留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

影像组学在肾上腺肿瘤中的研究进展

张桂煊 石鑫 李伟 叶淑华

张桂煊, 石鑫, 李伟, 叶淑华. 影像组学在肾上腺肿瘤中的研究进展[J]. 昆明医科大学学报, 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324
引用本文: 张桂煊, 石鑫, 李伟, 叶淑华. 影像组学在肾上腺肿瘤中的研究进展[J]. 昆明医科大学学报, 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324
Guixuan ZHANG, Xin SHI, Wei LI, Shuhua YE. Research Progress of Radiomics in Adrenal Tumors[J]. Journal of Kunming Medical University, 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324
Citation: Guixuan ZHANG, Xin SHI, Wei LI, Shuhua YE. Research Progress of Radiomics in Adrenal Tumors[J]. Journal of Kunming Medical University, 2022, 43(3): 142-147. doi: 10.12259/j.issn.2095-610X.S20220324

影像组学在肾上腺肿瘤中的研究进展

doi: 10.12259/j.issn.2095-610X.S20220324
基金项目: 国家自然科学基金资助项目(7176030331);云南省科技厅应用基础研究基金资助项目(202101AS070041);云南省教育厅科学研究基金资助项目(2020J0184);云南省科技厅-昆明医科大学应用基础研究联合专项基金资助项目(202101AY070001-138)
详细信息
    作者简介:

    张桂煊(1996~),男,山东枣庄人,在读硕士研究生,主要从事泌尿系疾病临床研究工作

    通讯作者:

    石鑫, E-mail:shixin14678@163.com

    李伟,E-mail:lw13907801155@163.com

  • 中图分类号: R699

Research Progress of Radiomics in Adrenal Tumors

  • 摘要: 随着医学诊断技术的发展,肾上腺肿瘤的检出率逐年增加。影像组学作为一种新兴的技术,能够对人眼难以识别的深层次数据进行挖掘、预测和分析,在肿瘤领域已经得到了广泛关注。主要介绍影像组学在肾上腺肿瘤诊疗中的研究进展,包括肾上腺肿瘤诊断及鉴别诊断、临床决策与风险评估、预后预测以及预测肿瘤生物学行为等,最后总结现阶段影像组学存在的问题并对未来的发展方向进行展望,以期为临床诊疗提供借鉴。
  • [1] Low G,Sahi K. Clinical and imaging overview of functional adrenal neoplasms[J]. Int J Urol,2012,19(8):697-708. doi: 10.1111/j.1442-2042.2012.03014.x
    [2] Lam A K. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours[J]. Endocr Pathol,2017,28(3):213-227. doi: 10.1007/s12022-017-9484-5
    [3] Zheng X,Yao Z,Huang Y,et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun,2020,11(1):1-9. doi: 10.1038/s41467-019-13993-7
    [4] Gillies R J,Schabath M B. Radiomics improves cancer screening and early detection[J]. Cancer Epidemiol Biomarkers Prev,2020,29(12):2556-2567. doi: 10.1158/1055-9965.EPI-20-0075
    [5] Ji G W,Zhu F P,Xu Q,et al. Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma:A multi-institutional study[J]. Radiology,2020,294(3):568-579. doi: 10.1148/radiol.2020191470
    [6] Huang Y,Liu Z,He L,et al. Radiomics signature:A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer[J]. Radiology,2016,281(3):947-957. doi: 10.1148/radiol.2016152234
    [7] Hectors S J,Cherny M,Yadav K K,et al. Radiomics features measured with multiparametric magnetic resonance imaging predict prostate cancer aggressiveness[J]. J Urol,2019,202(3):498-505. doi: 10.1097/JU.0000000000000272
    [8] Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:Extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441-446. doi: 10.1016/j.ejca.2011.11.036
    [9] Kumar V,Gu Y,Basu S,et al. Radiomics:The process and the challenges[J]. Magn Reson Imaging,2012,30(9):1234-1248. doi: 10.1016/j.mri.2012.06.010
    [10] Mackin D,Fave X,Zhang L,et al. Measuring computed tomography scanner variability of radiomics features[J]. Invest Radiol,2015,50(11):757-765. doi: 10.1097/RLI.0000000000000180
    [11] Chaddad A,Kucharczyk M J,Daniel P,et al. Radiomics in glioblastoma:Current status and challenges facing clinical implementation[J]. Frontiers in Oncology,2019,9(5):1-9.
    [12] Wu Y P,Lin Y S,Wu W G,et al. Semiautomatic segmentation of glioma on mobile devices[J]. Journal of Healthcare Engineering,2017,2017(6):1-10.
    [13] Gillies R J,Kinahan P E,Hricak H. Radiomics:images are more than pictures,they are data[J]. Radiology,2016,278(2):563-577. doi: 10.1148/radiol.2015151169
    [14] Cardenas C E,Yang J,Anderson B M,et al. Advances in auto-segmentation[J]. Semin Radiat Oncol,2019,29(3):185-197. doi: 10.1016/j.semradonc.2019.02.001
    [15] Spuhler K D,Ding J,Liu C,et al. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis[J]. Magn Reson Med,2019,82(2):786-795. doi: 10.1002/mrm.27758
    [16] Liu Z,Wang S,Dong D,et al. The applications of radiomics in precision diagnosis and treatment of oncology:opportunities and challenges[J]. Theranostics,2019,9(5):1303-1322. doi: 10.7150/thno.30309
    [17] Lin Y C,Lin C H,Lu H Y,et al. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer[J]. Eur Radiol,2020,30(3):1297-1305. doi: 10.1007/s00330-019-06467-3
    [18] Traverso A,Wee L,Dekker A,et al. Repeatability and reproducibility of radiomic features:a systematic review[J]. Int J Radiat Oncol Biol Phys,2018,102(4):1143-1158. doi: 10.1016/j.ijrobp.2018.05.053
    [19] Braman N M,Etesami M,Prasanna P,et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J]. Breast Cancer Res,2017,19(1):1-14. doi: 10.1186/s13058-016-0797-y
    [20] Avanzo M,Wei L,Stancanello J,et al. Machine and deep learning methods for radiomics[J]. Med Phys,2020,47(5):185-202.
    [21] Park J E,Park S Y,Kim H J,et al. Reproducibility and generalizability in radiomics modeling:possible strategies in radiologic and statistical perspectives[J]. Korean J Radiol,2019,20(7):1124-1137. doi: 10.3348/kjr.2018.0070
    [22] Parmar C,Grossmann P,Bussink J,et al. Machine learning methods for quantitative radiomic biomarkers[J]. Sci Rep,2015,5(1):1-11.
    [23] Coroller T P,Agrawal V,Narayan V,et al. Radiomic phenotype features predict pathological response in non-small cell lung cancer[J]. Radiother Oncol,2016,119(3):480-486. doi: 10.1016/j.radonc.2016.04.004
    [24] Gnep K,Fargeas A,Gutiérrez-Carvajal R E,et al. Haralick textural features on T(2) -weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer[J]. J Magn Reson Imaging,2017,45(1):103-117. doi: 10.1002/jmri.25335
    [25] Fassnacht M,Arlt W,Bancos I,et al. Management of adrenal incidentalomas:European society of endocrinology clinical practice guideline in collaboration with the European network for the study of adrenal tumors[J]. Eur J Endocrinol,2016,175(2):G1-G34. doi: 10.1530/EJE-16-0467
    [26] Torresan F,Crimì F,Ceccato F,et al. Radiomics:a new tool to differentiate adrenocortical adenoma from carcinoma[J]. BJS Open,2021,5(1):1-7.
    [27] Seo J M,Park B K,Park S Y,et al. Characterization of lipid-poor adrenal adenoma:chemical-shift MRI and washout CT[J]. AJR Am J Roentgenol,2014,202(5):1043-1050. doi: 10.2214/AJR.13.11389
    [28] Umanodan T,Fukukura Y,Kumagae Y,et al. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma[J]. J Magn Reson Imaging,2017,45(4):1195-1203. doi: 10.1002/jmri.25452
    [29] Gaujoux S,Mihai R. European Society of Endocrine Surgeons (ESES) and European Network for the Study of Adrenal Tumours (ENSAT) recommendations for the surgical management of adrenocortical carcinoma[J]. Br J Surg,2017,104(4):358-376. doi: 10.1002/bjs.10414
    [30] Yi X,Guan X,Zhang Y,et al. Radiomics improves efficiency for differentiating subclinical pheochromocytoma from lipid-poor adenoma:a predictive,preventive and personalized medical approach in adrenal incidentalomas[J]. Epma Journal,2018,9(4):421-429. doi: 10.1007/s13167-018-0149-3
    [31] Moawad A W,Ahmed A,Fuentes D T,et al. Machine learning-based texture analysis for differentiation of radiologically indeterminate small adrenal tumors on adrenal protocol CT scans[J]. Abdominal Radiology,2021,46(10):4853-4863. doi: 10.1007/s00261-021-03136-2
    [32] Young W F,Stanson A W,Thompson G B,et al. Role for adrenal venous sampling in primary aldosteronism[J]. Surgery,2004,136(6):1227-1235. doi: 10.1016/j.surg.2004.06.051
    [33] He K,Zhang ZT,Wang ZH,et al. A clinical-radiomic nomogram based on unenhanced computed tomography for predicting the risk of aldosterone-producing adenoma[J]. Frontiers in Oncology,2021,11(7):1-9.
    [34] Hasegawa T,Yamakado K,Nakatsuka A,et al. Unresectable adrenal metastases:clinical outcomes of radiofrequency ablation[J]. Radiology,2015,277(2):584-593. doi: 10.1148/radiol.2015142029
    [35] Lam K Y,Lo C Y. Metastatic tumours of the adrenal glands:a 30-year experience in a teaching hospital[J]. Clin Endocrinol (Oxf),2002,56(1):95-101. doi: 10.1046/j.0300-0664.2001.01435.x
    [36] Abrams H L,Spiro R,Goldstein N. Metastases in carcinoma; analysis of 1000 autopsied cases[J]. Cancer,1950,3(1):74-85. doi: 10.1002/1097-0142(1950)3:1<74::AID-CNCR2820030111>3.0.CO;2-7
    [37] Huang J,Xie X,Lin J,et al. Percutaneous radiofrequency ablation of adrenal metastases from hepatocellular carcinoma:a single-center experience[J]. Cancer Imaging,2019,19(1):1-8. doi: 10.1186/s40644-018-0187-z
    [38] Welch B T,Callstrom M R,Carpenter P C,et al. A single-institution experience in image-guided thermal ablation of adrenal gland metastases[J]. J Vasc Interv Radiol,2014,25(4):593-598. doi: 10.1016/j.jvir.2013.12.013
    [39] Wolf F J,Dupuy D E,Machan J T,et al. Adrenal neoplasms:effectiveness and safety of CT-guided ablation of 23 tumors in 22 patients[J]. Eur J Radiol,2012,81(8):1717-1723. doi: 10.1016/j.ejrad.2011.04.054
    [40] Welch B T,Atwell T D,Nichols D A,et al. Percutaneous image-guided adrenal cryoablation:procedural considerations and technical success[J]. Radiology,2011,258(1):301-307. doi: 10.1148/radiol.10100631
    [41] Daye D,Staziaki P V,Furtado V F,et al. CT texture analysis and machine learning improve post-ablation prognostication in patients with adrenal metastases:a proof of concept[J]. Cardiovascular and Interventional Radiology,2019,42(12):1771-1776. doi: 10.1007/s00270-019-02336-0
    [42] De Cubas A A,Leandro-García L J,Schiavi F,et al. Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways[J]. Endocr Relat Cancer,2013,20(4):477-493. doi: 10.1530/ERC-12-0183
    [43] Ansquer C,Drui D,Mirallie E,et al. Usefulness of FDG-PET/CT-based radiomics for the characterization and genetic orientation of pheochromocytomas before surgery[J]. Cancers,2020,12(9):1-15.
    [44] Plouin P F,Amar L,Dekkers O M,et al. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma[J]. European Journal of Endocrinology,2016,174(5):G1-G10. doi: 10.1530/EJE-16-0033
  • [1] 赵冬艳, 杨润许.  双相情感障碍的遗传学研究进展, 昆明医科大学学报.
    [2] 邓苙, 丛林海, 方红丽, 高慧芳, 殷家志.  中国人群新生儿常见耳聋基因筛查研究进展, 昆明医科大学学报.
    [3] 张怡雯, 王锡铭, 李子龙, 张新章, 陈昌贤, 刘为军, 张振勇.  人工智能在肛肠疾病诊治中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240201
    [4] 曹朝阳, 刘思佳, 杨亚英.  影像组学技术在结直肠癌中的研究进展, 昆明医科大学学报.
    [5] 何成禄, 李娅, 朱敏, 钟敏, 段勇.  ACSM蛋白家族在肿瘤中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230307
    [6] 陈怡璇, 王琳, 夏秀宏, 彭在坤, 丁奕, 史润娇, 雷学芬.  自噬在肝细胞癌中的作用机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230416
    [7] 杨镜玉, 许宁, 张雨涛, 黄凤昌, 蒋元明, 殷亮.  基于基线T2WI图对进展期直肠癌经放化同期治疗后病理完全缓解的多模型预测比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230512
    [8] 段茜婷, 王关顺, 丁荣, 王娜, 寸红丽, 杨泠.  CT影像组学在肝细胞癌联合治疗后短期疗效的应用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220818
    [9] 毕珊, 罗浩丹, 陈绍春, 李国萍.  磷酸化HSP27在恶性肿瘤中的研究进展, 昆明医科大学学报.
    [10] 齐潇, 钟兆铭, 孙传政.  肿瘤相关中性粒细胞与肿瘤发生发展的研究进展, 昆明医科大学学报.
    [11] 范旭, 冯煜然, 朱梅.  微波消融联合免疫疗法治疗肿瘤的研究进展, 昆明医科大学学报.
    [12] 薛凤麟, 洪仕君, 曾晓锋, 杨荆, 杨根梦, 周一卿, 李利华.  苯丙胺类成瘾人群功能影像学检测脑结构与功能变化的研究进展, 昆明医科大学学报.
    [13] 施宝盛, 邵娅婷, 陈丽君, 张亮, 普冬, 文小玲, 陈亚萍, 李玉鹏.  石斛预防和治疗糖尿病的研究进展, 昆明医科大学学报.
    [14] 余珊, 王波.  糖尿病健康教育研究进展, 昆明医科大学学报.
    [15] 王春龙, 韩丹, 文亮.  间皮素与肿瘤诊治的相关研究进展, 昆明医科大学学报.
    [16] 虎住飞, 何永文.  热诱导肿瘤细胞凋亡的机制研究进展, 昆明医科大学学报.
    [17] 王志强, 李荣清, 张勇.  头颈部肿瘤在自适应放疗中的研究进展, 昆明医科大学学报.
    [18] 董超.  多学科协作的导师组制度在肿瘤学研究生培养中的初探, 昆明医科大学学报.
    [19] 曾红静.  蛋氨酸补偿代谢途径及蛋氨酸酶抗肿瘤研究进展, 昆明医科大学学报.
    [20] 丝氨酸蛋白酶抑制剂对新生血管抑制作用的研究进展, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3784
  • HTML全文浏览量:  2004
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-01
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-03-22

目录

    /

    返回文章
    返回