Correlation between Cerebral Perfusion and Retinal Oxygenation Response of Diabetic Retinopathy in Type 2 Diabetes Mellitus
-
摘要:
目的 研究不合并高血压的2 型糖尿病不同分期糖尿病视网膜病变患者与正常对照组磁共振脑灌注差异性及磁共振视网膜氧张量改变,分析各组有差异的脑灌注参数与视网膜氧张量相关性。 方法 选取2017年6月至2019年12月云南大学附属医院内分泌科及眼科收治的2型糖尿病患者34例,其中糖尿病视网膜病变增殖期组(Proliferative stage of diabetic retinopathy,PDR)10例及无视网膜病变糖尿病组(Non diabetic retinopathy,NDR)24例,收集正常对照组(Normal control,NC)21例,所有研究对象均排除高血压。行磁共振头颅平扫、磁共振血管成像、吸氧前、后磁共振双侧眼球3D T1WI 扰相梯度回波序列、脑动态磁敏感对比增强灌注成像扫描。Student t检验分析各组参数差异,运用Pearson分析各组相对脑血流量(Relative cerebral blood flow,rCBF)值与PDR 组、NDR组颞侧、鼻侧、视盘区视网膜氧张量(△P02)相关性。 结果 PDR组左侧颞下回、双侧扣带回rCBF低于NDR组及NC组,差异有统计学意义(P < 0.05)。PDR组右侧颞下回、左侧枕叶、左侧扣带回相对脑血流容量(Relative cerebral blood volume,rCBV)低于NDR组及NC组( P < 0.05),右侧海马旁回PDR组高于NDR组及NC组( P < 0.05);PDR组左侧颞下回、左侧小脑半球、双侧额中回平均通过时间(mean transmit time,MTT)高于NDR组及NC组( P < 0.05),PDR组左侧海马旁回、桥脑右侧低于NDR组及NC组( P < 0.05)。左侧小脑半球、双侧额中回、左侧颞下回及右侧扣带回达峰时间(time to peak,TTP)PDR组TTP高于NDR组和NC组( P < 0.05),脑桥右侧、右侧海马旁回PDR组低于NDR和NC组( P < 0.05)。吸氧30minPDR组、NDR组、NC组双侧颞侧、视盘、鼻侧△P0 2差异有统计学意义(P < 0.05)。PDR组及NDR组左侧颞下回及双侧扣带回rCBF与双侧眼球颞、鼻侧及视盘△P0 2有不同程度相关性(P < 0.05)。 结论 2型糖尿病脑血流灌注与糖尿病视网膜病变的程度具有较强的关联性,MR视网膜氧张量可以做为糖尿病脑毛细血管病变的一种影像学标志物。 Abstract:Objective To study MR cerebral perfusion and the retinal oxygenation response in patients with different stages of diabetic retinopathy without hypertension and normal control group, and to analyze the correlation between different cerebral perfusion parameters and retinal oxygenation response. Methods From June 2017 to December 2019, 34 patients with diagnosed type 2 diabetes mellitus (T2DM) and 21 healthy controls were enrolled in the Department of Endocrinology and ophthalmology department, the Affiliated Hospital of Yunnan University. T2DM patients were divided into proliferative stage of diabetic retinopathy (PDR) group and non-diabetic retinopathy (NDR) group according to ophthalmofundoscopy. All subjects with hypertension were excluded. Plain MR, magnetic resonance angiography (MRA), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), orbital 3D-spoiled GRASS (3D-SPGR) before and after oxygen uptake scans were performed. Continuous variables were analyzed by unpaired t-test. Pearson product moment correlation was performed between relative cerebral blood flow (rCBF) and variables of retinal delta PO(2) (△P02) in bilateral temporal, nasal and optic disc of eyeballs of PDR and NDR group. Results rCBF of left inferior temporal gyrus and bilateral cingulate gyrus in PDR group was lower than that in NDR group and NC group (P < 0.05). Relative cerebral blood volume (rCBV) of right inferior temporal gyrus, left occipital lobe and left cingulate gyrus in PDR group was lower than that in NDR group and NC group ( P < 0.05), and the rCBV of right parahippocampal gyrus in PDR group was higher than that in NDR group and NC group ( P < 0.05). The mean transit time (MTT) of left inferior temporal gyrus, left cerebellar hemisphere and bilateral middle frontal gyrus in PDR group was higher than that in NDR group and NC group ( P < 0.05). The mean transit time of left parahippocampal gyrus and right pons in PDR group was lower than that in NDR group and NC group ( P < 0.05). Time to peak (TTP) of left cerebellar hemisphere, bilateral middle frontal gyrus, left inferior temporal gyrus and right cingulate gyrus in PDR group was higher than that in NDR group and NC group ( P < 0.05), and TTP of right pontine and right parahippocampal gyrus in PDR group was lower than that in NDR and NC group ( P < 0.05). The difference of △ P0 2 in bilateral temporal, nasal and optic disc of eyeballs between PDR group, NDR group and NC group was statistically significant (P < 0.05). rCBF of left inferior temporal gyrus and bilateral cingulate gyrus in PDR group and NDR group were correlated with △P0 2 of bilateral temporal, nasal and optic disc (P < 0.05). Conclusions There was significant association between cerebral blood flow perfusion and the diabetic retinopathy (DR) severity in type 2 diabetes mellitus. MRI retinal oxygenation response can be used as an imaging marker of diabetic cerebral capillary disease. -
2型糖尿病(type 2 diabetes mellitus,T2DM)是胰腺β细胞功能障碍导致的胰岛素缺乏和胰岛素抵抗的一种慢性代谢性疾病[1]。2019年,中国有近1.164亿成年人患有糖尿病,位列全球第一[2],其中T2DM占所有病例的90%以上。糖尿病可造成脑、眼、肾等多个重要脏器微血管病变。糖尿病脑血管病患病率为20%~40%,25%的糖尿病患者死于脑血管病变[3-4]。糖尿病视网膜病变(diabetic retinopathy,DR)是一种常见的眼底病变,是视力损害和失明的主要原因。DR全球患病率约为22.27%[5]。常规视网膜眼底镜及B超检查可能受到晶状体、玻璃体浑浊等限制,眼底荧光造影也会受到造影剂过敏等限制,而MRI视网膜氧张量检查(△P02)已经被证实可做为一种安全的视网膜病变的检测技术[6]。由于糖尿病视网膜病变和糖尿病脑血管病变具有相似的解剖、病理生理改变,糖尿病视网膜病变的进展在预测糖尿病脑血管病变风险方面的具有一定探索价值。已经有多个研究显示磁共振功能成像可以在脑结构改变之前评估糖尿病视网膜病变患者脑功能异常[7-8]。磁共振脑灌注成像(Contrast-perfusion weighted imaging,DSC-PWI)具有多参数、无辐射、能准确量化脑毛细血管血供改变的一种磁共振功能成像[9]。目前已广泛运用于脑缺血性病变、出血性病变、脑肿瘤等方面研究[10-11]。本研究将运用DSC-PWI技术检测增殖期糖尿病视网膜病变及未发生视网膜病变的糖尿病患者脑灌注参数改变,并通过磁共振视网膜氧张量技术检测视网膜代谢指标,比较增殖期DR患者、无DR的T2DM患者与NC组脑灌注参数及视网膜氧张量参数,探讨DR进展与功能性脑损伤的相关性,以提供临床早期诊断及干预的有效依据。
1. 资料与方法
1.1 研究对象
本研究纳入2017年6月至2019年12月云南省第二人民医院内分泌科及眼科收治的不合并高血压的糖尿病患者共34例,其中包括糖尿病视网膜病变组(PDR)10例、糖尿病无视网膜病变组(NDR)24例,健康对照组(NC)21例。男性31例,女性24 例,中位年龄52.67岁,其中2型糖尿病患者糖尿病病程0.5~29 a,平均病程11.7 a。所有患者均进行血压测量、空腹血糖、糖化血红蛋白、肾功能检测及眼底检查,眼底镜明确视网膜病变的分组。对所有研究对象进行常规头颅磁共振平扫及磁共振血管成像(magnetic resonance angiography,MRA)扫描,排除神经系统肿瘤、脑梗、出血及颅内大血管病变后,在静息状态下行动态磁敏感对比增强灌注成像 (dynamic susceptibility contrast-perfusion weighted imaging,DSC-PWI)、吸氧前、后磁共振双侧眼球3D T1WI 扰相梯度回波序列(3D-spoiled GRASS,3D-SPGR)扫描。
1.2 入组标准
(1)所有 T2DM 患者均符合《中国2型糖尿病防治指南》诊断标准[12];(2)眼底镜明确糖尿病视网膜病变(Ⅳ~Ⅵ期)入组PDR组,无糖尿病视网膜病变入组NDR组;(3)无钆对比剂过敏史;(4)无磁共振检查禁忌症。
1.3 排除标准
(1)排除高血压,高血压诊断标准参照中国高血压防治指南( 2018年修订版)[13],行3D TOF MRA排除颅内动脉畸形、狭窄等颅内大血管病变;(2)排除磁共振检查禁忌症;(3)排除外伤、急危重症及肿瘤等其他重大疾病;(4)妊娠及哺乳期妇女;(5)钆对比剂过敏者;(6)肾功能异常。
1.4 研究方法
1.4.1 检查设备
扫描仪:美国通用公司1.5T双梯度磁共振扫描仪(GE Signa twinspeed 1.5T,GE healthcare,milwaukee,WI,USA),GE Signa 1. 5 T HDx twinspeed超导磁共振成像仪,运用头颈8通道线圈进行扫描。
1.4.2 扫描参数
获得云南省第二人民医院医学伦理委员会批准并签署知情同意书,完成头颅T1WI、T2WI、T2 Flair、MRA序列扫描排外颅内脑实质及脑血管病变后,采用3D TIWI扰相梯度回波序列(3D-SPGR)扫描并行DSC-PWI获得脑灌注参数。患者采用仰卧位,闭合双眼并保持双眼球不动,首先在大气环境下行眼眶扫描三次;然后用40 L氧气袋,通过鼻导管以流速为0.5 L/min的频率持续吸入医用氧气,分别在吸氧后10、20、30、40、50 min时间点进行数据采集。3D-SPGR扫描参数为:矩阵(Matrix) = 256 × 256,视野(Field of view,FOV)= 20 cm × 20 cm,层厚(Thickness) = 5.0 mm,层间距(gap) = -2.5 mm,重复时间(Repetition time,TR)= 10.5 ms,回波时间(Echo time,TE)= 2.1 ms,翻转角(Flip angle,FA)= 15°,激励次数(Number of excitation,NEX)= 1,扫描时间为29 s,每组扫描3次,总扫描时间:1 min 28 s。DSC-PWI:FOV:26 cm×23.4 cm,TR = 2000 ms,TE = 40 ms,Thickness = 8.0 mm ,Gap = 1.0 mm,层数(Slices) = 18,NEX = 1.00,期数 = 42期,扫描时间:1 min 10 s。
1.5 图像后处理
DSC脑灌注参数采集通过GE Advantage Workstation (GE Advantage Workstation VolumeShare 4.7)处理图像,在AW4.7后处理工作站READY View图像分析软件手动勾画面积约为20 mm2的感兴趣区(region of interest,ROI),ROI位置放置双侧小脑半球、桥脑、枕叶、颞下回、扣带回、额中回,测量ROI及其镜像ROI的相对脑血流量(relative cerebral blood flow,rCBF)、相对脑灌注容积(relative cerebral blood volume,rCBV)、平均通过时间(mean transmit time,MTT)、达峰时间(time to peak,TTP)脑灌注参数值。磁共振视网膜张量采用Image J图像分析软件,在紧贴眼环前缘勾画ROI,ROI以眼环厚度为直径,测量T1强度值。ROI采集视盘区、颞侧、鼻侧3个区域,视盘ROI放置于视神经球内断和晶状体中点连线眼环前方,鼻侧及颞侧ROI分别放置于内、外侧直肌附着点眼环前方,图1。采集的T1强度值,根据公式计算△P02[14]:公式1:E = [S(t)-S(0)]/S(0);公式2:△P02 = 16.1E,公式1中E代表时间-信号强度变化率,S(t)为吸氧后时间为t时某个像素的信号强度值,S(0)为大气环境下吸入室内空气同一位置某个像素的信号强度值。公式2计算△P02[15]。
1.6 统计学处理
使用SPSS23.0软件进行统计学分析,Kolmogorov-Smimov检验用于正态分布性检验采用,显著性水平校正(α )用Bonferroni。对于2组受试者的二分类数据如性别采用卡方检验。年龄、病程、空腹血糖、糖化血红蛋白、动脉收缩压、动脉舒张压、脑灌注参数及视网膜氧张量数值采用方差齐性分析,根据是否符合方差齐性做非配对独立样本t检验。所有计量资料使用均数±标准差( $\bar x \pm s $)表示。对于PWI脑灌注参数、视网膜氧张量数值相关性分析,若双变量均服从正态分布,采用Pearson相关系数,若不服从,则采用Spearman相关系数分析。所有扫描数据均由2名头颈组影像诊断医师单盲法进行数据测量,测量者一致性采用组内相关系数(intraclass correlation efficient,ICC)分析。P < 0.05为差异有统计学意义。
2. 结果
2.1 3组研究对象临床特征
3组研究对象性别、年龄、动脉血压、空腹血糖、糖化血红蛋白之间无明显差异(P > 0.05),糖尿病视网膜病变组和糖尿病非视网膜病变组的病程之间无明显差异( P > 0.05),见 表1。
表 1 3组临床资料及血糖指标比较( $ \bar x \pm s $)Table 1. The clinical characteristics of the control and the T2DM groups ( $ \bar x \pm s $)项目 PDR组(n = 10) NDR组(n = 24) NC组(n = 21) F/t值 P值 性别(男/女) 7/3 8/16 5/16 --- 0.49 年龄(岁) 49.87 ± 9.16 59.73 ± 8.69 46.55 ± 14.40 2.31 0.12 病程(a) 15.50 ± 4.67 7.90 ± 3.58 --- 0.51 0.62 FPG(mmol/L) 10.67 ± 4.02 9.03 ± 4.64 4.79 ± 0.60 1.26 0.75 HbAlc(%) 10.09 ± 2.12 7.29 ± 1.80 5.63 ± 0.34 1.45 0.49 动脉收缩压(mm/Hg) 124.44 ± 6.27 125.61 ± 4.46 122.59 ± 5.92 0.64 0.54 动脉舒张压(mm/Hg) 84.74 ± 4.99 89.42 ± 4.25 83.53 ± 5.42 0.18 0.84 FPG:空腹血糖,HbA1c:糖化血红蛋白。 2.2 PWI
PDR组左侧颞下回、双侧扣带回rCBF低于NDR组及NC组,差异有统计学意义(P < 0.05)。PDR组右侧颞下回、左侧枕叶、左侧扣带回相对脑血流容量(Relative cerebral blood volume,rCBV)低于NDR组及NC组( P < 0.05),右侧海马旁回PDR组高于NDR组及NC组( P < 0.05);PDR组左侧颞下回、左侧小脑半球、双侧额中回平均通过时间(mean transmit time,MTT)高于NDR组及NC组( P < 0.05),PDR组左侧海马旁回、桥脑右侧低于NDR组及NC组( P < 0.05)。左侧小脑半球、双侧额中回、左侧颞下回及右侧扣带回达峰时间(time to peak,TTP)PDR组TTP高于NDR组和NC组( P < 0.05),脑桥右侧、右侧海马旁回PDR组低于NDR和NC组( P < 0.05)。余各脑区rCBF、rCBV、TTP、MTT未见明确统计学差异( P > 0.05),见 表2。组内相关系数(ICC)范围为0.78~0.92,提示具有良好一致性。
表 2 3组全脑各差异性脑区PWI参数比较( $ \bar x \pm s $)Table 2. Comparison of PWI parameters in different brain regions of the control and the T2DM groups ( $ \bar x \pm s $)PWI参数 差异脑区 PDR组(n = 10) NDR组(n = 24) NC组(n = 21) F值 P值 rCBV
rCBF左侧枕叶
右侧颞下回
左侧扣带回
右侧海马旁回
左侧颞下回1.54 ± 1.50
1.26 ± 0.82
1.10 ± 0.65
2.92 ± 1.13
44.99 ± 9.952.04 ± 1.40
2.00 ± 1.99
2.02 ± 1.03
2.11 ± 1.29
58.82 ± 23.892.35 ± 1.26
4.16 ± 2.51
4.15 ± 1.31
1.15 ± 0.48
58.36 ± 24.000.71
3.82
14.31
4.62
5.400.048*
0.039*
0.000*
0.022*
0.013*
MTT
TTP
左侧扣带回
右侧扣带回
左侧小脑半球
左侧颞下回
左侧额中回
右侧额中回
左侧海马旁回
桥脑右侧
左侧小脑半球
左侧额中回
右侧额中回
右侧扣带回
左侧颞下回
桥脑右侧
右侧海马旁回54.43 ± 8.92
67.26 ± 18.56
13.04 ± 3.98
12.93 ± 3.67
11.30 ± 3.09
10.27 ± 2.24
8.46 ± 1.84
11.74 ± 3.27
29.89 ± 7.29
28.39 ± 7.35
28.73 ± 7.34
28.14 ± 7.64
27.78 ± 8.06
18.77 ± 8.34
18.18 ± 5.2856.64 ± 8.73
60.03 ± 10.81
11.58 ± 2.80
11.70 ± 3.58
8.47 ± 2.22
8.71 ± 2.54
10.37 ± 3.38
10.80 ± 3.12
15.55 ± 3.81
15.89 ± 4.36
25.71 ± 7.88
17.36 ± 8.59
24.18 ± 8.94
27.57 ± 7.51
27.15 ± 7.6663.91 ± 11.13
68.94 ± 10.78
6.81 ± 1.05
8.32 ± 2.23
6.84 ± 1.68
5.91 ± 0.57
11.73 ± 4.65
9.63 ± 4.23
22.75 ± 6.19
18.40 ± 8.47
27.53 ± 6.16
25.26 ± 7.94
18.00 ± 8.87
30.69 ± 8.11
28.04 ± 6.153.56
0.85
5.13
5.17
5.51
3.82
7.09
4.51
9.07
8.03
3.88
4.66
4.794
3.718
4.4650.048*
0.443*
0.017*
0.011*
0.012*
0.038*
0.004*
0.023*
0.001*
0.003*
0.037*
0.021*
0.019*
0.041*
0.024*rCBV:相对脑血流量,rCBF:相对脑血流容积,MTT:平均通过时间,TTP:达峰时间,*P < 0.05,(单位:mL/100 g/min)。 2.3 MR视网膜氧张量
根据既往文献[16],吸氧30 min为磁共振氧张量最高的时间点,笔者选取30 min时间点进行测值。PDR组吸氧30 min左侧颞侧、视盘、鼻侧△P02分别为(3.22±2.41) mmHg、(2.89±6.07) mmHg、(7.01±4.22) mmHg,右侧颞侧、视盘、鼻侧△P02分别为(7.86±11.41) mmHg、(4.63±0.95) mmHg、(-0.40±0.73) mmHg;NDR组吸氧30min左侧颞侧、视盘、鼻侧△P02分别为(2.44±2.16) mmHg、(-0.078±2.02) mmHg、(2.40±2.20) mmHg,右侧颞侧、视盘、鼻侧△P02分别为(2.05±1.42) mmHg、(-0.54±1.24) mmHg、(3.25±2.17) mmHg。NC组吸氧30 min左侧颞侧、视盘、鼻侧△P02分别为(-0.633±1.73) mmHg、(-2.13±4.05) mmHg、( -1.20±2.47) mmHg,右侧颞侧、视盘、鼻侧△P02分别为(0.72±3.39) mmHg、(-1.46±3.92) mmHg、(0.41±3.48) mmHg。PDR组、NDR组及NC组双侧颞侧(F = 12.348,P = 0.000)、视盘(F = 15.482,P = 0.000)、鼻侧(F = 9.216,P = 0.000)比较,差异有统计学意义,图2。
2.4 脑灌注参数与MR视网膜氧张量相关性分析
本研究选取CBF做为PWI脑灌注参数的主要指标,PDR组与NDR组主要差异性脑区在左侧颞下回及双侧扣带回,本研究将这些差异性脑区与30minMR视网膜氧张量进行相关性分析。PDR组左侧颞下回CBF与左鼻侧(r = 0.724,P = 0.002)、左视盘(r = 0.558,P = 0.031)△P02具有中度-显著相关性,左颞侧△P02(r = -0.826,P = 0.031)显著负相关。左侧扣带回CBF与左鼻侧(r = -0.604,P = 0.004)、左颞侧(r = -0.652,P = 0.0001)、左视盘(r = -0.762,P = 0.042)△P02具有中度-显著相关性。右侧扣带回CBF与左鼻侧(r = 0.748,P = 0.001)、左视盘(r = 0.586,P = 0.022)△P02具有中度-显著正相关性,与左颞侧(r = -0. 806,P = 0.0003)具有显著负相关性。NDR组左侧颞下回CBF与左鼻侧(r = 0.661,P =0.0001)、左视盘(r = 0.762,P = 0.0001)、右鼻侧(r = 0.855,P = 0.0001)、右视盘(r = 0.626,P = 0.0004)△P02具有中度-显著正相关性。左侧扣带回CBF与左鼻侧(r = 0.774,P = 0.0001)、左颞侧(r = 0.564,P = 0.002)、左视盘(r = 0.561,P = 0.002)、右鼻侧(r = 0.950,P = 0.0001)、右颞侧(r = 0.455,P = 0.015)及右视盘(r = 0.581,P = 0.001)△P02具有轻度-显著正相关性。右侧扣带回CBF与左鼻侧(r = 0.840,P = 0.0001)、左视盘(r = 0.736,P = 0.0001)、右鼻侧(r = 0.959,P = 0.0001)、右视盘(r = 0.463,P = 0.013)△P02具有轻度-显著正相关性。其余未见明确相关性(P > 0.05),见 表3,表4。
表 3 PDR组左侧颞下回、双侧扣带回CBF和眼各部位MR氧张量相关性分析(r,P)Table 3. The correlation analysis between CBF value of left inferior temporal gyrus,bilateral cingulate gyrus and retinal oxygenation response in PDR group (r,P)部位 左鼻侧 左颞侧 左视盘 右鼻侧 右颞侧 右视盘 左颞下回
左扣带回
右扣带回0.724,0.002
0.701,0.004
0.748,0.001−0.826,0.0001
−0.844,0.0001
−0.806,0.00030.558,0.031
0.530,0.042
0.586,0.0220.100,0.725
0.132,0.639
0.065,0.819−0.287,0.300
−0.255,0.359
−0.320,0.245−0.071,0.801
−0.039,0.891
−0.106,0.707表 4 NDR组左侧颞下回、双侧扣带回CBF和眼各部位MR氧张量相关性分析(r,P)Table 4. The correlation analysis between CBF value of left inferior temporal gyrus,bilateral cingulate gyrus and retinal oxygenation response in NDR group (r,P)部位 左鼻侧 左颞侧 左视盘 右鼻侧 右颞侧 右视盘 左颞下回
左扣带回
右扣带回0.661,0.0001
0.774,0.0001
0.840,0.00010.215,0.0001
0.564,0.002
0.311,0.1070.762,0.0001
0.561,0.002
0.736,0.00010.855,0.0001
0.950,0.0001
0.959,0.00010.263,0.176
0.455,0.015
0.295,0.1280.626,0.0004
0.581,0.001
0.463,0.0133. 讨论
磁共振脑灌注成像(DSC-PWI)多参数可以准确反映脑毛细血管网的血供情况。MTT、TTP是缺血敏感参数,同时对预测卒中后新发病灶具有价值[17]。本研究发现PDR组左侧颞下回、双侧扣带回rCBF减低,右侧颞下回、左侧枕叶、左侧扣带回rCBV减低,左侧颞下回、左侧小脑半球、双侧额中回MTT时间延长,左侧小脑半球、双侧额中回、左侧颞下回及右侧扣带回TTP时间延长,提示PDR组微血管病变影响较显著,累及语言运动区、视觉投射区、记忆区等。本研究显示的有差异性脑区与既往研究有一致性也有不同。Sanne等[18]发现,糖尿病患者运动能力和视觉功能脑区的血流量降低更显著;Heni等[19]研究显示额叶、颞区、枕顶区脑血流灌注减低明显。高血糖可以造成血管毛细血管管壁基底膜增厚,脑深部白质动脉粥样硬化病变、血管基底膜糖类沉积、脂肪样和透明变性使微血管内皮细胞功能失调,引起微血管狭窄闭塞[20]。此外脑实质萎缩,血管反应性减弱,以上多种原因造成了脑血流量减少[21-22]。同时,本研究也发现右侧海马旁回PDR组CBV高于其他组。既往研究认为这是一种机体的代偿的一种机制,通过邻近脑组织的高灌注代偿灌注减低区[23]。
增殖期糖尿病视网膜病变以出现视网膜新生血管为特征。高血糖会造成血-视网膜屏障构成细胞,如内皮细胞、周细胞、Müller细胞、视网膜神经元和星形胶质细胞丢失,细胞间隙增宽,氧分子弥散到视网膜前玻璃体,从而导致P02升高[24]。同时脉络膜血流量调节能力下降,也导致了视网膜△P02的升高[25] 。有研究显示,糖尿病引起的视网膜蛋白激酶C(PKC)-β升高也可造成视网膜△P02升高[26]。本研究发现增殖期糖尿病视网膜患者、无糖尿病视网膜病变患者及正常对照组在吸氧30 min时双侧颞侧、鼻侧、视盘MR视网膜氧张量具有差异性。也进一步证明了MRI视网膜氧张量检测可以作为一种有效的非侵入性方法,提供关于视网膜新陈代谢的信息,用于观察糖尿病性视网膜病变的进展,具有广阔的临床运用潜力[25-27]。
此外,笔者研究发现,差异性脑区rCBF与双侧眼球不同部位氧张量大多有密切相关,提示2型糖尿病脑血流灌注与糖尿病视网膜病变的程度具有较强的关联性。脑和视网膜微小血管具有相似的血管结构(末端小动脉没有吻合),血脑屏障在结构和功能上与血视网膜屏障相似[28]。近期有研究证实,轻型卒中患者的脑小血管病与视网膜动脉直径密切相关[29]。糖尿病会同时影响脑及视网膜微血管,导致脑微血管病变及视网膜血管病变的发展过程可能具有一致性。多个研究也表明,糖尿病视网膜病变进展与卒中患病率和卒中死亡率密切相关[30-32]。多种机制共同导致了脑、视网膜微血管病变。其中,高血糖诱导的多元醇通路过度活跃可以破坏血-视网膜屏障,同时也参与糖尿病脑微血管缺血病变[33]。
综上所述, 本研究采用PWI技术及MR视网膜氧张量技术检测增殖期糖尿病视网膜病变患者、无视网膜病变糖尿病患者及正常组脑灌注及视网膜氧代谢信息,探讨糖尿病视网膜病变与脑灌注变化关系,发现MR视网膜氧张量变化与脑灌注变化密切相关,本研究显示MR视网膜氧张量检查可以做为一种有效的方法来提示早期潜在的脑灌注异常,预测卒中风险,指导临床,以改善DR患者预后。本研究也存在一定的局限性,样本量不大,没有进一步远期观察各组卒中发生情况,后期将扩大样本量,深入探讨影像检查临床后期治疗及患者远期结局的预测价值。
-
表 1 3组临床资料及血糖指标比较( $ \bar x \pm s $)
Table 1. The clinical characteristics of the control and the T2DM groups ( $ \bar x \pm s $)
项目 PDR组(n = 10) NDR组(n = 24) NC组(n = 21) F/t值 P值 性别(男/女) 7/3 8/16 5/16 --- 0.49 年龄(岁) 49.87 ± 9.16 59.73 ± 8.69 46.55 ± 14.40 2.31 0.12 病程(a) 15.50 ± 4.67 7.90 ± 3.58 --- 0.51 0.62 FPG(mmol/L) 10.67 ± 4.02 9.03 ± 4.64 4.79 ± 0.60 1.26 0.75 HbAlc(%) 10.09 ± 2.12 7.29 ± 1.80 5.63 ± 0.34 1.45 0.49 动脉收缩压(mm/Hg) 124.44 ± 6.27 125.61 ± 4.46 122.59 ± 5.92 0.64 0.54 动脉舒张压(mm/Hg) 84.74 ± 4.99 89.42 ± 4.25 83.53 ± 5.42 0.18 0.84 FPG:空腹血糖,HbA1c:糖化血红蛋白。 表 2 3组全脑各差异性脑区PWI参数比较( $ \bar x \pm s $)
Table 2. Comparison of PWI parameters in different brain regions of the control and the T2DM groups ( $ \bar x \pm s $)
PWI参数 差异脑区 PDR组(n = 10) NDR组(n = 24) NC组(n = 21) F值 P值 rCBV
rCBF左侧枕叶
右侧颞下回
左侧扣带回
右侧海马旁回
左侧颞下回1.54 ± 1.50
1.26 ± 0.82
1.10 ± 0.65
2.92 ± 1.13
44.99 ± 9.952.04 ± 1.40
2.00 ± 1.99
2.02 ± 1.03
2.11 ± 1.29
58.82 ± 23.892.35 ± 1.26
4.16 ± 2.51
4.15 ± 1.31
1.15 ± 0.48
58.36 ± 24.000.71
3.82
14.31
4.62
5.400.048*
0.039*
0.000*
0.022*
0.013*
MTT
TTP
左侧扣带回
右侧扣带回
左侧小脑半球
左侧颞下回
左侧额中回
右侧额中回
左侧海马旁回
桥脑右侧
左侧小脑半球
左侧额中回
右侧额中回
右侧扣带回
左侧颞下回
桥脑右侧
右侧海马旁回54.43 ± 8.92
67.26 ± 18.56
13.04 ± 3.98
12.93 ± 3.67
11.30 ± 3.09
10.27 ± 2.24
8.46 ± 1.84
11.74 ± 3.27
29.89 ± 7.29
28.39 ± 7.35
28.73 ± 7.34
28.14 ± 7.64
27.78 ± 8.06
18.77 ± 8.34
18.18 ± 5.2856.64 ± 8.73
60.03 ± 10.81
11.58 ± 2.80
11.70 ± 3.58
8.47 ± 2.22
8.71 ± 2.54
10.37 ± 3.38
10.80 ± 3.12
15.55 ± 3.81
15.89 ± 4.36
25.71 ± 7.88
17.36 ± 8.59
24.18 ± 8.94
27.57 ± 7.51
27.15 ± 7.6663.91 ± 11.13
68.94 ± 10.78
6.81 ± 1.05
8.32 ± 2.23
6.84 ± 1.68
5.91 ± 0.57
11.73 ± 4.65
9.63 ± 4.23
22.75 ± 6.19
18.40 ± 8.47
27.53 ± 6.16
25.26 ± 7.94
18.00 ± 8.87
30.69 ± 8.11
28.04 ± 6.153.56
0.85
5.13
5.17
5.51
3.82
7.09
4.51
9.07
8.03
3.88
4.66
4.794
3.718
4.4650.048*
0.443*
0.017*
0.011*
0.012*
0.038*
0.004*
0.023*
0.001*
0.003*
0.037*
0.021*
0.019*
0.041*
0.024*rCBV:相对脑血流量,rCBF:相对脑血流容积,MTT:平均通过时间,TTP:达峰时间,*P < 0.05,(单位:mL/100 g/min)。 表 3 PDR组左侧颞下回、双侧扣带回CBF和眼各部位MR氧张量相关性分析(r,P)
Table 3. The correlation analysis between CBF value of left inferior temporal gyrus,bilateral cingulate gyrus and retinal oxygenation response in PDR group (r,P)
部位 左鼻侧 左颞侧 左视盘 右鼻侧 右颞侧 右视盘 左颞下回
左扣带回
右扣带回0.724,0.002
0.701,0.004
0.748,0.001−0.826,0.0001
−0.844,0.0001
−0.806,0.00030.558,0.031
0.530,0.042
0.586,0.0220.100,0.725
0.132,0.639
0.065,0.819−0.287,0.300
−0.255,0.359
−0.320,0.245−0.071,0.801
−0.039,0.891
−0.106,0.707表 4 NDR组左侧颞下回、双侧扣带回CBF和眼各部位MR氧张量相关性分析(r,P)
Table 4. The correlation analysis between CBF value of left inferior temporal gyrus,bilateral cingulate gyrus and retinal oxygenation response in NDR group (r,P)
部位 左鼻侧 左颞侧 左视盘 右鼻侧 右颞侧 右视盘 左颞下回
左扣带回
右扣带回0.661,0.0001
0.774,0.0001
0.840,0.00010.215,0.0001
0.564,0.002
0.311,0.1070.762,0.0001
0.561,0.002
0.736,0.00010.855,0.0001
0.950,0.0001
0.959,0.00010.263,0.176
0.455,0.015
0.295,0.1280.626,0.0004
0.581,0.001
0.463,0.013 -
[1] Chatterjee S,Khunti K,Davies M J. Type 2 diabetes[J]. Lancet,2017,389:2239-2251. doi: 10.1016/S0140-6736(17)30058-2 [2] International Diabetes Federation. International Diabetes Federation Diabetes Atlas 9th edition, Brussels: The Institute; 2019. (https;//www.diabetesatlas.org/upload/resources/2019/IDF_Atlas_9th_Edition_2019.pdf) [3] Zhou H,Zhang X,Lu J. Progress on diabetic cerebrovascular diseases[J]. Bosn J Basic Med Sci,2014,14(4):185-90. doi: 10.17305/bjbms.2014.4.203 [4] 乐小婧,陈婕,张帆,等. 代谢综合征与2型糖尿病的相关研究进展[J]. 昆明医科大学学报,2020,41(5):145-149. doi: 10.3969/j.issn.1003-4706.2020.05.028 [5] Teo Z L,Tham Y C,Yan Yu M C,et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045:Systematic Review and Meta-analysis[J]. Ophthalmology,2021,30:S0161. [6] Cheung N,Mitchell P,Wong T Y. Diabetic Retinopathy[J]. Lancet,2010,376:124-136. doi: 10.1016/S0140-6736(09)62124-3 [7] Wang Z,Lu Z,Li J,et al. Evaluation of apparent diffusion coefficient measurements of brain injury in type 2 diabetics with retinopathy by diffusion-weighted MRI at 3.0 T[J]. Neuroreport,2017,28(2):69-74. doi: 10.1097/WNR.0000000000000703 [8] Liang M,Chen X,Xue F,et al. Diffusion-weighted imaging of injuries to the visual centers of the brain in patients with type 2 diabetes and retinopathy[J]. Exp Ther Med,2017,14(2):1153-1156. doi: 10.3892/etm.2017.4582 [9] Yang Y,Yang Y,Wu X,et al. Adding DSC PWI and DWI to BT-RADS can help identify postoperative recurrence in patients with high-grade gliomas[J]. J Neurooncol.,2020,146(2):363-371. doi: 10.1007/s11060-019-03387-6 [10] Lee H,Jung K,Kang D W,et al. Fully Automated and Real-Time Volumetric Measurement of Infarct Core and Penumbra in Diffusion- and Perfusion-Weighted MRI of Patients with Hyper-Acute Stroke[J]. J Digit Imaging,2020,33(1):262-272. doi: 10.1007/s10278-019-00222-2 [11] Amukotuwa S A,Fischbein N J,Albers G W,et al. Comparison of T2*GRE and DSC-PWI for hemorrhage detection in acute ischemic stroke patients:Pooled analysis of the EPITHET,DEFUSE 2,and SENSE 3 stroke studies[J]. Int J Stroke,2020,15(2):216-225. doi: 10.1177/1747493019858781 [12] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版)[J]. 中华糖尿病杂志,2018,10(1):4-67. doi: 10.3760/cma.j.issn.1674-5809.2018.01.003 [13] 中国高血压防治指南修订委员会等. 中国高血压防治指南(2018年修订版)[J]. 中国心血管杂志,2019,24(1):24-56. doi: 10.3969/j.issn.1007-5410.2019.01.002 [14] Trick G L,Edwards P,Desai U,et al. Early supernormal retinal oxygenation response in patients with diabetes[J]. Investigative Ophthalmology & Visual Science,2006,47(4):1612-1619. [15] Do D V,Wang X,Vedula S S,et al. Blood pressure control for diabetic retinopathy[J]. Sao Paulo Medical Journal,2015,133(3):278-279. doi: 10.1590/1516-3180.20151333T1 [16] 许庆刚,陈青华,杨庆松,等. 糖尿病患者视网膜氧合反应的磁共振研究[J]. 眼科,2009,18(5):323-327. [17] 邱建博,陈广浩,黄红涛,等. 磁共振灌注成像在卒中后早期新发病灶中的预测价值[J]. 临床放射学杂志,2019,38(11):2037-2041. [18] Sanahuja J,Alonso N,Diez J,et al. Increased Burden of Cerebral Small Vessel Disease in Patients with Type 2 Diabetes and Retinopathy[J]. Diabetes Care,2016,39(9):1614-1620. doi: 10.2337/dc15-2671 [19] Heni M,Wagner R,Kullmann S,et al. Response to Comment on Heni et al. Central Insulin Administration Improves Whole-Body Insulin Sensitivity via Hypothalamus and Parasympathetic Outputs in Men[J]. Diabetes,2015,64(6):e8-e9. doi: 10.2337/db15-0209 [20] Hou-guang zhou,Dong Jiang,ren-ming hu. The research progress of diabetic cerebrovascular disease[J]. Chinese Journal of Cerebrovascular Disease,2009,6(1):49-53. [21] Tanaka S,Tanaka S,Iimuro S,et al. Predicting Macro-and Microvascular Complications in Type 2 Diabetes:The Japan Diabetes Complications Study/the Japanese Elderly Diabetes Intervention Trial risk engine[J]. Diabetes Care,2013,36(5):1193-1199. doi: 10.2337/dc12-0958 [22] Liu Q,Wang S,Cai L. Diabetic cardiomyopathy and its mechanisms:role of oxidative stress and damage[J]. J Diabetes Investig,2014,5:634. [23] Zlatar Z Z,Wierenga C E,Bangen K J,et al. Increased hippocampal blood flow in sedentary older adults at genetic risk for Alzheimer's disease[J]. J Alzheimers Dis,2014,41(3):809-817. doi: 10.3233/JAD-132252 [24] Filas B A,Shui Y B,Beebe D C. Computational Model for Oxygen Transport and Consumption in Human Vitreous[J]. Investigative Opthalmology & Visual Science,2013,54(10):6549. [25] Luan H,Leitges M,Gupta R R,et al. Effect of PKCbeta on retinal oxygenation response in experimental diabetes[J]. Invest Ophthalmol Vis Sci,2004,45(3):937-942. doi: 10.1167/iovs.03-1007 [26] Trick G L,Edwards P A,Desai U,et al. MRI retinovascular studies in humans:research in patients with diabetes[J]. NMR Biomed,2008,21(9):1003-1012. doi: 10.1002/nbm.1314 [27] Linsenmeier R A,Zhang H F. Retinal oxygen:from animals to humans[J]. Prog Retin Eye Res,2017,58:115-151. doi: 10.1016/j.preteyeres.2017.01.003 [28] Umemura T,Kawamura T,Hotta N. Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes:A possible link between cerebral and retinal microvascular abnormalities[J]. J Diabetes Investig,2017,8(2):134-148. doi: 10.1111/jdi.12545 [29] 黄宽宽,黄珊,恽文伟,等. 轻型卒中患者脑小血管病总负荷与视网膜血管直径的相关性[J]. 中华医学杂志,2021,101(1):62-67. doi: 10.3760/cma.j.cn112137-20200405-01088 [30] Wardlaw J M,Doubal F,Armitage P,et al. Lacunar stroke is associated with diffuse blood-brain barrier dysfunction[J]. Ann Neurol,2009,65(2):194-202. doi: 10.1002/ana.21549 [31] Doubal F N,Hokke P E,Wardlaw J M. Retinal microvascular abnormalities and stroke:a systematic review[J]. J Neurol Neurosurg Psychiatry,2009,80:158-165. doi: 10.1136/jnnp.2008.153460 [32] Lindley R I,Wang J J,Wong M C,et al. Retinal microvasculature in acute lacunar stroke:a cross-sectional study[J]. Lancet Neurol,2009,8:628-634. doi: 10.1016/S1474-4422(09)70131-0 [33] Naruse K,Nakamura J,Hamada Y,et al. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes[J]. Exp Eye Res,2000,71(3):309-315. doi: 10.1006/exer.2000.0882 期刊类型引用(2)
1. 张晓杰,艾伟平,赵义凡,陈素艳,潘妍婷. 帕金森病合并糖尿病患者感觉障碍与脑血流储备和血浆miR-331-5p的相关性研究. 中国临床神经科学. 2024(05): 507-513+535 . 百度学术
2. 高星,吕英雷,魏依兰,张云鹏,李静,窦志杰. 糖尿病认知功能障碍机制研究进展. 承德医学院学报. 2022(02): 155-159 . 百度学术
其他类型引用(1)
-