留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

α7-烟碱乙酰胆碱受体在肺癌发生、发展及治疗中的作用

罗巧 石宏 王绍波

罗巧, 石宏, 王绍波. α7-烟碱乙酰胆碱受体在肺癌发生、发展及治疗中的作用[J]. 昆明医科大学学报, 2022, 43(2): 145-149. doi: 10.12259/j.issn.2095-610X.S20220226
引用本文: 罗巧, 石宏, 王绍波. α7-烟碱乙酰胆碱受体在肺癌发生、发展及治疗中的作用[J]. 昆明医科大学学报, 2022, 43(2): 145-149. doi: 10.12259/j.issn.2095-610X.S20220226
Qiao LUO, Hong SHI, Shaobo WANG. Role of α7-nicotinic Acetylcholine Receptor in Occurrence,Development and Therapy of Lung Cancer[J]. Journal of Kunming Medical University, 2022, 43(2): 145-149. doi: 10.12259/j.issn.2095-610X.S20220226
Citation: Qiao LUO, Hong SHI, Shaobo WANG. Role of α7-nicotinic Acetylcholine Receptor in Occurrence,Development and Therapy of Lung Cancer[J]. Journal of Kunming Medical University, 2022, 43(2): 145-149. doi: 10.12259/j.issn.2095-610X.S20220226

α7-烟碱乙酰胆碱受体在肺癌发生、发展及治疗中的作用

doi: 10.12259/j.issn.2095-610X.S20220226
基金项目: 国家自然科学基金项目(81760306);云南省卫生高层次人才(医学学科带头人)(D-2018011);云南省“万人计划”青年拔尖人才项目(YNWR-QNBJ-2018-243)
详细信息
    作者简介:

    罗巧(1994~),女,四川遂宁人,在读硕士研究生,主要从事影像诊断工作

    通讯作者:

    石宏,E-mail:shih@kust.edu.cn

    王绍波,E-mail:15812082912@126.com

  • 中图分类号: R734

Role of α7-nicotinic Acetylcholine Receptor in Occurrence,Development and Therapy of Lung Cancer

  • 摘要: 烟碱乙酰胆碱受体(nAChRs)作为兴奋性和抑制性神经递质的中央调节器,控制癌细胞、癌微环境和远处转移生长因子、血管生成因子和神经营养因子的合成和释放。吸烟和其他潜在的不良环境和生活方式等因素上调nAChRs促癌作用并下调其抑癌作用。其中,α7-nAChR在肺癌细胞中高表达,并参与癌细胞的增殖、凋亡和迁移,有望成为肺癌治疗的一个新型靶点。
  • [1] Raso M G. N Bota-Rabassedas,Wistuba II Pathology and Classification of SCL[J]. C. Cancers (Basel),2021,13(4):820-831.
    [2] Pirker,R. Conquering lung cancer:current status and prospects for the future[J]. Pulmonology,2020,26(5):283-290. doi: 10.1016/j.pulmoe.2020.02.005
    [3] Sung H J, Ferlay R L, Siegel, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. 2021, 71(3): 209-249.
    [4] Albuquerque E X,Pereira E F,Alkondon M,et al. Mammalian nicotinic acetylcholine receptors:from structure to function[J]. Physiol Rev,2009,89(1):73-120. doi: 10.1152/physrev.00015.2008
    [5] Malhotra J M,Malvezzi E,Negri,et al. Risk factors for lung cancer worldwide[J]. Eur Respir J,2016,48(3):889-902. doi: 10.1183/13993003.00359-2016
    [6] Hecht S S. Lung carcinogenesis by tobacco smoke[J]. Int J Cancer,2012,131(12):2724-2732. doi: 10.1002/ijc.27816
    [7] Cheng W L,Chen K Y,Lee K Y,et al. Nicotinic-nAChR signaling mediates drug resistance in lung cancer[J]. J Cancer,2020,11(5):1125-1140. doi: 10.7150/jca.36359
    [8] Kalamida,Avramopoulou D. Muscle and neuronal nicotinic acetylcholine receptors. Structure,function and pathogenicity[J]. FEBS J,2007,274(15):3799-3845. doi: 10.1111/j.1742-4658.2007.05935.x
    [9] Otvos R A,Still K B M,Somsen G W,et al. Drug Discovery on Natural Products:From Ion Channels to nAChRs,from Nature to Libraries,from Analytics to Assays[J]. SLAS Discov,2019,24(3):362-385.
    [10] Changeux J P. The nicotinic acetylcholine receptor:the founding father of the pentameric ligand-gated ion channel superfamily[J]. J Biol Chem,2012,287(48):40207-40215. doi: 10.1074/jbc.R112.407668
    [11] Rao V R,Perez-Neut M,Kaja S,et al. Voltage-gated ion channels in cancer cell proliferation[J]. Cancers (Basel),2015,7(2):849-875. doi: 10.3390/cancers7020813
    [12] Shapovalov G ,Ritaine A,Skryma R,et al. Role of TRP ion channels in cancer and tumorigenesis[J]. Semin Immunopathol,2016,38(3):357-369. doi: 10.1007/s00281-015-0525-1
    [13] Zoli M,Pistillo F,Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain[J]. Neuropharmacology,2015,96(Pt B):302-311.
    [14] Saigoh K Y,Yamagishi Y,Saito,et al. Abnormally high levels of oxidized DJ-1 in cases of Parkinson’s disease (PD) and dementia with lewy bodies (DLB)[J]. Journal of the Neurological Sciences,2017,381:774-775.
    [15] Bordas A,Cedillo J L,Arnalich F,et al. Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers[J]. J Cancer,2017,8(40):67878.
    [16] Montano-Velazquez B B,Benavides Mendez J C,Garcia-Vazquez F J,et al. Influence of Tobacco Smoke Exposure on the Protein Expression of alpha7 and alpha4 Nicotinic Acetylcholine Receptors in Squamous Cell Carcinoma Tumors of the Upper Aerodigestive Tract (Out of the Larynx)[J]. Subst Abuse,2018,12:1-5.
    [17] Moerke M J,McMahon L R,Wilkerson J L. More than Smoke and Patches:The Quest for Pharmacotherapies to Treat Tobacco Use Disorder[J]. Pharmacol Rev,2020,72(2):527-557. doi: 10.1124/pr.119.018028
    [18] Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, et al. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? [J]. J Cell Physiol, 2019, 1-14.
    [19] Al-Wadei H A,Al-Wadei M H,Masi T,et al. Chronic exposure to estrogen and the tobacco carcinogen NNK cooperatively modulates nicotinic receptors in small airway epithelial cells[J]. Lung Cancer,2010,69(1):33-39. doi: 10.1016/j.lungcan.2009.09.011
    [20] Giastas P ,Zouridakis M,Tzartos S J. Understanding structure-function relationships of the human neuronal acetylcholine receptor:insights from the first crystal structures of neuronal subunits[J]. Br J Pharmacol,2018,175(11):1880-1891. doi: 10.1111/bph.13838
    [21] Whang Y M,Jo U,Sung J S,et al. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C[J]. PLoS One,2013,8(1):e53012. doi: 10.1371/journal.pone.0053012
    [22] Dasgupta P S,Rastogi S,Pillai,et al. Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways[J]. J Clin Invest,2006,116(8):2208-2217. doi: 10.1172/JCI28164
    [23] Tonini G, D’Onofrio L,Aquila Dell’ E,et al. New molecular insights in tobacco-induced lung cancer[J]. J Cancer,2013,9(5):649-655.
    [24] Xue J ,Yang S,Seng S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN[J]. Cancers (Basel),2014,6(2):1138-1156. doi: 10.3390/cancers6021138
    [25] Cattaneo M G,Codignola A,Vicentini L M,et al. Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma[J]. J Cancer,1993,53(22):5566-5568.
    [26] Jull B,Plummer H,Schuller H J J,et al. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway,resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells[J]. J Cancer,2001,127(12):707-717.
    [27] Gil-Ad I,Zolokov A,Lomnitski L,et al. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice[J]. J Cancer,2008,33(2):277-286.
    [28] Botello J F,Corral P,Bian T,et al. Kava and its Kavalactones Inhibit Norepinephrine-induced Intracellular Calcium Influx in Lung Cancer Cells[J]. Planta Med,2020,86(1):26-31.
    [29] Grisanti L A,Talarico J A,Carter R L,et al. beta-Adrenergic receptor-mediated transactivation of epidermal growth factor receptor decreases cardiomyocyte apoptosis through differential subcellular activation of ERK1/2 and Akt[J]. J Mol Cell Cardiol,2014,72:39-51. doi: 10.1016/j.yjmcc.2014.02.009
    [30] Munoz M, Recio S, Rosso M, et al. The antiproliferative action of [D-Arg (1), D-Phe (5), D-Trp (7, 9), LEU (11)] substance P analogue antagonist against smallcell-and non-small-cell lung cancer cells could be due to the pharmacological profile of its tachykinin receptor antagonist, 2015, 66(3): 421-426.
    [31] Schuller H M. Regulatory role of the alpha7nAChR in cancer[J]. Curr Drug Targets,2012,13(5):680-687. doi: 10.2174/138945012800398883
    [32] Noguchi M,Furukawa K T,Morimoto M. Pulmonary neuroendocrine cells:physiology,tissue homeostasis and disease[J]. Dis Model Mech,2020,13(12):20-37.
    [33] Shi X ,Yao J,Wang C,et al. alpha7 nicotinic acetylcholine receptor agonist attenuated the lipopolysaccharide-induced inflammatory response via inhibiting the activation of nuclear factor-KappaB][J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2017,29(4):300-305.
    [34] Tan A C. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC)[J]. Thorac Cancer,2020,11(3):511-518. doi: 10.1111/1759-7714.13328
    [35] Zhou J,Kwak K J,Wu Z,et al. PLAUR Confers Resistance to Gefitinib Through EGFR/P-AKT/Survivin Signaling Pathway[J]. Cell Physiol Biochem,2018,47(5):1909-1924. doi: 10.1159/000491071
    [36] Pillai S,Trevino J,Rawal B,et al. beta-arrestin-1 mediates nicotine-induced metastasis through E2F1 target genes that modulate epithelial-mesenchymal transition[J]. Cancer Res,2015,75(6):1009-1020. doi: 10.1158/0008-5472.CAN-14-0681
    [37] Schuller H M. The impact of smoking and the influence of other factors on lung cancer[J]. Expert Rev Respir Med,2019,13(8):761-769. doi: 10.1080/17476348.2019.1645010
    [38] Albert-Gasco H,Ros-Bernal F,Castillo-Gomez E,et al. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes[J]. Int J Mol Sci,2020,21(12):4471-4501.
    [39] Sun X D,Li S H,Ming Dong X Y,et al. Liquid adsorption and catalytic degradation of 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) by zeolite[J]. Microporous and Mesoporous Materials,2017,243:39-46. doi: 10.1016/j.micromeso.2017.01.041
    [40] Improgo M R,Tapper A R,Gardner P D. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer[J]. Biochem Pharmacol,2011,82(8):1015-1021. doi: 10.1016/j.bcp.2011.05.020
    [41] Wu C H,Lee C H,Ho Y S. Nicotinic acetylcholine receptor-based blockade:applications of molecular targets for cancer therapy[J]. Clin Cancer Res,2011,17(11):3533-3541. doi: 10.1158/1078-0432.CCR-10-2434
  • [1] 李锐成, 千红维, 范艳妮, 赵佩佩, 魏姗, 景花荣.  Logistic回归和人工神经网络在鉴别诊断肺癌性胸腔积液中的应用研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20241009
    [2] 黄群, 侯黎莉, 王德桂, 王召君, 吴思圆, 桑莹莹.  5A模式下主动循环呼吸技术训练在肺癌手术患者中的效果, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240627
    [3] 王缨, 傅聪, 傅颖.  肺癌患者血清LDH、CysC、PWR水平检测意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240424
    [4] 张江, 赵喜娟, 吴江, 杨秉坤, 杨妮, 周丽萍.  肺癌放疗患者衰弱现状及影响因素分析, 昆明医科大学学报.
    [5] 张洪波, 李振龙, 吕瑛, 张益绰, 裘翔铭, 黄婷婷.  单孔与双孔电视胸腔镜肺叶切除术治疗肺癌的临床疗效比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240419
    [6] 赛亚杰, 姚吕鑫, 程玲, 沈丽, 齐彩莲, 王兆霞, 牛华涛.  确诊初期肺癌患者照顾者的负担与患者生命意义的相关性分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230906
    [7] 李晨希, 查卓岑, 李娜, 罗琳, 杨扬, 陈文林.  三阳性乳腺癌的强化辅助治疗方案选择, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231020
    [8] 陆小华, 袁洪新.  BTLA、CTLA-4基因多态性与肝癌TACE联合靶向治疗疗效及预后相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230927
    [9] 张江, 赵喜娟, 吴江, 刘燕, 李丽娟, 陈晔.  家庭赋权护理干预方案在肺癌放疗患者中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211242
    [10] 刘畅, 李振华, 汪颖, 阮艳琴, 曲来昊, 李定彪.  肺癌MDT联合PBL + CBL模式在临床教学中的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210911
    [11] 宁明杰, 陈颖.  肺部微生态与肺癌的相关性研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210336
    [12] 宋飞, 向盈盈, 张纪贵, 车佳音, 李林, 黄明.  经桡动脉途径与股动脉途径介入治疗肺鳞癌的对比, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210921
    [13] 赵敏, 闭军强, 周永春, 张锦平, 罗镭.  9553例云南籍肺癌住院患者的疾病构成特征及变化趋势, 昆明医科大学学报.
    [14] 范敏娟, 钟云华, 沈雯, 袁开芬, 赵国厚, 王蜀昆, 温林俏.  肺癌中热休克转录因子2促进热休克蛋白的表达, 昆明医科大学学报.
    [15] 王洪.  前列腺素E2对COPD合并肺癌的致病机理, 昆明医科大学学报.
    [16] 贺小玉.  血清高半胱氨酸蛋白61及结缔组织生长因子水平与肺癌的进展关系, 昆明医科大学学报.
    [17] 潘龙芳.  PDCA管理方法在肺癌患者PICC质量控制中的应用, 昆明医科大学学报.
    [18] 马建强.  全胸腔镜微创肺癌根治术手术创伤的临床研究, 昆明医科大学学报.
    [19] 陈锦润.  3,4-苯并芘支气管灌注构建猪肺癌模型的实验研究, 昆明医科大学学报.
    [20] 陈贤玉.  曲妥珠单抗1治疗HER-2过表达乳腺癌的研究进展, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3467
  • HTML全文浏览量:  2004
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-05
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-03-04

目录

    /

    返回文章
    返回