留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫利达嗪抗宫颈癌的潜在作用机制

谢芹 赵春阳 张葆溯 赵洪波

谢芹, 赵春阳, 张葆溯, 赵洪波. 硫利达嗪抗宫颈癌的潜在作用机制[J]. 昆明医科大学学报, 2022, 43(3): 13-20. doi: 10.12259/j.issn.2095-610X.S20220317
引用本文: 谢芹, 赵春阳, 张葆溯, 赵洪波. 硫利达嗪抗宫颈癌的潜在作用机制[J]. 昆明医科大学学报, 2022, 43(3): 13-20. doi: 10.12259/j.issn.2095-610X.S20220317
Qin XIE, Chunyang ZHAO, Baosu ZHANG, Hongbo ZHAO. Potential Mechanism of Thioridazine in Anti-cervical Cancer[J]. Journal of Kunming Medical University, 2022, 43(3): 13-20. doi: 10.12259/j.issn.2095-610X.S20220317
Citation: Qin XIE, Chunyang ZHAO, Baosu ZHANG, Hongbo ZHAO. Potential Mechanism of Thioridazine in Anti-cervical Cancer[J]. Journal of Kunming Medical University, 2022, 43(3): 13-20. doi: 10.12259/j.issn.2095-610X.S20220317

硫利达嗪抗宫颈癌的潜在作用机制

doi: 10.12259/j.issn.2095-610X.S20220317
基金项目: 云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202101AY070001-075);云南省教育厅科学研究基金资助项目(2021J0226)
详细信息
    作者简介:

    谢芹(1997~),女,四川安岳人,在读硕士研究生,主要从事生物信息,网络药理学研究工作

    通讯作者:

    赵洪波,E-mail:zhaohongbo@kmmu.edu.cn

  • 中图分类号: R737.3

Potential Mechanism of Thioridazine in Anti-cervical Cancer

  • 摘要:   目的  运用生物信息学分析, 探讨硫利达嗪抗宫颈癌的潜在作用机制。  方法  通过PharmMapper工具预测能够与硫利达嗪相互作用的靶基因,然后使用STRING在线工具对靶基因进行通路和组织表达富集分析。使用GeneCards和DisGeNET数据库筛选宫颈癌相关基因,与硫利达嗪的靶基因取交集,得到硫利达嗪可能作用于宫颈癌的交互基因。通过STRING构建蛋白互作(PPI)网络,推测核心靶点,评估其重要性。使用clusterProfiler软件进行GO和KEGG通路分析。  结果  通过PharmMapper预测得到47个靶基因,富集到肿瘤相关通路和宫颈癌细胞。与669个宫颈癌基因取交集,获得硫利达嗪和宫颈癌交互基因21个,其中10个关键节点基因为EGFR、PPARG、AR、NOS3、ALB、ESR1、MAPK1、MAPK14、ANXA5和MAPK8,且在宫颈癌PPI网络中处于重要位置。交互基因涉及到的生物进程主要有负离子转运的正调控、丝氨酸肽基磷酸化、类固醇代谢过程、血液凝固、细胞对化学应激的反应等。富集的KEGG通路包括调控癌症通路、松弛素信号通路、内分泌耐药、蛋白聚糖与肿瘤、细胞衰老、GnRH信号通路和VEGF信号通路等。  结论  硫利达嗪具有潜在的抗肿瘤作用,可能通过多靶点和多信号通路的方式在宫颈癌的治疗上发挥作用。
  • 图  1  宫颈癌基因和硫利达嗪靶基因的Upset图

    Figure  1.  Upset map of cervical cancer genes and thioridazine target genes

    图  2  交互基因的蛋白互作网络图

    Figure  2.  PPI network of interacting genes

    图  3  关键靶基因的蛋白互作网络图

    Figure  3.  PPI network of key target genes

    图  4  GO富集分析结果

    Figure  4.  Results of GO enrichment analysis

    图  5  KEGG通路富集分析结果

    Figure  5.  Results of KEGG pathway enrichment analysis

    表  1  排名前10的靶基因通路分析结果

    Table  1.   Top10 pathways results of target genes

    ID号名称基因数FDR
    hsa04926松弛素信号通路91.50E-08
    hsa05200肿瘤通路134.88E-08
    hsa01522内分泌耐药76.70E-07
    hsa05205蛋白聚糖与肿瘤83.01E-06
    hsa05166人类T细胞白血病
    病毒1感染
    84.18E-06
    hsa04218细胞衰老76.70E-06
    hsa04912促性腺激素释放
    激素信号通路
    66.70E-06
    hsa04914孕酮介导的卵
    母细胞成熟
    67.36E-06
    hsa05161乙型肝炎77.36E-06
    hsa04933糖尿病并发症中
    的AGE-RAGE信号通路
    67.85E-06
    下载: 导出CSV

    表  2  排名前10的靶基因疾病富集分析结果

    Table  2.   Top10 disease enrichment results of target genes

    ID号名称基因数FDR
    DOID:162肿瘤120.0022
    DOID:14566细胞增殖疾病130.0022
    DOID:4疾病310.0022
    DOID:65结缔组织疾病100.0064
    DOID:7解剖实体疾病250.0064
    DOID:0050636家族性内脏
    淀粉样变性
    30.0183
    DOID:28内分泌系统疾病70.0183
    DOID:0080001骨疾病80.0184
    DOID:11801蛋白质-能量营
    养不良
    20.0184
    DOID:0060075雌激素受体
    阳性乳腺癌
    20.0244
    下载: 导出CSV

    表  3  排名前10的靶基因组织表达富集分析

    Table  3.   Top10 tissue expression enrichment results of target genes

    ID号名称基因数FDR
    BTO:0000180宫颈癌细胞102.03E-06
    BTO:0000174胚胎结构222.03E-06
    BTO:0000759202.71E-06
    BTO:0000132血小板104.54E-06
    BTO:0001078胎盘164.54E-06
    BTO:0001546慢性淋巴细胞
    白血病细胞
    88.77E-06
    BTO:0001489全身469.93E-06
    BTO:0000345消化腺221.02E-05
    BTO:0001491脏器301.07E-05
    BTO:0000522腺体341.77E-05
    下载: 导出CSV

    表  4  关键靶基因在宫颈癌PPI网络中的排名

    Table  4.   Ranking of key target genes in the cervical cancer PPI network

    靶基因Degree值排名
    EGFR3296
    ALB27113
    ESR125520
    ANXA520032
    PPARG18237
    AR15953
    MAPK114372
    MAPK1414177
    MAPK813879
    NOS3105127
    合计525
    下载: 导出CSV
  • [1] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660
    [2] de Foucher T,Bendifallah S,Ouldamer L,et al. Patterns of recurrence and prognosis in locally advanced FIGO stage IB2 to IIB cervical cancer:Retrospective multicentre study from the FRANCOGYN group[J]. Eur J Surg Oncol,2019,45(4):659-665. doi: 10.1016/j.ejso.2018.11.014
    [3] Fenton M,Rathbone J,Reilly J,et al. Thioridazine for schizophrenia[J]. Cochrane Database Syst Rev,2007,2007(3):CD001944.
    [4] Duarte D,Cardoso A,Vale N. Synergistic growth inhibition of HT-29 colon and MCF-7 breast cancer cells with simultaneous and sequential combinations of antineoplastics and CNS drugs[J]. Int J Mol Sci,2021,22(14):7408. doi: 10.3390/ijms22147408
    [5] Tegowski M,Fan C,Baldwin A S. Selective effects of thioridazine on self-renewal of basal-like breast cancer cells[J]. Sci Rep,2019,9(1):18695. doi: 10.1038/s41598-019-55145-3
    [6] Mu J,Xu H,Yang Y,et al. Thioridazine,an antipsychotic drug,elicits potent antitumor effects in gastric cancer[J]. Oncol Rep,2014,31(5):2107-2114. doi: 10.3892/or.2014.3068
    [7] Lu M,Li J,Luo Z,et al. Roles of dopamine receptors and their antagonist thioridazine in hepatoma metastasis[J]. Onco Targets Ther,2015,8(default):1543-1552.
    [8] Cheng H W,Liang Y H,Kuo Y L,et al. Identification of thioridazine,an antipsychotic drug,as an antiglioblastoma and anticancer stem cell agent using public gene expression data[J]. Cell Death Dis,2015,6(5):e1753. doi: 10.1038/cddis.2015.77
    [9] Hercbergs A. Thioridazine:a radiation enhancer in advanced cervical cancer?[J]. Lancet,1988,2(8613):737.
    [10] Mao M,Yu T,Hu J,et al. Dopamine D2 receptor blocker thioridazine induces cell death in human uterine cervical carcinoma cell line SiHa[J]. J Obstet Gynaecol Res,2015,41(8):1240-1245. doi: 10.1111/jog.12691
    [11] Wang X,Shen Y,Wang S,et al. PharmMapper 2017 update:a web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Res,2017,45(W1):W356-W360. doi: 10.1093/nar/gkx374
    [12] Szklarczyk D,Gable A L,Lyon D,et al. STRING v11:protein-protein association networks with increased coverage,supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res,2019,47(D1):D607-D613. doi: 10.1093/nar/gky1131
    [13] Stelzer G,Rosen N,Plaschkes I,et al. The gene cards suite:From gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics,2016,54:1.30.1-1.30.33.
    [14] Piñero J,Ramírez-Anguita J M,Saüch-Pitarch J,et al. The DisGeNET knowledge platform for disease genomics:2019 update[J]. Nucleic Acids Res,2020,48(D1):D845-D855.
    [15] Chin C H,Chen S H,Wu H H,et al. cytoHubba:identifying hub objects and sub-networks from complex interactome[J]. BMC Syst Biol,2014,8(Suppl 4):S11.
    [16] Wu T,Hu E,Xu S,et al. clusterProfiler 4.0:A universal enrichment tool for interpreting omics data[J]. Innovation (N Y),2021,2(3):100141.
    [17] Hartman Z,Geldenhuys W J,Agazie Y M. A specific amino acid context in EGFR and HER2 phosphorylation sites enables selective binding to the active site of Src homology phosphatase 2 (SHP2)[J]. J Biol Chem,2020,295(11):3563-3575. doi: 10.1074/jbc.RA119.011422
    [18] Peng Z,Wang Q,Zhang Y,et al. EBP50 interacts with EGFR and regulates EGFR signaling to affect the prognosis of cervical cancer patients[J]. Int J Oncol,2016,49(4):1737-1745. doi: 10.3892/ijo.2016.3655
    [19] Ding L and Zhang H. Circ-ATP8A2 promotes cell proliferation and invasion as a ceRNA to target EGFR by sponging miR-433 in cervical cancer[J]. Gene,2019,705:103-108. doi: 10.1016/j.gene.2019.04.068
    [20] Mustafa H A,Albkrye A M S,AbdAlla B M,et al. Computational determination of human PPARG gene:SNPs and prediction of their effect on protein functions of diabetic patients[J]. Clin Transl Med,2020,9(1):7.
    [21] Wuertz B R,Darrah L,Wudel J,et al. Thiazolidinediones abrogate cervical cancer growth[J]. Exp Cell Res,2017,353(2):63-71. doi: 10.1016/j.yexcr.2017.02.020
    [22] Noël J C,Bucella D,Fayt I,et al. Androgen receptor expression in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix[J]. Int J Gynecol Pathol,2008,27(3):437-441. doi: 10.1097/PGP.0b013e318160c599
    [23] Vannini F,Kashfi K,Nath N. The dual role of iNOS in cancer[J]. Redox Biol,2015,6:334-343. doi: 10.1016/j.redox.2015.08.009
    [24] Topchieva L V,Balan O V,Korneva V A,et al. The nitric oxide metabolite level and NOS2 and NOS3 gene transcripts in patients with essential arterial hypertension[J]. Biology Bulletin,2020,47(3):247-252. doi: 10.1134/S1062359020010161
    [25] Gray S,Axelsson B. The prevalence of deranged C-reactive protein and albumin in patients with incurable cancer approaching death[J]. PLoS One,2018,13(3):e0193693. doi: 10.1371/journal.pone.0193693
    [26] Hoogenboezem E N,Duvall C L. Harnessing albumin as a carrier for cancer therapies[J]. Adv Drug Deliv Rev,2018,130:73-89. doi: 10.1016/j.addr.2018.07.011
    [27] Chung S H,Wiedmeyer K,Shai A,et al. Requirement for estrogen receptor alpha in a mouse model for human papillomavirus-associated cervical cancer[J]. Cancer Res,2008,68(23):9928-9934. doi: 10.1158/0008-5472.CAN-08-2051
    [28] Yu P,Wang Y,Li C,et al. Protective effects of downregulating estrogen receptor alpha expression in cervical cancer[J]. Anticancer Agents Med Chem,2018,18(14):1975-1982.
    [29] Chen Y,Gu Y,Gu Y,et al. Long noncoding RNA LINC00899/miR-944/ESR1 axis regulates cervical cancer cell proliferation,migration,and invasion[J]. J Interferon Cytokine Res,2021,41(6):220-233. doi: 10.1089/jir.2021.0023
    [30] Xiao M,Feng Y,Cao G,et al. A novel MtHSP70-FPR1 fusion protein enhances cytotoxic T lymphocyte responses to cervical cancer cells by activating human monocyte-derived dendritic cells via the p38 MAPK signaling pathway[J]. Biochem Biophys Res Commun,2018,503(3):2108-2116. doi: 10.1016/j.bbrc.2018.07.167
    [31] Li X,Chen L,Liang X J,et al. Annexin A5 protein expression is associated with the histological differentiation of uterine cervical squamous cell carcinoma in patients with an increased serum concentration[J]. Mol Med Rep,2012,6(6):1249-1254. doi: 10.3892/mmr.2012.1078
    [32] Li X,Ma W,Wang X,et al. Annexin A5 overexpression might suppress proliferation and metastasis of human uterine cervical carcinoma cells[J]. Cancer Biomark,2018,23(1):23-32. doi: 10.3233/CBM-171040
    [33] Youn M J,So H S,Cho H J,et al. Berberine,a natural product,combined with cisplatin enhanced apoptosis through a mitochondria/caspase-mediated pathway in HeLa cells[J]. Biol Pharm Bull,2008,31(5):789-795. doi: 10.1248/bpb.31.789
    [34] Ng H H,Shen M,Samuel C S,et al. Relaxin and extracellular matrix remodeling:Mechanisms and signaling pathways[J]. Mol Cell Endocrinol,2019,487:59-65. doi: 10.1016/j.mce.2019.01.015
    [35] Claesson-Welsh L,Welsh M. VEGFA and tumour angiogenesis[J]. J Intern Med,2013,273(2):114-127. doi: 10.1111/joim.12019
    [36] Chuai Y,Rizzuto I,Zhang X,et al. Vascular endothelial growth factor (VEGF) targeting therapy for persistent,recurrent,or metastatic cervical cancer[J]. Cochrane Database Syst Rev,2021,2021(3):CD013348.
    [37] Li J,Yao Q Y,Xue J S,et al. Dopamine D2 receptor antagonist sulpiride enhances dexamethasone responses in the treatment of drug-resistant and metastatic breast cancer[J]. Acta Pharmacol Sin,2017,38(9):1282-1296. doi: 10.1038/aps.2017.24
  • [1] 孟丽燕, 王超群, 陈星慧, 何军晶, 牛雅茹, 马丽莎.  早期宫颈癌术后HPV持续感染的危险因素分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240422
    [2] 杨梅, 王平, 杨晖, 何功浩.  心力衰竭的潜在治疗靶点及相关药物研发进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230719
    [3] 许悦, 王婵, 林纾丞, 张慧洁, 澹忆, 张树威, 曾晓锋, 李桢.  α-鹅膏毒肽诱导肝细胞毒性作用机制的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221228
    [4] 刘倩, 哈提拉·吐尔逊, 阿仙姑·哈斯木.  HLA-G通过促进活化性受体的表达增强NK细胞对宫颈癌细胞的杀伤作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220714
    [5] 刘洋, 廖婧, 卢又汇, 孙春意, 孟昱时.  miR-21负向调控宫颈癌HeLa细胞株中hTERT的表达, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210307
    [6] 张娟, 张红芸.  宫颈管搔刮术在宫颈癌筛查中的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210822
    [7] 谭丁及, 尹洪莉, 朱锐, 张曦, 余鑫, 飞勇, 李昕, 段铭, 何亮, 杨宏英.  宫颈上皮内瘤变和宫颈癌患者的阴道微生态特点, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210821
    [8] 郝立君, 徐丽秀, 李金秋, 马俊旗, 阿仙姑·哈斯木.  肽基脯氨酰同分异构酶(Pin1)对子宫颈癌细胞脂质代谢的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210111
    [9] 卿清, 刘洋, 周红林.  宫颈癌筛查策略的研究进展, 昆明医科大学学报.
    [10] 翟淑娟, 潘景, 孙春意, 刘洋, 杨莹莹, 周红林.  p62、OPTN在宫颈癌中的表达及其与HPV的相关性, 昆明医科大学学报.
    [11] 周栩茹, 王熙, 田洁, 谢玲玲, 许宏宇, 李晓兰.  黏附斑激酶在宫颈癌组织中表达及意义, 昆明医科大学学报.
    [12] 李正金.  13种高危型HPV感染联合TCT检查在大理地区宫颈癌筛查中的应用, 昆明医科大学学报.
    [13] 朱胜章.  宫颈液基细胞学检查在贵州黔南地区宫颈癌筛查中的临床运用, 昆明医科大学学报.
    [14] 廉阳秧.  中晚期宫颈癌组织HIF-1α、Twist、MDR1的表达及意义, 昆明医科大学学报.
    [15] 张祖娴.  昆明市高校女教师宫颈癌认知度与筛查现状分析, 昆明医科大学学报.
    [16] 何红芬.  宫颈锥切术治疗IaⅠ期宫颈癌患者术后病灶残余状况及其危险因素, 昆明医科大学学报.
    [17] 肖肖.  YB-1在中晚期宫颈癌组织中的表达及其临床意义, 昆明医科大学学报.
    [18] 魏洁.  Twist在中晚期宫颈癌组织中的表达及临床意义研究, 昆明医科大学学报.
    [19] 刘慧瑾.  宫颈癌组织Vimentin的表达与淋巴转移宫旁浸润的关系研究, 昆明医科大学学报.
    [20] 黄雅.  Brn-3a、PPAR-γ在宫颈癌及癌前病变中的表达, 昆明医科大学学报.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  3046
  • HTML全文浏览量:  2039
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-01
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-03-22

目录

    /

    返回文章
    返回