brambilla E and Travis W D. The 2004 World Health Organization classification of lung tumors[J]. Semin Roentgenol,2005,40(2):90-97. doi: 10.1053/j.ro.2005.01.001 [9] Groome P A,Bolejack V,Crowley J J,et al. The IASLC Lung Cancer Staging Project:validation of the proposals for revision of the T,N,and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours[J]. J Thorac Oncol,2007,2(8):694-705. doi: 10.1097/JTO.0b013e31812d05d5 [10] Shi Y Y and He L. SHEsis,a powerful software platform for analyses of linkage disequilibrium,haplotype construction,and genetic association at polymorphism loci[J]. Cell Res,2005,15(2):97-98. doi: 10.1038/sj.cr.7290272 [11] Solé X,Guinó E,Valls J,et al. SNPStats:a web tool for the analysis of association studies[J]. Bioinformatics,2006,22(15):1928-1929. doi: 10.1093/bioinformatics/btl268 [12] Wu M,Wang G,Tian W,et al. MiRNA-based Therapeutics for Lung Cancer[J]. Curr Pharm Des,2018,23(39):5989-5996. doi: 10.2174/1381612823666170714151715 [13] Mishra S,Yadav T and Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics[J]. Crit Rev Oncol Hematol,2016,98:12-23. doi: 10.1016/j.critrevonc.2015.10.003 [14] Wang R J,Zheng Y H,Wang P,et al. Serum miR-125a-5p,miR-145 and miR-146a as diagnostic biomarkers in non-small cell lung cancer[J]. Int J Clin Exp Pathol,2015,8(1):765-771. [15] Li C,Zhang Y,Li Y,et al. The association of polymorphisms in miRNAs with nonsmall cell lung cancer in a Han Chinese population[J]. Cancer Manag Res,2018,10:697-704. doi: 10.2147/CMAR.S154040 [16] Dikeakos P,Theodoropoulos G,Rizos S,et al. Association of the miR-146aC>G,miR-149T>C,and miR-196a2T>C polymorphisms with gastric cancer risk and survival in the Greek population[J]. Mol Biol Rep,2014,41(2):1075-1080. doi: 10.1007/s11033-013-2953-0 [17] Wei W J,Lu Z W,Li D S,et al. Association of the miR-149 Rs2292832 polymorphism with papillary thyroid cancer risk and clinicopathologic characteristics in a Chinese population[J]. Int J Mol Sci,2014,15(11):20968-20981. doi: 10.3390/ijms151120968 [18] Tu H F,Liu C J,Chang C L,et al. The association between genetic polymorphism and the processing efficiency of miR-149 affects the prognosis of patients with head and neck squamous cell carcinoma[J]. PLoS One,2012,7(12):e51606. doi: 10.1371/journal.pone.0051606 [19] Zhang M,Jin M,Yu Y,et al. Associations of miRNA polymorphisms and female physiological characteristics with breast cancer risk in Chinese population[J]. Eur J Cancer Care (Engl),2012,21(2):274-280. doi: 10.1111/j.1365-2354.2011.01308.x [20] Lv M,Dong W,Li L,et al. Association between genetic variants in pre-miRNA and colorectal cancer risk in a Chinese population[J]. J Cancer Res Clin Oncol,2013,139(8):1405-1410. doi: 10.1007/s00432-013-1456-7 [21] Stenholm L,Stoehlmacher-Williams J,Al-Batran S E,et al. Prognostic role of microRNA polymorphisms in advanced gastric cancer:a translational study of the Arbeitsgemeinschaft Internistische Onkologie (AIO)[J]. Ann Oncol,2013,24(10):2581-2588. doi: 10.1093/annonc/mdt330 [22] Zheng C,Li X,Xia L,et al. Polymorphisms of pri-miR-219-1 are associated with the susceptibility and prognosis of non-small cell lung cancer in a Northeast Chinese population[J]. Oncotarget,2017,8(34):56533-56541. doi: 10.18632/oncotarget.17035 [23] Song X,You W,Zhu J,et al. A Genetic Variant in miRNA-219-1 Is Associated with Risk of Esophageal Squamous Cell Carcinoma in Chinese Kazakhs[J]. Dis Markers,2015,54:1531. [24] Xu Q,Dong Q,He C,et al. A new polymorphism biomarker rs629367 associated with increased risk and poor survival of gastric cancer in chinese by up-regulated miRNA-let-7a expression[J]. PLoS One,2014,9(4):e95249. doi: 10.1371/journal.pone.0095249 -