Advances on FBP1’ s Role in Malignant Tumors
-
摘要: FBP1作为糖异生过程的关键酶,控制糖异生的速率,催化1-6二磷酸果糖不可逆的水解成6-磷酸果糖和无机磷酸盐,从而能够控制糖异生速率,影响细胞糖酵解。近年来,其在癌症中的作用越来越受到重视。研究发现FBP1在多种肿瘤中表达异常,与肿瘤发生、发展及预后关系密切,这些结果对于肿瘤分子标记物、靶向药物研究、预后相关研究表现出良好的前景。Abstract: As a key enzyme in the process of gluconeogenesis, FBP1 controls the rate of gluconeogenesis and catalyzes the irreversible hydrolysis of fructose 1-6 diphosphate into fructose 6-phosphate and inorganic phosphate, thereby controlling the rate of gluconeogenesis and affecting cellular glycolysis. In recent years, its role in malignant tumors has attracted more and more attention. Studies have found that FBP1 is abnormally expressed in a variety of tumors and is closely related to tumor occurrence and prognosis. These results show a good prospect for tumor molecular markers, targeted drug research, and prognosis-related research.
-
Key words:
- FBP1 /
- Aerobic glycolysis /
- Warburg effect /
- Cancer
-
骨质疏松症( osteoporosis,OP)是一种全身性的骨骼代谢性疾病,其特征是低骨量和骨组织的微细结构破坏,导致骨脆性增加,进而导致骨折风险增加[1]。早期流行病学调查显示:我国50岁以上女性骨质疏松症的患病率为20.7%,且患病率会随着年龄增长而增加,严重危害人类健康及生活质量[2]。骨质疏松性骨折是骨质疏松最严重、死亡率最高的并发症,可以出现椎体骨折(最常见的骨质疏松性骨折)、髋部骨折(最严重的骨质疏松性骨折)、桡骨远端骨折、肱骨近端骨折等,这些也是骨小梁含量较高的部位[1],远期并发症有下肢静脉血栓、坠积性肺炎、压疮等,使致残率和致死率上升,并且增加国家医疗负担,已成为我国面临的重大公共健康问题。所以骨质疏松症的早期发现、早期诊断、早期治疗十分重要。骨密度(bone mineral density ,BMD)测量在骨质疏松症的诊断、治疗和预防中起着核心作用,是诊断骨质疏松症和其他代谢性骨病、评估骨折风险和监测后期治疗的重要指标[3-5]。
目前,临床上常用的2种无创性的测量骨密度方法,包括定量计算机断层扫描法(quantitative computed tomography,QCT)和双能 X 线吸收法( dual energy X-ray absorptiometry,DXA)。1987年引进了双能X线骨密度扫描仪,DXA才开始作为骨密度的测量工具进入临床实践[6-7]。世界卫生组织(WHO)推荐腰椎(L1-L4)和髋部(股骨颈和全髋部)双能X线骨密度仪(DXA)作为评估BMD和诊断骨质疏松的金标准[8-9],DXA测量的部位有腰椎、股骨、前臂,骨质疏松早期主要发生在骨小梁,椎体是骨小梁含量较丰富的部位[10],所以椎体骨密度测量是诊断骨质疏松症和预测骨折风险的首选,其优点有低成本、高重复性、易用性和较小的辐射暴露、扫描时间短等。DXA通过利用2种不同的能量的X射线穿过骨与脂肪和肌肉等软组织后衰减程度不同,并由以g为单位的骨矿物质含量(BMC)除以cm2计算得出,以面积骨密度表示[11-12]。DXA是二维测量皮质骨和松质骨的整体骨密度,不能提供皮质区和松质骨区的单独骨量,不能完全反映骨量的分布,所以会降低骨质疏松症诊断的准确性[13-14]。随着我国人口老龄化问题日趋严重,骨质疏松症的患病率逐年增加,但是目前我国骨质疏松症的诊治率较低,其中一个重要原因就是DXA诊断骨质疏松症的准确性较低,导致许多本身患有骨质疏松症的人群漏诊,所以这就需要从根本上分析其原因,以及完善骨质疏松症的检测手段。QCT作为一种三维测量BMD的技术,可分别测量松质骨和皮质骨的体积骨密度[2, 15-16],单位是mg/cm3,松质骨的代谢转换率是皮质骨的8倍,对骨密度的变化更敏感,比DXA更加准确反映了椎体中骨矿物质含量的变化,也能更准确地预测了椎骨骨折的发生率[17-19],近年来,QCT对骨质疏松症的诊断已得到普遍认可,成为一种新型的测量骨密度的方法[3]。
骨质疏松初期一般没有明显症状,只有当发生骨折时才察觉,所以要加强对高危人群骨质疏松症的筛查,提高我国骨质疏松症的诊治率,选择合适的测量方法对骨质疏松症的准确诊断具有重要意义[20],在临床工作中笔者发现由DXA和QCT测量同一个患者的骨密度值,最终的诊断结果可能是不同的,这可能会影响患者的诊断和治疗计划,所以笔者调查了DXA和QCT两者在诊断中国绝经后妇女骨质疏松症上的不一致性并分析其原因。
1. 资料与方法
1.1 研究对象
纳入对象标准选取于2020年1月至2020年10月就诊于昆明医科大学第一附属医院骨科的186名绝经后妇女,平均年龄(63.7±10.4)岁,均接受了QCT和DXA2种检查,2种检查的间隔时间在1个月内。研究经昆明医科大学第一附属医院伦理委员会批准。患者及家属知情同意,并签署书面知情同意书。
1.2 排除标准
上述186例患者中的38例根据以下标准被排除,(1)患有内分泌系统疾病,包括甲状旁腺功能亢进症、库欣症、甲状腺功能亢进症、垂体前叶功能减退症、糖尿病(1型和2型)、性腺功能减退症;(2)患有血液系统疾病,包括多发性骨髓瘤、淋巴瘤、白血病、单克隆免疫球蛋白病等;(3)患有风湿免疫系疾病,包括类风湿性关节炎、系统性红斑狼疮、强直性脊柱炎等;(4)近6个月服用影响骨代谢的药物,包括糖皮质激素、抗凝药、甲状腺激素等;(5)有骨肿瘤病史者。
1.3 研究方法
使用GE revolution扫描仪获得DXA测量值,并使用随机标配软件进行分析,扫描过程中使患者保持仰卧位,扫描的部位为腰椎( L1-L4 ) ,扫描采用后前位投影法。QCT采用Siemens CT 扫描仪测量,使用专门软件对图像进行分析得出BMD值,检查时患者仰卧扫描L1-L4椎体,平躺在放置体模的仪器上,通常在患者和体模之间放置一个充满水或凝胶的垫子,以避免因气隙产生的伪影,从而影响测量结果,上述操作均由2位经验丰富的放射科医生执行。
1.4 诊断标准
DXA笔者采用了中华医学会制定的原发性骨质疏松症诊疗指南(2017)的诊断标准[2],对DXA 测定骨密度进行分类,骨量正常: T 值≥-1. 0SD; 低骨量: -2. 5SD<T 值<-1. 0SD; 骨质疏松: T 值≤ -2. 5SD。QCT采用国际临床密度学协会2007年和美国放射学会2008年提出的标准[21],骨量正常:BMD值 > 120 mg/cm3;骨量减少:80 mg /cm3≤BMD值≤120 mg /cm3;骨质疏松:BMD值 < 80 mg/cm3。
1.5 统计学处理
应用SPSS 21.0 软件进行统计学分析,平均值 ± 标准差 (SD) 用于表示连续变量。采用McNemar-Bowker Test分析DXA与QCT对骨质疏松症检出率的差异。以P < 0.05表示差异有统计学意义。
2. 结果
148名绝经后妇女中,68名被QCT诊断为骨质疏松症,39名被DXA诊断为骨质疏松症,QCT和DXA的骨质疏松检出率分别为45.9%和26.4%,QCT对骨质疏松症的检出率高于腰椎DXA(P < 0.05)。92名受试者(62.2%)DXA和QCT的诊断一致,有56名(37.9%)DXA和QCT的诊断不一致,其中QCT为骨质疏松,DXA为骨量减少有27名(48.2%);QCT为骨量减少,DXA为骨量正常有19名(33.9%);QCT为骨质疏松症,DXA为骨量正常有5名(8.9%);QCT为骨量正常,DXA为骨质疏松症有1名(1.8%);QCT为骨量减少,DXA为骨质疏松有2名(3.6%);QCT为骨量正常,DXA为骨量减少有2名(3.6%),统计学检验2种方法检出率,差异有统计学意义(P < 0.05),见表1。
表 1 QCT与DXA对骨质疏松检出率的比较[n(%)]Table 1. Comparison of the detection rate of osteoporosis between QCT and DXA [n(%)]项目 DXA 骨量正常 骨量减少 骨质疏松 总计 QCT 骨量正常 35(23.6) 2(1.4) 1(0.7) 38(25.7) 骨量减少 19(12.8) 21(14.2) 2(1.4) 42(28.4) 骨质疏松 5(3.4) 27(18.2) 36(24.3) 68(45.9) 总计 59(39.9) 50(33.8) 39(26.4) 148(100) McNemar-Bowker Test 37.980 P 0.000* *P < 0.05。 同一患者行QCT及DXA2种检查时,诊断不一致的病例:一位74岁绝经后妇女,根据QCT诊断为骨质疏松症,但其DXA诊断为骨量减少,其影像学图像,见图1;一位77岁绝经后妇女,根据QCT诊断为骨质疏松症,但其DXA诊断为骨量正常,其影像学图像,见图2。
3. 讨论
Tothil等[22]研究发现,DXA在不管是在脊柱还是股骨,其骨质疏松检出率均明显低于QCT。并且DXA会受到体型、椎体大小的影响,体型较小(椎体也相对较小)的患者DXA测量的BMD较低,而体型较大(椎体也相对较大)的患者DXA测量的BMD较高,所以对于体型小的女性,DXA测量结果可能在骨质疏松范围内,但患者本身没有骨质疏松,因此可能误诊为骨质疏松症,从而导致不必要的治疗[23]。Wade SW等[3]指出,当用DXA测量时,骨赘的存在与较高的BMD值有关。有报道称,由DXA测量的BMD在脊柱退行性变的患者中显著高于没有上述疾病患者,尤其是小关节和椎体有骨赘的患者,主动脉钙化、硬化也可能导致骨密度增高[20, 24-25],所以DXA对骨质疏松症的诊断率、敏感度会降低。
DXA二维测量和不能测量骨分布和异质性,导致BMD值不准确,因此需要更敏感的措施来识别骨质疏松性骨折的低风险和高风险人群。QCT可以显示椎体三维信息,提供了一种直接测量体积骨密度的方法,可以很好地区分有无椎体骨折的个体[26]。Gehweiler等[27]通过研究得出结论,QCT在测量椎体松质骨骨密度具有更好能力。Hsu等[28]研究发现,椎体压缩性骨折可增加骨密度。Wang 的研究团队[29]还发现超过56%的新发骨质疏松性椎体骨折患者根据DXA没有诊断为骨质疏松,而QCT的假阴性诊断率则低得多(19%)。有学者发现近三分之一的椎体压缩性骨折患者没有被DXA诊断为骨质疏松,Greenspan等[30]发现,18.3%的无症状绝经后妇女存在椎体骨折,11.0% ~ 18.7%的临床骨质疏松患者根据BMD标准则归类为骨量正常。Wang 等[29]通过对65岁及以上男性的前瞻性数据库进行分析,发现QCT测量的体积骨密度比DXA测量的面积骨密度与发生椎体骨折风险的相关性更高,Lee等[31]也表示QCT对骨质疏松性椎体骨折的预测优于DXA。多名学者发现常规CT扫描获得的体积骨密度在预测椎体骨折方面表现最好[32-33]。Amstrup等[34]指出双能QCT扫描的体积骨密度结果与椎体骨折结果高度一致,所以双能CT扫描有可能更准确地预测椎体骨折,并帮助医生进行临床干预。还有学者指出 ,骨小梁骨评分(TBS)比BMD值受椎体骨折的影响小,TBS可能是一种潜在的骨折风险预测方法[28, 35-36]。 Tenne等[37]发现在老年女性中,椎体BMD与脊柱退行性改变呈正相关。Zeng等[8]对1000多名腰椎退行性疾病患者使用DXA测得的T值进行回顾性研究,由于下腰椎承受更多的机械负荷会导致椎骨的反应性增生和退行性改变,发现L3-L4节段T值差的绝对值大于1.0,说明2个椎体中至少有一个具有不可靠的T值。所以,相比于DXA,QCT骨密度测量是预测骨质疏松性骨折的有效工具[38-39],缺点就是辐射量大[23, 40-41],并且QCT测量的BMD值不受脊柱退行性变、血管钙化的干扰,并且在临床中行腰椎CT[42]、胸部CT[43-44]、腹部CT[45-46]检查时,可以同时测量腰椎骨密度值,来筛查骨质疏松症,所以QCT在诊断骨质疏松症方面有较高的应用价值。
所以,DXA不足以评估腰椎退行性疾病、椎体骨折患者的骨强度和骨折风险,其通过DXA扫描得出诊断的可信度值得怀疑[47-48]。笔者应根据患者的实际情况,综合分析患者的骨密度,尤其对于那些伴有外伤性骨折、脊柱退行性疾病患者,应结合患者的QCT检查[49]。
在本研究中的148名绝经后妇女中,笔者计算出QCT对骨质疏松症检出率为45.9%(68/148),DXA的检出率为26.4%(39/148),只有3名是通过DXA诊断为骨质疏松症,QCT诊断骨量正常或骨量减少,共有32名(21.6%)是通过QCT诊断为骨质疏松症的,而DXA结果为骨量减少或骨量正常;19例是通过QCT诊断为骨量减少,而DXA诊断为骨量正常,笔者发现,在QCT诊断级别高于DXA的上述51名受试者中,2例(2/32)为椎体压缩骨折,32例(32/32)均有腰椎退行性变(骨赘、终板硬化、韧带骨化或小关节骨关节炎),9例(9/32)有AAC,这表明QCT在检测患有腰椎退行性变和AAC等疾病的绝经后妇女骨质疏松方面敏感性优于DXA,如果只通过DXA来诊断骨质疏松症,可能会漏诊,延误治疗。腰椎退行性疾病是由腰椎结构退行性变引起的一组疾病,包括腰椎管狭窄症、腰椎滑脱、腰椎间盘突出症和退行性脊柱侧弯。腰椎退行性疾病会随着年龄的增长,其患病率也会增加,在DXA成像过程中,其获得的aBMD结果包括椎体的后部成分、腰椎退行性疾病所产生的骨赘、主动脉钙化在内所产生的伪影,导致单位扫描面积下(cm2)的骨矿含量(BMC)升高,所以通过DXA测量的腰椎BMD随着年龄的增长而明显增加,会造成假阴性结果。在本研究中笔者还发现椎体压缩骨折也会提高DXA测量的BMD值和T值,有不少由DXA诊断为骨质减少的患者中发生椎体骨折,导致骨质疏松的检出率下降,不能准确反映个体的骨密度值和骨折风险。所以上述观点表明,通过DXA获得腰椎BMD在诊断骨质疏松症以及预测骨折风险方面有局限性。
综上所述,在中国绝经后妇女中,QCT是测量骨密度的更敏感的选择方法。即使临床表现可能提示骨质疏松,DXA仍可能提示骨密度正常,这其中的原因可能是脊柱退行性改变( 如骨赘、椎体和椎小关节的骨质增生硬化、韧带骨化等) 和腹主动脉钙化、椎体骨折掩盖了DXA对脊柱骨密度的测量,使DXA测量的BMD值升高。
-
[1] Wang H,Naghavi M,Allen C,et al. Global,regional,and national life expectancy,all-cause mortality,and cause-specific mortality for 249 causes of death,1980-2015:A systematic analysis for the global burden of disease study 2015[J]. Lancet,2016,388(10053):1459-1544. doi: 10.1016/S0140-6736(16)31012-1 [2] Sung H,Ferlay J,Siegel R,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-A Cancer Journal For Clinicians,2021,70(4):1-41. [3] Ke H,Liang J,Zhang Y,et al. Conformational transition of fructose-1,6-bisphosphatase:Structure comparison between the AMP complex (T form) and the fructose 6-phosphate complex (R form)[J]. Biochemistry,1991,30(18):4412-4420. doi: 10.1021/bi00232a007 [4] Moon S,Kim J,Han J,et al. Novel compound heterozygous mutations in the fructose-1,6-bisphosphatase gene cause hypoglycemia and lactic acidosis[J]. Metablism,2011,60(1):107-113. doi: 10.1016/j.metabol.2009.12.021 [5] Gonzales P,Pisitkun T,Hoffert J,et al. Large-scale proteomics and phosphoproteomics of urinary exosomes[J]. J Am Soc Nephrol,2009,20(2):363-379. doi: 10.1681/ASN.2008040406 [6] Consortium T U. UniProt:A worldwide hub of protein knowledge[J]. Nucleic Acids Research,2019,47(1):D506-D515. doi: 10.1093/nar/gky1049 [7] Yánez A,Nualart F,Droppelmann C,et al. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney[J]. Journal of Cellular Physiology,2003,197(2):189-197. doi: 10.1002/jcp.10337 [8] X L,X W,J Z,et al. Warburg effect revisited:An epigenetic link between glycolysis and gastric carcinogenesis[J]. Oncogene,2010,29(3):442-450. doi: 10.1038/onc.2009.332 [9] Li J,Wang Y,Li Q G,et al. Downregulation of FBP1 promotes tumor metastasis and indicates poor prognosis in gastric cancer via regulating epithelial-mesenchymal transition[J]. PLoS One,2016,11(12):1-15. [10] Yu J,Li J,Chen Y,et al. Snail Enhances glycolysis in the epithelial-mesenchymal transition process by targeting FBP1 in gastric cancer[J]. Cell Physiol Biochem,2017,43(1):31-38. doi: 10.1159/000480314 [11] Li B,Qiu B,Lee D S,et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression[J]. Nature,2014,513(7517):251-255. doi: 10.1038/nature13557 [12] 洪正东,朱安义,王艳华,等. FBP1在肾透明细胞癌组织中的表达变化及意义[J]. 重庆医学,2018,47(14):44-47. [13] R C, X Z, G H, et al. Fructose 1, 6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma[J]. Contrast Media & Molecular Imaging, 2019, 2019(期?): 1-6.R C,X Z,G H,et al. Fructose 1,6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma[J]. Contrast Media & Molecular Imaging,2019,2019:1-6. [14] Zhu Y,Shi M,Chen H,et al. NPM1 activates metabolic changes by inhibiting FBP1 while promoting the tumorigenicity of pancreatic cancer cells[J]. Oncotarget,2015,6(25):21443-21451. doi: 10.18632/oncotarget.4167 [15] Chen L Y,Cheng C S,Qu C,et al. CBX3 promotes proliferation and regulates glycolysis via suppressing FBP1 in pancreatic cancer[J]. Biochem Biophys Res Commun,2018,500(3):691-697. doi: 10.1016/j.bbrc.2018.04.137 [16] Wang B,Fan P,Zhao J,et al. FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma[J]. J Exp Clin Cancer Res,2018,37(1):224-235. doi: 10.1186/s13046-018-0888-y [17] Jin X,Pan Y,Wang L,et al. Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction[J]. Cancer Research,2017,77(16):4328-4341. doi: 10.1158/0008-5472.CAN-16-3143 [18] C Y,S Z,H Y,et al. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1[J]. American Journal of Cancer Research,2019,9(8):1722-1733. [19] Chen M,Zhang J,Li N,et al. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer[J]. PLoS One,2011,6(10):1-8. [20] J Y,C W,F Z,et al. Loss of FBP1 facilitates aggressive features of hepatocellular carcinoma cells through the Warburg effect[J]. Carcinogenesis,2017,38(2):134-143. [21] Jin X,Pan Y,Wang L,et al. MAGE-TRIM28 complex promotes the warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation[J]. Oncogenesis,2017,6(4):1-12. [22] Ln Y,Zy N,L W,et al. HSF2 regulates aerobic glycolysis by suppression of FBP1 in hepatocellular carcinoma[J]. American Journal of Cancer Research,2019,9(8):1607-1621. [23] Liu G M,Li Q,Zhang P F,et al. Restoration of FBP1 suppressed Snail-induced epithelial to mesenchymal transition in hepatocellular carcinoma[J]. Cell Death Dis,2018,9(11):1132-1141. doi: 10.1038/s41419-018-1165-x [24] Zhang D,Li Z,Li T,et al. miR-517a promotes Warburg effect in HCC by directly targeting FBP1[J]. Onco Targets Ther,2018,2018(11):8025-8032. [25] Li Q,Wei P,Wu J,et al. The FOXC1/FBP1 signaling axis promotes colorectal cancer proliferation by enhancing the Warburg effect[J]. Oncogene,2019,38(4):483-496. doi: 10.1038/s41388-018-0469-8 [26] Iwatsuki M,Mimori K,Yokobori T,et al. Epithelial-mesenchymal transition in cancer development and its clinical significance[J]. Cancer Science,2010,101(2):293-299. doi: 10.1111/j.1349-7006.2009.01419.x [27] Dong C,Yuan T,Wu Y,et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer Cell,2013,23(3):316-331. doi: 10.1016/j.ccr.2013.01.022 [28] Li K, Ying M, Feng D, et al. Fructose-1, 6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer[J]. Biomed Pharmacother, 2016, 84(期?): 1144-1149.Li K,Ying M,Feng D,et al. Fructose-1,6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer[J]. Biomed Pharmacother,2016,84:1144-1149. [29] Shi L,He C,Li Z,et al. FBP1 modulates cell metabolism of breast cancer cells by inhibiting the expression of HIF-1alpha[J]. Neoplasma,2017,64(4):535-542. doi: 10.4149/neo_2017_407 [30] Fu D,Li J,Wei J,et al. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer[J]. Cell Commun Signal,2018,16(1):8-17. doi: 10.1186/s12964-018-0219-0 [31] Shi L,Zhao C,Pu H,et al. FBP1 expression is associated with basal-like breast carcinoma[J]. Oncol Lett,2017,13(5):3046-3056. doi: 10.3892/ol.2017.5860 [32] Chen J,Lee H-J,Wu X,et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain[J]. Cancer Research,2015,75(3):554-565. doi: 10.1158/0008-5472.CAN-14-2268 [33] Sheng H,Ying L,Zheng L,et al. Down expression of FBP1 is a negative prognostic factor for non-small-cell lung cancer[J]. Cancer Invest,2015,33(5):197-204. doi: 10.3109/07357907.2015.1020385 [34] Zhang J,Wang J,Xing H,et al. Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells[J]. Mol Cell Biochem,2016,411(1):331-340. [35] Dong Y,Huaying S,Danying W,et al. Significance of methylation of FBP1 gene in non-small cell lung cancer[J]. Biomed Res Int,2018,2018(9):1-9. [36] Dai Q,Li N,Zhou X. Increased miR-21a provides metabolic advantages through suppression of FBP1 expression in non-small cell lung cancer cells[J]. Am J Cancer Res,2017,7(11):2121-2130. -

计量
- 文章访问数: 2886
- HTML全文浏览量: 2735
- PDF下载量: 130
- 被引次数: 0