Studies on Cisplatin Resistance of miR-181a in Ovarian Cancer Cells
-
摘要:
目的 探讨miR-181a在卵巢癌化疗抵抗方面的影响及其机制。 方法 qRT-PCR检测卵巢癌细胞A2780及A2780/DDP中miR-181a的表达;对A2780及A2780/DDP细胞分别进行miR-181a mimics和inhibitors的转染,并利用qRT-PCR技术验证;MTT法检测转染前后细胞对顺铂的敏感性,利用TargetScan、miRDB与miRwalk 3个MicroRNA靶基因数据库预测miR-181a下游靶点,并通过Western blot技术分析预测基因的表达。 结果 与A2780细胞相比,miR-181a在A2780/DDP细胞中的表达明显减弱(P < 0.05)。干扰miR-181a表达后,A2780细胞对顺铂的抵抗作用减弱(P < 0.05),而上调miR-181a表达,A2780/DDP细胞对顺铂的抵抗作用增强(P < 0.05)。通过TargetScan、miRDB、miRwalk三个数据库预测到PRKCD可作为miR-181a下游靶基因,下调miR-181a表达可使PRKCD蛋白表达明显增强(P < 0.05);反之,上调miR-181a表达能够显著抑制PRKCD蛋白表达(P < 0.05)。 结论 miR-181a卵巢癌细胞对顺铂的耐药性方面具有抑制作用。 Abstract:Objective To investigate the effect of miR-181a on chemotherapy resistance of ovarian cancer and its regulatory mechanism. Methods Real-time PCR was used to detect the expression of miR-181a in A2780 and cisplatin resistant cell lines (A2780/DDP), and siltation/overexpression changed the expression of miR-181a in A2780 and A2780/DDP cells. MTT method was used to determine the sensitivity of cells to cisplatin before and after the transfection. Three MicroRNA target gene databases, TargetScan, miRDB and miRwalk, were used to predict the downstream targets of miR-181a, and the changes in protein expression of target genes were analyzed by Western blot. Results Compared with A2780 cells, the expression of miR-181a in A2780/DDP cells was significantly decreased (P < 0.05). After the transfection of A2780 cells with miR-181a inhibitor (interfering with Mir-181A expression), the sensitivity of A2780 cells to cisplatin decreased (P < 0.05), and after the transfection of A2780/DDP cells with miR-181a mimic (overexpressing miR-181a), The sensitivity of cells to cisplatin was increased (P < 0.05). It was predicted that PRKCD could be used as the downstream target gene of miR-181a by TargetScan, miRDB and miRwalk databases, and down-regulation of miR-181a expression could significantly enhance PRKCD protein expression (P < 0.05). On the contrary, up-regulation of miR-181a significantly inhibited PRKCD protein expression (P < 0.05). Conclusion miR-181a may inhibit cisplatin resistance of ovarian cancer cell A2780 by regulating PRKCD. -
Key words:
- Ovarian cancer /
- PRKCD /
- miR-181a /
- Cisplatin resistance
-
系统性红斑狼疮(systemic lupus erythematosus,SLE)是一种慢性自身免疫性疾病,临床表现多样,可累及多个器官系统,包括肾脏、皮肤、关节、血液系统以及神经精神系统等[1-2]。肾脏损伤是系统性红斑狼疮最常见、最严重的表现之一。合并肾脏损伤的SLE患者可高达60%,未及时诊治可进展为严重性肾损伤和急慢性肾功能衰竭,导致SLE患者死亡率升高[3-4]。SLE合并肾损伤的临床表现包括蛋白尿、血尿以及肾功能不全等,其诊断金标准为肾脏活检。SLE肾损伤的发病机制包括先天性和适应性免疫系统的激活、自身抗体直接攻击、抗dsDNA抗体等形成的免疫复合物沉积于肾脏等[5]。本研究对296例SLE患者进行抗dsDNA抗体等自身抗体及其他实验室指标的检测,分析比较其差异,探讨各项指标在SLE肾损伤患者中的临床应用价值。
1. 资料与方法
1.1 一般资料
选取2014年至2019年昆明医科大学第一附属医院收治的SLE患者共296例,男性25例,女性271例,平均(36.51±13.98)岁。分为SLE合并肾损伤组和未合并肾损伤组,SLE合并肾损伤组患者74例,男性6例,女性68例,平均(35.09±14.46)岁;未合并肾损伤组患者222例,男性19例,女性203例,平均(36.98±13.81)岁。两组间年龄、性别比较,差异无统计学意义(P > 0.05)。
1.2 纳入和排除标准
纳入标准:所有患者符合1997年美国风湿病协会(american college of rheumatology,ACR)修订的SLE分类诊断标准[6]。
排除标准:妊娠和哺乳期、合并严重感染、合并其他自身免疫性疾病、合并严重脏器功能不全、恶性肿瘤等患者。
1.3 方法
患者入院后,取空腹静脉血2~3 mL,低温离心取上清,保存于−20 ℃备用。采用间接免疫荧光法以及免疫印迹法测量自身抗体;采用自动生化分析仪检测血常规、肝肾功能指标、免疫球蛋白IgG、IgM、IgA及补体C3、C4等实验室指标。
1.4 统计学处理
采用SPSS软件进行统计分析。呈正态分布或近似正态分布的计量资料以均数±标准差(
$\bar x \pm s $ )表示,两组间比较采用独立样本t检验;非正态分布的计量资料以四分位数表示,两组间比较采用非参数检验;计数资料以率(%)表示,采用χ2检验。P < 0.05为差异有统计学意义。2. 结果
2.1 自身抗体阳性率比较
SLE合并肾损伤组血清抗dsDNA抗体、抗核小体抗体及抗组蛋白抗体的阳性率显著高于未合并肾损伤组,差异有统计学意义(P < 0.05),抗U1-RNP抗体的阳性率显著低于未合并肾损伤组,差异有统计学意义(P < 0.05),两组血清ANA抗体、抗SmD1抗体、抗SSA-RO 60KD抗体、抗SSA-RO 52KD抗体及抗SSB-La抗体比较,差异无统计学意义(P > 0.05),见表1。
表 1 两组自身抗体阳性率比较[n(%)]Table 1. Comparison of the positive rate of autoantibodies between the two groups [n(%)]检测指标 SLE合并肾损伤组阳性例数 未合并肾损伤组阳性例数 χ2 P ANA抗体(n = 296) 73(98.6) 215(96.8) 0.171 0.679 抗dsDNA抗体(n = 296) 42(56.8) 73(32.9) 13.315 0.000 抗核小体抗体(n = 224) 41(69.5) 81(49.1) 7.293 0.007 抗组蛋白抗体(n = 224) 40(67.8) 81(49.1) 6.122 0.013 抗SmD1抗体(n = 296) 42(56.8) 124(55.9) 0.018 0.892 抗U1-RNP抗体(n = 296) 25(33.8) 107(48.2) 4.667 0.031 抗SSA-RO 60KD抗体(n = 296) 51(68.9) 139(62.6) 0.960 0.327 抗SSA-RO 52KD抗体(n = 296) 28(37.8) 101(45.5) 1.324 0.250 抗SSB-La抗体(n = 296) 16(21.6) 54(24.3) 0.225 0.636 2.2 其他各项实验室指标水平的比较
2.2.1 血液学检查指标水平比较
SLE合并肾损伤组血清白细胞、中性粒细胞水平显著高于未合并肾损伤组,差异有统计学意义(P < 0.05),红细胞、血红蛋白水平显著低于未合并肾损伤组,差异有统计学意义(P < 0.05),淋巴细胞、血小板水平比较,差异无统计学意义(P > 0.05),见表2。
表 2 两组血液学检查指标水平比较[M(P25,P75)]Table 2. Comparison of hematological indexes between the two groups [M(P25,P75)]检测指标 SLE合并肾损伤组(n = 74) 未合并肾损伤组(n = 222) Z/t P 白细胞(×109/L) 5.45(3.90,7.42) 4.52(3.18,5.91) −2.536 0.011 中性粒细胞(×109/L) 4.08(2.50,5.61) 2.97(1.85,4.33) −3.443 0.001 淋巴细胞(×109/L) 1.01(0.57,1.48) 1.05(0.67,1.45) −0.438 0.661 红细胞(×1012/L) 3.75(3.16,4.21) 4.02(3.54,4.48) −2.523 0.012 血红蛋白(g/L) 106(89,124.25) 115(97,130) −2.262 0.024 血小板[×109/L,($\bar x\pm s $)] 173.05 ± 83.72 187.19 ± 82.96 −1.267 0.206 2.2.2 其他实验室指标水平比较
SLE合并肾损伤组尿素、肌酐、尿酸、钾、氯、钙离子水平显著高于未合并肾损伤组,差异有统计学意义(P < 0.05),SLE合并肾损伤组总蛋白、白蛋白、球蛋白、ALT、AST、总胆红素、直接胆红素、间接胆红素、钠离子、免疫球蛋白IgG、IgA及补体C3水平显著低于未合并肾损伤组,差异有统计学意义(P < 0.05),IgM、C4,差异无统计学意义(P > 0.05),见表3。
表 3 两组其他实验室指标水平比较[M(P25,P75)]Table 3. Comparison of other laboratory indexes between the two groups [M(P25,P75)]检测指标 SLE合并肾损伤组(n = 74) 未合并肾损伤组(n = 222) Z P 总蛋白(g/L) 60.15(48.38,68.63) 67.30(58.98,73.68) −4.357 0.000 白蛋白(g/L) 27.05(22.33,34.10) 33.95(27.48,37.90) −5.001 0.000 球蛋白(g/L) 30.90(24.15,36.23) 32.05(27.40,38.30) −2.052 0.04 ALT(IU/L) 11.85(7.68,21.28) 15.40(10.59,26.05) −2.545 0.011 AST(IU/L) 18.10(13.28,27.65) 19.95(14.60,28.58) −1.368 0.171 总胆红素(μmol/L) 5.65(3.38,7.53) 6.65(4.70,9.88) −2.865 0.004 直接胆红素(μmol/L) 2.35(1.50,3.28) 3.00(2.18,4.70) −3.274 0.001 间接胆红素(μmol/L) 3.05(1.80,4.43) 3.40(2.20,5.33) −2.127 0.033 尿素(μmol/L) 6.78(4.24,11.88) 4.39(3.11,6.51) −4.686 0.000 肌酐(μmol/L) 79.15(59.43,144.58) 62.45(53.68,80.15) −4.235 0.000 尿酸(μmol/L) 391(301.55,506.33) 303.60(248.80,368.65) −4.909 0.000 钾(mmol/L) 3.99(3.76,4.54) 3.74(3.51,4.00) −5.034 0.000 钠(mmol/L) 139.55(136.55,142.33) 140.15(137.90,142.73) −1.384 0.166 氯(mmol/L) 106.85(104.05,110.08) 105.70(103.60,108.03) −2.059 0.039 钙(mmol/L) 2.05(1.95,2.18) 2.17(2.06,2.26) −3.969 0.000 IgG(g/L) 12(8.10,15.50) 13.80(10.10,18.80) −2.564 0.010 IgM(g/L) 0.96(0.69,1.41) 1.02(0.64,1.52) −0.542 0.588 IgA(g/L) 2.13(1.39,3.22) 2.22(1.58,3.29) −0.878 0.38 C3(g/L) 0.50(0.31,0.70) 0.65(0.43,0.86) −3.412 0.001 C4(g/L) 0.08(0.04,0.14) 0.10(0.05,0.16) −1.789 0.074 3. 讨论
SLE是一种累及多器官系统的自身免疫性疾病,肾脏受累最为常见。肾脏损伤是SLE最严重的表现之一,可出现肾小球、肾小管间质和肾脏血管的永久性损害,最终进展为终末期肾病[7]。早期的诊断和免疫抑制剂的治疗对于SLE肾损伤患者的预后起到关键性作用。SLE合并肾损伤的主要特征包括自身抗体的产生、免疫复合物沉积以及免疫介导的肾脏损伤,导致细胞增殖和凋亡增加,并诱发破坏正常肾单位的炎症和纤维化过程。自身抗体是SLE的重要临床特征,抗dsDNA抗体是SLE的特异性抗体,约70%的SLE患者可表现为阳性,而健康人群及其他自身免疫性疾病患者阳性率小于0.5%[8-9]。抗dsDNA抗体常与SLE肾损伤的发生相关,其水平通常与疾病活动相关[10-11]。有报道表明,在SLE患者中,针对核成分的自身抗体,抗dsDNA、抗核小体和抗组蛋白抗体同时阳性与SLE肾损伤的发病和活动性显著相关,可作为提示肾脏受累的一个重要性指标[12-13],与本研究结果一致。SLE合并肾损伤的患者体内产生抗dsDNA抗体,其通过与肾脏细胞表面蛋白结合,激活下游信号通路,释放炎症和纤维化介质,诱导炎症和纤维化过程[14-15]。有研究基于动物模型和SLE患者的数据,证实只有抗核小体抗体复合物,特别是抗DNA抗体复合物,而不是单一特异性抗体,才能在体内结合肾小球基底膜并诱发蛋白尿[16-17]。MRL/lpr狼疮小鼠肾小球沉积抗体的洗脱IgG中含有抗dsDNA、抗核小体和抗组蛋白抗体,这些抗体的数量与蛋白尿的发生呈正相关[18]。
SLE的发生和进展与机体的细胞免疫及体液免疫失衡相关,当机体免疫调节失衡时,机体的炎症指标、补体水平等实验室指标出现异常。许多研究结果表明,肾功能指标如血尿酸、肌酐与SLE肾损伤的发生呈正相关,其他免疫相关成分如补体C3、C4与其呈负相关[19-20]。本研究结果表明,SLE合并肾损伤组血清尿素、肌酐及尿酸水平显著高于未合并肾损伤组,补体C3水平显著低于未合并肾损伤组,可能对SLE的肾损伤的发生和预后评价起到重要作用。尿素、肌酐及尿酸等作为肾功能的主要检测指标可以直接、有效地反映SLE患者肾脏累及程度,但其对于早期肾脏损伤的提示不佳,易延误诊治[19]。补体C3是血清中含量最高的补体成分,主要是由巨噬细胞、淋巴组织等合成,与SLE的病情活动相关,SLE合并肾损伤组补体C3水平下降,机制可能为机体免疫失衡时,补体被激活,其与自身抗原抗体复合物结合并沉积,导致机体内补体被大量消耗[21]。
综上所述,抗dsDNA、抗核小体、抗组蛋白等自身抗体、补体C3及多项实验室指标水平与SLE患者肾损伤的发生密切相关,可作为评估SLE肾损伤的免疫学指标。
-
表 1 A2780细胞在不同浓度顺铂作用下的MTT数值
Table 1. MTT results of A2780 cells treated with different concentrations of Cisplatin
组别 药物浓度(μmol/L) 0 10 20 30 40 50 阴性对照组 96.48 ± 1.58 73.42 ± 1.82 52.36 ± 1.32 19.87 ± 2.63 11.28 ± 2.36 6.68 ± 1.72 低表达组 97.23 ± 1.22 86.72 ± 1.76* 79.52 ± 1.68* 69.86 ± 1.92* 49.62 ± 1.56* 20.27 ± 1.82* t −3.007 −12.026 −130.674 −121.951 −83.009 −235.386 P 0.10 0.01 < 0.001 < 0.001 < 0.001 < 0.001 与阴性对照组比较,*P < 0.05。 表 2 A2780/DDP细胞在不同浓度顺铂作用下的MTT数值
Table 2. MTT results of A2780/DDP cells treated with different concentrations of Cisplatin
组别 药物浓度(μmol/L) 0 10 20 30 40 50 阴性对照组 97.42 ± 1.42 92.85 ± 1.72 85.64 ± 1.87 82.48 ± 2.24 76.95 ± 1.98 61.12 ± 2.32 低表达组 97.16 ± 1.82 88.63 ± 1.87 84.72 ± 1.87 76.12 ± 1.87 59.72 ± 2.52 40.58 ± 2.78 t 1.126 48.728 0.6025 29.773 55.265 77.34 P 0.377 < 0.001 0.579 < 0.001 < 0.001 < 0.001 -
[1] Amjadi M,Hallaj T,Hildebrandt N. A sensitive homogeneous enzyme assay for euchromatic histone-lysine-N-methyltransferase 2 (G9a) based on terbium-to-quantum dot time-resolved FRET[J]. Bioimpacts,2021,11(3):173-179. [2] Giordano M,Decio A,Battistini C,et al. L1CAM promotes ovarian cancer stemness and tumor initiation via FGFR1/SRC/STAT3 signaling[J]. J ExpClin Cancer Res,2021,40(1):319. [3] Zhang X,Qin T,Zhu Z,et al. Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling[J]. Am J Med Sci,2020,359(2):123-129. [4] Hu Z,Cai M,Zhang Y,et al. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway[J]. Cell Cycle (Georgetown,Tex. ),2020,19(2):193-206. [5] Forouhari S,Mahmoudi E,Safdarian E,et al. MicroRNA:A Potential Diagnosis for Male Infertility[J]. Mini Rev Med Chem,2021,21(10):1226-1236. doi: 10.2174/1389557520999201209213319 [6] Kim J,You S. Samul-tang ameliorates oocyte damage due to cyclophosphamide-induced chronic ovarian dysfunction in mice[J]. Sci Rep,2020,10(1):21925. doi: 10.1038/s41598-020-79013-7 [7] Jacob H,Stanisavljevic L,Storli K E,et al. Identification of a sixteen-microRNA signature as prognostic biomarker for stage II and III colon cancer[J]. Oncotarget,2017,8(50):87837-87847. doi: 10.18632/oncotarget.21237 [8] Huang F L,Liao E C,Li C L,et al. Pathogenesis of pediatric B-cell acute lymphoblastic leukemia: Molecular pathways and disease treatments[J]. Oncol Lett,2020,20(1):448-454. doi: 10.3892/ol.2020.11583 [9] Al-Hazmi A. Antioxidant activity of silymarin in microcystin-LR cardiac and pulmonary induced injuries on mice[J]. Pak J Biol Sci,2020,23(11):1369-1373. doi: 10.3923/pjbs.2020.1369.1373 [10] Lei B,Huang Y,Zhou Z,et al. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression[J]. Cell Biochem,2019,120(4):6698-6708. doi: 10.1002/jcb.27966 [11] Abramson E,Hardman C,Shimizu A J,et al. Designed PKC-targeting bryostatin analogs modulate innate immunity and neuroinflammation[J]. Cell ChemBiol,2021,28(4):537-545.e4. [12] Ning Li,Long Bo,Zhang Wen,et al. Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer[J]. Int J Oncol,2018,53(6):2637-2646. [13] Giampaolino P,Della Corte L,Foreste V,et al. Unraveling a difficult diagnosis: The tricks for early recognition of ovarian cancer[J]. Minerva Med,2019,110(4):279-291. [14] Ni J,Zhang X,Li J,et al. Tumour-derived exosomal lncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts[J]. Cell Death Dis,2021,12(12):1131. [15] Ahn J H,Lee H S,Lee J S,et al. Nc886 is induced by TGF-β and suppresses the microRNA pathway in ovarian cancer[J]. Nat Commun,2018,9(1):1166. doi: 10.1038/s41467-018-07818-2 [16] 王皓,周宇. 微小RNA在肝胆胰疾病中作用的研究进展[J]. 实用肝脏病杂志,2011,14(2):155-157. doi: 10.3969/j.issn.1672-5069.2011.02.033 [17] De Paula Silva E,Marti L C,Andreghetto F M,et al. Extracellular vesicles cargo from head and neck cancer cell lines disrupt dendritic cells function and match plasma microRNAs[J]. Sci Rep,2021,11(1):18534. doi: 10.1038/s41598-021-97753-y [18] Gao Jianlong,Xia Silong. Reduced miR-519d-3p levels in the synovium and synovial fluid facilitate the progression of post-traumatic osteoarthritis by targeting VEGF[J]. Exp Ther Med,2021,22(6):1478. doi: 10.3892/etm.2021.10913 [19] 陈怡然. MicroRNA-181a靶向PRKCD调节子宫颈鳞癌化疗抵抗性的机制研究[D]. 上海: 复旦大学博士学位论文, 2013. [20] Ben-Mustapha I,Agrebi N,Barbouche M R. Novel insights into FAS defects underlying autoimmune lymphoproliferative syndrome revealed by studies in consanguineous patients[J]. J Leukoc Biol,2018,103(3):501-508. [21] Muscella A,Cossa L G,Vetrugno C,et al. Inhibition of ZL55 cell proliferation by ADP via PKC-dependent signalling pathway[J]. J Cell Physiol,2018,233(3):2526-2536. doi: 10.1002/jcp.26128 [22] Omarjee O,Picard C,Frachette C,et al. Monogenic lupus:Dissecting heterogeneity[J]. Autoimmun Rev,2019,18(10):102361. doi: 10.1016/j.autrev.2019.102361 [23] Munson M J,Mathai B J,Ng M Y W,et al. GAK and PRKCD are positive regulators of PRKN-independent mitophagy[J]. Nat Commun,2021,12(1):6101. doi: 10.1038/s41467-021-26331-7 [24] Chun K H,Cho S J,Lee J W,et al. Protein kinase C-δ interacts with and phosphorylates ARD1[J]. J Cell Physiol,2021,236(1):379-391. doi: 10.1002/jcp.29866 [25] Lothstein L,Soberman J,Parke D,et al. Pivarubicin is more effective than doxorubicin against triple-negative breast cancer in vivo[J]. Oncol Res,2020,28(5):451-465. doi: 10.3727/096504020X15898794315356 [26] Chen Y,Ke G,Han D,et al. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD[J]. Exp Cell Res,2014,320(1):12-20. doi: 10.1016/j.yexcr.2013.10.014 -