|
[1]
|
Raso M G. N Bota-Rabassedas,Wistuba II Pathology and Classification of SCL[J]. C. Cancers (Basel),2021,13(4):820-831.
|
|
[2]
|
Pirker,R. Conquering lung cancer:current status and prospects for the future[J]. Pulmonology,2020,26(5):283-290. doi: 10.1016/j.pulmoe.2020.02.005
|
|
[3]
|
Sung H J, Ferlay R L, Siegel, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. 2021, 71(3): 209-249.
|
|
[4]
|
Albuquerque E X,Pereira E F,Alkondon M,et al. Mammalian nicotinic acetylcholine receptors:from structure to function[J]. Physiol Rev,2009,89(1):73-120. doi: 10.1152/physrev.00015.2008
|
|
[5]
|
Malhotra J M,Malvezzi E,Negri,et al. Risk factors for lung cancer worldwide[J]. Eur Respir J,2016,48(3):889-902. doi: 10.1183/13993003.00359-2016
|
|
[6]
|
Hecht S S. Lung carcinogenesis by tobacco smoke[J]. Int J Cancer,2012,131(12):2724-2732. doi: 10.1002/ijc.27816
|
|
[7]
|
Cheng W L,Chen K Y,Lee K Y,et al. Nicotinic-nAChR signaling mediates drug resistance in lung cancer[J]. J Cancer,2020,11(5):1125-1140. doi: 10.7150/jca.36359
|
|
[8]
|
Kalamida,Avramopoulou D. Muscle and neuronal nicotinic acetylcholine receptors. Structure,function and pathogenicity[J]. FEBS J,2007,274(15):3799-3845. doi: 10.1111/j.1742-4658.2007.05935.x
|
|
[9]
|
Otvos R A,Still K B M,Somsen G W,et al. Drug Discovery on Natural Products:From Ion Channels to nAChRs,from Nature to Libraries,from Analytics to Assays[J]. SLAS Discov,2019,24(3):362-385.
|
|
[10]
|
Changeux J P. The nicotinic acetylcholine receptor:the founding father of the pentameric ligand-gated ion channel superfamily[J]. J Biol Chem,2012,287(48):40207-40215. doi: 10.1074/jbc.R112.407668
|
|
[11]
|
Rao V R,Perez-Neut M,Kaja S,et al. Voltage-gated ion channels in cancer cell proliferation[J]. Cancers (Basel),2015,7(2):849-875. doi: 10.3390/cancers7020813
|
|
[12]
|
Shapovalov G ,Ritaine A,Skryma R,et al. Role of TRP ion channels in cancer and tumorigenesis[J]. Semin Immunopathol,2016,38(3):357-369. doi: 10.1007/s00281-015-0525-1
|
|
[13]
|
Zoli M,Pistillo F,Gotti C. Diversity of native nicotinic receptor subtypes in mammalian brain[J]. Neuropharmacology,2015,96(Pt B):302-311.
|
|
[14]
|
Saigoh K Y,Yamagishi Y,Saito,et al. Abnormally high levels of oxidized DJ-1 in cases of Parkinson’s disease (PD) and dementia with lewy bodies (DLB)[J]. Journal of the Neurological Sciences,2017,381:774-775.
|
|
[15]
|
Bordas A,Cedillo J L,Arnalich F,et al. Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers[J]. J Cancer,2017,8(40):67878.
|
|
[16]
|
Montano-Velazquez B B,Benavides Mendez J C,Garcia-Vazquez F J,et al. Influence of Tobacco Smoke Exposure on the Protein Expression of alpha7 and alpha4 Nicotinic Acetylcholine Receptors in Squamous Cell Carcinoma Tumors of the Upper Aerodigestive Tract (Out of the Larynx)[J]. Subst Abuse,2018,12:1-5.
|
|
[17]
|
Moerke M J,McMahon L R,Wilkerson J L. More than Smoke and Patches:The Quest for Pharmacotherapies to Treat Tobacco Use Disorder[J]. Pharmacol Rev,2020,72(2):527-557. doi: 10.1124/pr.119.018028
|
|
[18]
|
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, et al. Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: Friends or foes? [J]. J Cell Physiol, 2019, 1-14.
|
|
[19]
|
Al-Wadei H A,Al-Wadei M H,Masi T,et al. Chronic exposure to estrogen and the tobacco carcinogen NNK cooperatively modulates nicotinic receptors in small airway epithelial cells[J]. Lung Cancer,2010,69(1):33-39. doi: 10.1016/j.lungcan.2009.09.011
|
|
[20]
|
Giastas P ,Zouridakis M,Tzartos S J. Understanding structure-function relationships of the human neuronal acetylcholine receptor:insights from the first crystal structures of neuronal subunits[J]. Br J Pharmacol,2018,175(11):1880-1891. doi: 10.1111/bph.13838
|
|
[21]
|
Whang Y M,Jo U,Sung J S,et al. Wnt5a is associated with cigarette smoke-related lung carcinogenesis via protein kinase C[J]. PLoS One,2013,8(1):e53012. doi: 10.1371/journal.pone.0053012
|
|
[22]
|
Dasgupta P S,Rastogi S,Pillai,et al. Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways[J]. J Clin Invest,2006,116(8):2208-2217. doi: 10.1172/JCI28164
|
|
[23]
|
Tonini G, D’Onofrio L,Aquila Dell’ E,et al. New molecular insights in tobacco-induced lung cancer[J]. J Cancer,2013,9(5):649-655.
|
|
[24]
|
Xue J ,Yang S,Seng S. Mechanisms of Cancer Induction by Tobacco-Specific NNK and NNN[J]. Cancers (Basel),2014,6(2):1138-1156. doi: 10.3390/cancers6021138
|
|
[25]
|
Cattaneo M G,Codignola A,Vicentini L M,et al. Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma[J]. J Cancer,1993,53(22):5566-5568.
|
|
[26]
|
Jull B,Plummer H,Schuller H J J,et al. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway,resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells[J]. J Cancer,2001,127(12):707-717.
|
|
[27]
|
Gil-Ad I,Zolokov A,Lomnitski L,et al. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice[J]. J Cancer,2008,33(2):277-286.
|
|
[28]
|
Botello J F,Corral P,Bian T,et al. Kava and its Kavalactones Inhibit Norepinephrine-induced Intracellular Calcium Influx in Lung Cancer Cells[J]. Planta Med,2020,86(1):26-31.
|
|
[29]
|
Grisanti L A,Talarico J A,Carter R L,et al. beta-Adrenergic receptor-mediated transactivation of epidermal growth factor receptor decreases cardiomyocyte apoptosis through differential subcellular activation of ERK1/2 and Akt[J]. J Mol Cell Cardiol,2014,72:39-51. doi: 10.1016/j.yjmcc.2014.02.009
|
|
[30]
|
Munoz M, Recio S, Rosso M, et al. The antiproliferative action of [D-Arg (1), D-Phe (5), D-Trp (7, 9), LEU (11)] substance P analogue antagonist against smallcell-and non-small-cell lung cancer cells could be due to the pharmacological profile of its tachykinin receptor antagonist, 2015, 66(3): 421-426.
|
|
[31]
|
Schuller H M. Regulatory role of the alpha7nAChR in cancer[J]. Curr Drug Targets,2012,13(5):680-687. doi: 10.2174/138945012800398883
|
|
[32]
|
Noguchi M,Furukawa K T,Morimoto M. Pulmonary neuroendocrine cells:physiology,tissue homeostasis and disease[J]. Dis Model Mech,2020,13(12):20-37.
|
|
[33]
|
Shi X ,Yao J,Wang C,et al. alpha7 nicotinic acetylcholine receptor agonist attenuated the lipopolysaccharide-induced inflammatory response via inhibiting the activation of nuclear factor-KappaB][J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue,2017,29(4):300-305.
|
|
[34]
|
Tan A C. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC)[J]. Thorac Cancer,2020,11(3):511-518. doi: 10.1111/1759-7714.13328
|
|
[35]
|
Zhou J,Kwak K J,Wu Z,et al. PLAUR Confers Resistance to Gefitinib Through EGFR/P-AKT/Survivin Signaling Pathway[J]. Cell Physiol Biochem,2018,47(5):1909-1924. doi: 10.1159/000491071
|
|
[36]
|
Pillai S,Trevino J,Rawal B,et al. beta-arrestin-1 mediates nicotine-induced metastasis through E2F1 target genes that modulate epithelial-mesenchymal transition[J]. Cancer Res,2015,75(6):1009-1020. doi: 10.1158/0008-5472.CAN-14-0681
|
|
[37]
|
Schuller H M. The impact of smoking and the influence of other factors on lung cancer[J]. Expert Rev Respir Med,2019,13(8):761-769. doi: 10.1080/17476348.2019.1645010
|
|
[38]
|
Albert-Gasco H,Ros-Bernal F,Castillo-Gomez E,et al. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes[J]. Int J Mol Sci,2020,21(12):4471-4501.
|
|
[39]
|
Sun X D,Li S H,Ming Dong X Y,et al. Liquid adsorption and catalytic degradation of 4-methylnitrosamino-1-3-pyridyl-1-butanone (NNK) by zeolite[J]. Microporous and Mesoporous Materials,2017,243:39-46. doi: 10.1016/j.micromeso.2017.01.041
|
|
[40]
|
Improgo M R,Tapper A R,Gardner P D. Nicotinic acetylcholine receptor-mediated mechanisms in lung cancer[J]. Biochem Pharmacol,2011,82(8):1015-1021. doi: 10.1016/j.bcp.2011.05.020
|
|
[41]
|
Wu C H,Lee C H,Ho Y S. Nicotinic acetylcholine receptor-based blockade:applications of molecular targets for cancer therapy[J]. Clin Cancer Res,2011,17(11):3533-3541. doi: 10.1158/1078-0432.CCR-10-2434
|