留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FBP1在癌症中的研究进展

李晓涛 王海峰 王剑松

李晓涛, 王海峰, 王剑松. FBP1在癌症中的研究进展[J]. 昆明医科大学学报, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237
引用本文: 李晓涛, 王海峰, 王剑松. FBP1在癌症中的研究进展[J]. 昆明医科大学学报, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237
Xiao-tao LI, Hai-feng WANG, Jian-song WANG. Advances on FBP1’s Role in Malignant Tumors[J]. Journal of Kunming Medical University, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237
Citation: Xiao-tao LI, Hai-feng WANG, Jian-song WANG. Advances on FBP1’s Role in Malignant Tumors[J]. Journal of Kunming Medical University, 2021, 42(12): 156-160. doi: 10.12259/j.issn.2095-610X.S20211237

FBP1在癌症中的研究进展

doi: 10.12259/j.issn.2095-610X.S20211237
基金项目: 国家自然科学基金资助项目(81960322);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202001AY070001-214);云南省教育科学研究基金资助项目(2020J0177)
详细信息
    作者简介:

    李晓涛(1987~),男,云南砚山人,在读博士研究生,主要从事膀胱肿瘤临床与基础研究工作

    通讯作者:

    王剑松,E-mail: jiansongwangkm@126.com

  • 中图分类号: R73

Advances on FBP1’s Role in Malignant Tumors

  • 摘要: FBP1作为糖异生过程的关键酶,控制糖异生的速率,催化1-6二磷酸果糖不可逆的水解成6-磷酸果糖和无机磷酸盐,从而能够控制糖异生速率,影响细胞糖酵解。近年来,其在癌症中的作用越来越受到重视。研究发现FBP1在多种肿瘤中表达异常,与肿瘤发生、发展及预后关系密切,这些结果对于肿瘤分子标记物、靶向药物研究、预后相关研究表现出良好的前景。
  • [1] Wang H,Naghavi M,Allen C,et al. Global,regional,and national life expectancy,all-cause mortality,and cause-specific mortality for 249 causes of death,1980-2015:A systematic analysis for the global burden of disease study 2015[J]. Lancet,2016,388(10053):1459-1544. doi: 10.1016/S0140-6736(16)31012-1
    [2] Sung H,Ferlay J,Siegel R,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA-A Cancer Journal For Clinicians,2021,70(4):1-41.
    [3] Ke H,Liang J,Zhang Y,et al. Conformational transition of fructose-1,6-bisphosphatase:Structure comparison between the AMP complex (T form) and the fructose 6-phosphate complex (R form)[J]. Biochemistry,1991,30(18):4412-4420. doi: 10.1021/bi00232a007
    [4] Moon S,Kim J,Han J,et al. Novel compound heterozygous mutations in the fructose-1,6-bisphosphatase gene cause hypoglycemia and lactic acidosis[J]. Metablism,2011,60(1):107-113. doi: 10.1016/j.metabol.2009.12.021
    [5] Gonzales P,Pisitkun T,Hoffert J,et al. Large-scale proteomics and phosphoproteomics of urinary exosomes[J]. J Am Soc Nephrol,2009,20(2):363-379. doi: 10.1681/ASN.2008040406
    [6] Consortium T U. UniProt:A worldwide hub of protein knowledge[J]. Nucleic Acids Research,2019,47(1):D506-D515. doi: 10.1093/nar/gky1049
    [7] Yánez A,Nualart F,Droppelmann C,et al. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney[J]. Journal of Cellular Physiology,2003,197(2):189-197. doi: 10.1002/jcp.10337
    [8] X L,X W,J Z,et al. Warburg effect revisited:An epigenetic link between glycolysis and gastric carcinogenesis[J]. Oncogene,2010,29(3):442-450. doi: 10.1038/onc.2009.332
    [9] Li J,Wang Y,Li Q G,et al. Downregulation of FBP1 promotes tumor metastasis and indicates poor prognosis in gastric cancer via regulating epithelial-mesenchymal transition[J]. PLoS One,2016,11(12):1-15.
    [10] Yu J,Li J,Chen Y,et al. Snail Enhances glycolysis in the epithelial-mesenchymal transition process by targeting FBP1 in gastric cancer[J]. Cell Physiol Biochem,2017,43(1):31-38. doi: 10.1159/000480314
    [11] Li B,Qiu B,Lee D S,et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression[J]. Nature,2014,513(7517):251-255. doi: 10.1038/nature13557
    [12] 洪正东,朱安义,王艳华,等. FBP1在肾透明细胞癌组织中的表达变化及意义[J]. 重庆医学,2018,47(14):44-47.
    [13] R C, X Z, G H, et al. Fructose 1, 6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma[J]. Contrast Media & Molecular Imaging, 2019, 2019(期?): 1-6.

    R C,X Z,G H,et al. Fructose 1,6-bisphosphatase 1 expression reduces 18F-FDG uptake in clear cell renal cell carcinoma[J]. Contrast Media & Molecular Imaging,2019,2019:1-6.
    [14] Zhu Y,Shi M,Chen H,et al. NPM1 activates metabolic changes by inhibiting FBP1 while promoting the tumorigenicity of pancreatic cancer cells[J]. Oncotarget,2015,6(25):21443-21451. doi: 10.18632/oncotarget.4167
    [15] Chen L Y,Cheng C S,Qu C,et al. CBX3 promotes proliferation and regulates glycolysis via suppressing FBP1 in pancreatic cancer[J]. Biochem Biophys Res Commun,2018,500(3):691-697. doi: 10.1016/j.bbrc.2018.04.137
    [16] Wang B,Fan P,Zhao J,et al. FBP1 loss contributes to BET inhibitors resistance by undermining c-Myc expression in pancreatic ductal adenocarcinoma[J]. J Exp Clin Cancer Res,2018,37(1):224-235. doi: 10.1186/s13046-018-0888-y
    [17] Jin X,Pan Y,Wang L,et al. Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction[J]. Cancer Research,2017,77(16):4328-4341. doi: 10.1158/0008-5472.CAN-16-3143
    [18] C Y,S Z,H Y,et al. USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1[J]. American Journal of Cancer Research,2019,9(8):1722-1733.
    [19] Chen M,Zhang J,Li N,et al. Promoter hypermethylation mediated downregulation of FBP1 in human hepatocellular carcinoma and colon cancer[J]. PLoS One,2011,6(10):1-8.
    [20] J Y,C W,F Z,et al. Loss of FBP1 facilitates aggressive features of hepatocellular carcinoma cells through the Warburg effect[J]. Carcinogenesis,2017,38(2):134-143.
    [21] Jin X,Pan Y,Wang L,et al. MAGE-TRIM28 complex promotes the warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation[J]. Oncogenesis,2017,6(4):1-12.
    [22] Ln Y,Zy N,L W,et al. HSF2 regulates aerobic glycolysis by suppression of FBP1 in hepatocellular carcinoma[J]. American Journal of Cancer Research,2019,9(8):1607-1621.
    [23] Liu G M,Li Q,Zhang P F,et al. Restoration of FBP1 suppressed Snail-induced epithelial to mesenchymal transition in hepatocellular carcinoma[J]. Cell Death Dis,2018,9(11):1132-1141. doi: 10.1038/s41419-018-1165-x
    [24] Zhang D,Li Z,Li T,et al. miR-517a promotes Warburg effect in HCC by directly targeting FBP1[J]. Onco Targets Ther,2018,2018(11):8025-8032.
    [25] Li Q,Wei P,Wu J,et al. The FOXC1/FBP1 signaling axis promotes colorectal cancer proliferation by enhancing the Warburg effect[J]. Oncogene,2019,38(4):483-496. doi: 10.1038/s41388-018-0469-8
    [26] Iwatsuki M,Mimori K,Yokobori T,et al. Epithelial-mesenchymal transition in cancer development and its clinical significance[J]. Cancer Science,2010,101(2):293-299. doi: 10.1111/j.1349-7006.2009.01419.x
    [27] Dong C,Yuan T,Wu Y,et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer[J]. Cancer Cell,2013,23(3):316-331. doi: 10.1016/j.ccr.2013.01.022
    [28] Li K, Ying M, Feng D, et al. Fructose-1, 6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer[J]. Biomed Pharmacother, 2016, 84(期?): 1144-1149.

    Li K,Ying M,Feng D,et al. Fructose-1,6-bisphosphatase is a novel regulator of Wnt/beta-Catenin pathway in breast cancer[J]. Biomed Pharmacother,2016,84:1144-1149.
    [29] Shi L,He C,Li Z,et al. FBP1 modulates cell metabolism of breast cancer cells by inhibiting the expression of HIF-1alpha[J]. Neoplasma,2017,64(4):535-542. doi: 10.4149/neo_2017_407
    [30] Fu D,Li J,Wei J,et al. HMGB2 is associated with malignancy and regulates Warburg effect by targeting LDHB and FBP1 in breast cancer[J]. Cell Commun Signal,2018,16(1):8-17. doi: 10.1186/s12964-018-0219-0
    [31] Shi L,Zhao C,Pu H,et al. FBP1 expression is associated with basal-like breast carcinoma[J]. Oncol Lett,2017,13(5):3046-3056. doi: 10.3892/ol.2017.5860
    [32] Chen J,Lee H-J,Wu X,et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain[J]. Cancer Research,2015,75(3):554-565. doi: 10.1158/0008-5472.CAN-14-2268
    [33] Sheng H,Ying L,Zheng L,et al. Down expression of FBP1 is a negative prognostic factor for non-small-cell lung cancer[J]. Cancer Invest,2015,33(5):197-204. doi: 10.3109/07357907.2015.1020385
    [34] Zhang J,Wang J,Xing H,et al. Down-regulation of FBP1 by ZEB1-mediated repression confers to growth and invasion in lung cancer cells[J]. Mol Cell Biochem,2016,411(1):331-340.
    [35] Dong Y,Huaying S,Danying W,et al. Significance of methylation of FBP1 gene in non-small cell lung cancer[J]. Biomed Res Int,2018,2018(9):1-9.
    [36] Dai Q,Li N,Zhou X. Increased miR-21a provides metabolic advantages through suppression of FBP1 expression in non-small cell lung cancer cells[J]. Am J Cancer Res,2017,7(11):2121-2130.
  • [1] 吴琼, 李娜, 徐瑜涓.  基于Citespace肝癌症状群文献可视化分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241109
    [2] 王海军, 邱良武, 习杨彦彬, 庞俊娣.  有氧运动干预慢性脑缺血学习记忆能力研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240328
    [3] 霍玉, 鞠云鹤, 王宇涛, 曾雅林, 梁俊峰.  DDX46在恶性肿瘤发生发展中的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241123
    [4] 李婷, 郭维华.  糖酵解重编程在口腔鳞状细胞癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230611
    [5] 王群, 孙雨欣, 王海峰.  脂滴表面蛋白perilipin家族在癌症中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230812
    [6] 王英宝, 李晓云, 谭莹, 杨萌, 史云强, 平秦榕, 胡礼炳, 杨洋, 王春晖.  青蒿素调控ENO2介导的肾透明细胞癌细胞有氧糖酵解的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231102
    [7] 张玮, 王保全, 雷喜锋, 王旭, 张梁.  miR-125b-5p调控HK2抑制胆囊癌细胞增殖和糖酵解, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221206
    [8] 曾怡, 廖云娟, 李颖, 何振坤.  达格列净治疗早期糖尿病肾病的疗效及对血清MCP-1、IL-6水平的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211218
    [9] 李晨, 马东艳, 李飞丽, 何敏, 杨娜, 麦晓蓉, 杨春梅.  基于表达性艺术治疗的女性癌症病房照护模式创新与实践, 昆明医科大学学报.
    [10] 杨荆, 王淑娴, 周竹.  有氧运动与营养管理对维持性血透患者营养不良的疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201123
    [11] 周灵, 左瑞玲, 马莉, 杨艳阳, 胡雪姣, 谢琳.  癌症患者化疗前焦虑对化疗后恶心呕吐的影响, 昆明医科大学学报.
    [12] 吴江, 王云华, 姚丽琴, 费严焰, 谢杉, 石涛.  情境式健康教育模式在癌症患者疼痛教育中的应用, 昆明医科大学学报.
    [13] 吴夕, 徐婷婷, 沈丽达, 谢琳, 胡凤娣, 龙庭凤, 董坚.  云南省贫困、偏远、少数民族聚集地区癌症相关危险因素现状调查, 昆明医科大学学报.
    [14] 沈志祥, 朱立勋, 徐伟红.  有氧运动对2型糖尿病大鼠AGE-RAGE轴及NF-κB通路的影响, 昆明医科大学学报.
    [15] 周玲, 钟琼, 王敏, 谭思, 刘永秀.  医联体医护一体化在癌症患者居家镇痛中的应用, 昆明医科大学学报.
    [16] 朱宇, 何易晓, 杨丽娟, 王芳.  钙离子稳态失调与癌症增殖转移关系的研究进展, 昆明医科大学学报.
    [17] 胡玉崇, 陆景坤, 崔梦瑶.  PTEN及Caspase-3可能参与卵巢癌铂类耐药的机制, 昆明医科大学学报.
    [18] 罗赛美.  癌症患者生命质量测定量表体系之前列腺癌量表QLICP-PR的条目筛选, 昆明医科大学学报.
    [19] 张照莉.  癌症患者心理痛苦动态评估及干预的实践, 昆明医科大学学报.
    [20] 李丹娜.  癌症患者生命质量的纵向研究现状, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2786
  • HTML全文浏览量:  2570
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-15
  • 刊出日期:  2021-12-25

目录

    /

    返回文章
    返回