Preparation and Stability of Influenza Vaccine Liposomes Modified by PEG6000
-
摘要:
目的 筛选出PEG6000流感疫苗脂质体的最佳制备工艺并且评价其稳定性。 方法 将小鼠免疫7 d,通过MTT法确定加入PEG6000的最佳摩尔百分比和最佳制备工艺。采用冻融冻干法制备PEG修饰的流感疫苗脂质体,将样品分别储存于不同温度[4 ℃、(25±2) ℃、(37±2) ℃]下,在设定时间取样测定包封率、胸腺指数和抗体滴度,考察其物理和生物稳定性。 结果 MTT实验结果表明,PEG6000占磷脂摩尔百分比为4%时为最佳用量(P < 0.01),最佳工艺为后修饰法。PEG6000修饰的流感疫苗脂质体冻干粉在(37±2) ℃条件下放置6个月后,包封率仍在80%以上;在(25±2) ℃放置3个月后抗体滴度比 > 4,表明仍具有较好的免疫效应。 结论 PEG6000占磷脂摩尔百分比为4%时为最佳用量,采用后修饰法制备为最佳工艺;PEG6000脂质体具有良好的物理稳定性及生物稳定性。 Abstract:Objective To screen out the best method of PEG6000 modified liposomes for influenza vaccine and evaluate its stability. Methods After 7 d of immunization, the optimal molar percentage of PEG6000 and the optimal preparation method were assumed by MTT method. The PEG-modified influenza vaccine liposomes were prepared by freeze-thaw freeze-drying method. The samples were stored at different temperatures (4 ℃, 25±2 ℃, 37±2 ℃), and the encapsulation rate and thymus index and antibody titer were measured at a fixed time. So the physical and biological stability of the samples were investigated. Results The MTT experiment showed that PEG6000 was the best dosage when the molar percentage of phospholipid was 4% (P < 0.01), and the best process was post-modification method.The entrapment rate of PEG6000 modified liposome for influenza vaccine was still higher than 80% when stocked at 37±2 ℃ for 6 months.At 25±2 ℃ for 3 months, the antibody titer was more than 4, indicating that the antibody still had nice immune effection. Conclusions PEG6000 best dosage of phospholipid when the molar percentage of PEG6000 is 4%, and post-modification method is the best preparation process. PEG6000 liposome has nice physical stability and biological stability. -
Key words:
- Liposomes /
- PEG6000 /
- Influenza vaccine /
- Stability
-
表 1 7 d 时的刺激指数[n = 5,(
$ \bar x \pm s $ )]Table 1. SI on 7 d [n = 5,(
$ \bar x \pm s $ )]分组 刺激指数SI值 F P PEG6000占磷脂的百分摩尔比 2% 1.3317 ± 0.0364△# 119.404 < 0.001* PEG6000占磷脂的百分摩尔比4% 1.5943 ± 0.0184△ PEG6000占磷脂的百分摩尔比 6% 1.4141 ± 0.0257△## PBS 阴性对照组 1.0458 ± 0.8870## 中性脂质体 1.3307 ± 0.0946△## 疫苗原液组 1.2421 ± 0.0459△## *P < 0.05。与PBS阴性对照组比较,△P < 0.05;与PEG6000占磷脂的百分摩尔比4%比较,##P < 0.05。 表 2 7 d 时的刺激指数[n = 5,(
$ \bar x \pm s $ )]Table 2. SI on 7 d [n = 5,(
$ \bar x \pm s $ )]分组 刺激指数SI值 F P PEG6000共成膜组 1.2629 ± 0.0350△## 7.643 < 0.001* PEG6000后修饰组 1.3407 ± 0.0210△ 疫苗原液组 1.0808 ± 0.0410△## 中性脂质体组 1.1647 ± 0.0450△## PBS阴性对照组 1.0335 ± 0.0070## *P < 0.05。与PBS阴性对照组比较,△P < 0.05;与PEG6000后修饰组比较,##P < 0.05。 表 3 PEG6000修饰的流感疫苗脂质体的包封率(%)
Table 3. The encapsulation rate of PEG-modifed influenza vaccine liposome
温度(℃) 时间(月) PEG6000冻干粉r PEG6000混悬液 4 0 95.51 62.40 1 91.17 67.02 2 86.54 60.35 6 82.20 28.18 25 ± 2 0 95.69 68.08 1 95.38 55.16 2 95.27 42.27 6 86.54 35.02 37 ± 2 0 97.43 70.86 1 95.65 65.81 2 93.12 65.69 6 83.83 0.14 表 4 PEG修饰的流感疫苗脂质体的胸腺指数(%)
Table 4. The thymus index of PEG-modified influenza vaccine liposome (%)
温度(℃) 时间(月) PBS 中性脂质体组 PEG6000脂质体组 疫苗原液组 4 1 4.98 6.04 6.14 4.77 2 4.49 5.69 5.99 5.13 3 4.22 5.29 5.32 5.07 6 3.89 4.62 4.90 5.16 25 ± 2 1 4.98 6.04 - 4.77 2 4.49 5.69 - 5.13 3 4.22 5.29 5.33 5.06 6 3.89 4.62 4.85 5.16 表 5 PEG 修饰的流感疫苗脂质体的抗体滴度比
Table 5. The antibody titer ratio of PEG-modified influenza vaccine liposome
温度
(℃)时间
(月)原液 中性脂质
体组PEG6000脂
质体组4 1 5.78 4.44 4.44 2 5.54 3.98 4.19 3 5.71 4.14 4.46 25 ± 2 1 5.78 4.17 4.37 2 5.54 4.06 4.34 3 5.71 3.98 4.05 免后免前抗体滴度 > 4表明具有免疫效应。 -
[1] Wang N,Chen M,Wang T. Liposomes used as a vaccine adjuvant-delivery system:From basics to clinical immunization[J]. Journal of Controlled Release,2019,303(4):130-150. [2] Chen L,Wu Z,Wu X,et al. The application of coarse-grained molecular dynamics to the evaluation of liposome physical stability[J]. AAPS Pharm Sci Tech,2020,21(5):2-8. [3] Shao X,Wei X,Zhang S,et al. Effects of micro-environmental pH of liposome on chemical stability of loaded drug[J]. Nanoscale Research Letters,2017,12(1):2-8. doi: 10.1186/s11671-016-1772-3 [4] 余荧蓝,郑智元,伊宸辰,等. 青蒿素长循环脂质体的制备及体外性质评价[J]. 药学学报,2018,53(6):1002-1008. [5] 王甫,李芳,李艳春,等. 聚乙二醇6000合成工艺的热危险性[J]. 爆破器材,2021,50(3):1-6. doi: 10.3969/j.issn.1001-8352.2021.03.001 [6] Harandi A M. Systems analysis of human vaccine adjuvants[J]. Seminars in Immunology,2018,39(1):30-34. [7] Yoshizawa Y,Kono Y,Ogawara K,et al. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy[J]. International Journal of Pharmaceutics,2011,412(1-2):132-141. doi: 10.1016/j.ijpharm.2011.04.008 [8] Ibaraki H,Takeda A,Arima N,et al. In vivo fluorescence imaging of passive inflammation site accumulation of liposomes via intravenous administration focused on their surface charge and PEG modification[J]. Pharmaceutics,2021,13(1):104. doi: 10.3390/pharmaceutics13010104 [9] 张勇,李娟,肖波,等. PEG修饰水飞蓟素脂质体的制备及体外释放研究[J]. 药学与临床研究,2010,18(3):239-242. doi: 10.3969/j.issn.1673-7806.2010.03.012 [10] 陈涛,王昭,傅经国,商澎. 聚乙二醇修饰脂质体研究[J]. 世界最新医学信息文摘,2003,2(5):801-805. [11] 鲁卫东,林意菊,马波,等. 流感疫苗脂质体干粉的稳定性[J]. 中国药科大学学报,2010,41(4):360-362. doi: 10.11665/j.issn.1000-5048.20100413 [12] Yokoe J,Sakuragi S,Yamamoto K,et al. Albumin-conjugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats[J]. International Journal of Pharmaceutics,2008,353(1-2):28-34. doi: 10.1016/j.ijpharm.2007.11.008 [13] 鲁卫东,林意菊,代云波,等. 流感疫苗脂质体冻干粉的制备及其免疫原性[J]. 中国药科大学学报,2009,40(3):218-221. doi: 10.3321/j.issn:1000-5048.2009.03.006 [14] 乔建斌,陈娜,李强,等. 流感疫苗壳聚糖脂质体的制备工艺[J]. 昆明医科大学学报,2014,35(4):38-40. [15] 国家药典委员会. 中华人民共和国药典[M]. 三部, 北京: 中国医药科技出版社, 2020: 1088 [16] 吴晶晶,吴楠,岳华,等. 壳聚糖季铵盐微球作为注射疫苗佐剂的安全性评价[J]. 过程工程学报,2016,16(4):647-653. doi: 10.12034/j.issn.1009-606X.215427 [17] 高文慧,陈美华,曹雨酥,等. 长循环吗啡脂质体的制备及质量评价[J]. 中国药师,2020,23(4):643-647. doi: 10.3969/j.issn.1008-049X.2020.04.008 [18] 王宏宇,古金元,彭涛,等. 脂质体作为免疫增强剂在动物疾病防治方面的应用现状[J]. 动物医学进展,2019,40(5):106-109. [19] Sadzuka Y,Kishi K,Hirota S,et al. Effect of Polyethyleneglycol (PEG) chain on cell uptake of PEG-modified liposomes[J]. Journal of Liposome Research,2003,13(2):157-172. [20] Zhao Y, Zheng H, Wang X, et al. Preparation and biological property evaluation of novel cationic lipid-based liposomes for efficient gene delivery[J]. AAPS PharmSciTech, 2021, 22(1): DOI: 10.1208/s12249-020-01868-w. [21] 李雨欣,陈琳,李娟,等. 聚乙二醇修饰白藜芦醇脂质体的特性及其抗肿瘤实验研究[J]. 陕西师范大学学报(自然科学版),2020,48(1):92-98. [22] Dan N. Effect of liposome charge and PEG polymer layer thickness on cell–liposome electrostatic interactions[J]. Biochimica et Biophysica Acta. Biomembranes,2002,1564(2):343-348. doi: 10.1016/S0005-2736(02)00468-6 [23] Lee J S,Hwang S Y,Lee E K. Imaging-based analysis of liposome internalization to macrophage cells:Effects of liposome size and surface modification with PEG moiety[J]. Colloids and Surfaces B:Biointerfaces,2015,136(2):786-790. [24] 张壮丽,汪婉莹,赵璐丹,等. 聚乙二醇修饰鱼腥草挥发油脂质体的制备与评价[J]. 中药材,2020,43(11):2763-2767. [25] Pasquale A,Preiss S,Silva F,et al. Vaccine adjuvants:from 1920 to 2015 and beyond[J]. Vaccines,2015,3(2):320-343. [26] Yan Zhuang A Y M A C. PEGylated cationic liposomes robustly augment vaccine-induced immune responses:Role of lymphatic trafficking and biodistribution[J]. Journal of Controlled Release,2012(159):135-142.