Screening and Analysis of Pathogenic Genes in Families with Atrial Septal Defects
-
摘要:
目的 通过对一个房间隔缺损先证者的四代家系进行致病突变筛查,利用全外显子测序及Sanger测序等分析基因型和表型之间的关系。 方法 回顾性分析在云南省第一人民医院心脏大血管外科就诊的1例房间隔缺损患儿的临床资料,并采用全外显子测序技术对患儿及其弟弟、母亲进行遗传学检测,结合生物信息学分析,寻找导致该家系致病的遗传学病因。同时,对在该家系中发现的尾型同源盒基因4(Caudal Homebox Gene,CDX4)基因变异,进行散发ASD患者及健康人群的筛查。 结果 患儿心脏超声结果及术中所见符合ASD诊断。基因检测提示患儿存在CDX4基因c.C233T纯合变异,其母亲携带该基因的杂合变异,其弟弟携带该基因纯合变异。CDX4基因第1外显子第233号密码子由C突变为T(c.C233T),导致第78号氨基酸由脯氨酸变为亮氨酸(p.P78L)。在198例散发性房间隔缺损患者中,5例患者存在该基因变异,而265例健康人群中未发现该基因变异。采用Fischer精确检验分析发现CDX4基因c.C233T纯合变异与先天性心脏病相关(P = 0.014)。 结论 CDX4基因c.C233T(p.P78L)纯合突变很可能是该家系的致病变异。 Abstract:Objective To screen the pathogenic mutations in the four generations of a proband with atrial septal defect, so as to analyze the relationship between genotype and phenotype by whole exon sequencing and Sanger sequencing. Methods Retrospectic analysis of the clinical data on a child with atrial septal defects treated in the Department of Cardiovascular Surgery, the First People’ s Hospital of Yunnan Province was conducted in tandem with genetic tests for the sick child, his younger brother and mother by means of whole-exome sequencing to find out the genetic causes of the family in combination with bioinformatics analysis. Meanwhile, sporadic ASD patients and healthy people were screened for the Caudal Homebox Gene 4 (CDX4) mutation found in the family. Results The cardiac ultrasound results of the sick child and the intraoperative findings conformed with ASD diagnosis. The genetic tests suggested that CDX4 gene c.C233T homozygous mutation occurred to the child, his mother carries heterozygous mutation of the gene and his younger brother homozygous mutation of it. Codon 233 of exon 1 of CDX4 gene mutated from C to T (c.C233T), leading to conversion of amino acid 78 from proline to leucine (p.P78L). Multi-species comparison showed that the locus was highly conserved. The three software programs PROVEAN, Mutation Taster and Mutation Assessor suggested that the mutation was harmful. Of the 198 patients with sporadic atrial septal defects, 5 suffered this gene mutation, but that was not found in the 265 healthy people. According to the Fischer’s Exact Test, CDX4 gene c.C233T homozygous mutation was associated with congenital heart diseases (P = 0.014). Conclusion CDX4 gene c.C233T (p.P78L) homozygous mutation is the highly likely the pathogenic mutation of the family. -
Key words:
- Atrial Septal Defect /
- Whole exon sequencing /
- CDX4 /
- Gene mutation
-
甲基苯丙胺( methamphetamine,MA) ,属于苯丙胺类兴奋剂,可进入血脑屏障导致大脑的结构和功能的改变[1],其滥用诱发大脑多个脑区发生不同程度的神经损伤,从而诱导中枢神经系统神经毒性的产生[2]。研究发现[3]MA依赖引起的神经毒性损伤海马脑区损伤有重要联系。MA诱导海马神经毒性的产生与单胺类神经递质释放增加[4-5]、ROS和NOS的产生、大脑免疫细胞的激活、凋亡与自噬[6]和神经炎症[7]等有关。Toll样受体(Toll like receptors,TLR),能够调控免疫及炎症反应[8],主要在小胶质细胞中表达[9]。TLR4细胞内信号通路分为髓样分化因子88 (myeloid differentiation factor 88,MyD88)依赖性和β干扰素TIR结构域衔接蛋白(TIR-domain-containing adaptor inducing interferon-β,TRIF)依赖性通路。在MyD88依赖途径中当外界因素触发后,细胞表面的刺激信号通过TLR4-MyD88-TRAF6-IκB-PIκB-NF-κB分子传递到细胞核,从而调节相关炎症因子的转录[10]。颅脑外伤可以诱导神经元凋亡和神经炎症,从而导致严重的神经元损害和行为障碍[11],其中TLR4/MyD88/NF-κB信号通路的激活是造成中枢神经系统损伤的关键原因。在体外实验中脂多糖损伤的 BV2 小胶质细胞和神经炎症损伤的原代皮层神经元中采用TLR4 抑制剂 TAK-242所产生的抗神经炎症作用主要是与 TLR4 介导的 MyD88/NF-κB 信号通路的调节有关[12]。Li B等[13]的体外实验表明阻断 TLR4 介导的信号转导,TLR4/MyD88/NF-κB 和 MAPK 通路的激活便会受到影响,从而抑制 BV-2 小胶质细胞中脂多糖刺激所产生神经炎症。TLR4/MyD88/NF-κB作为一条经典的炎性通路,在MA诱导的海马神经炎症中具有较大的研究价值。本研究旨在探究研究TLR4/MyD88/NF-κB信号通路对甲基苯丙胺CPP大鼠海马的影响,同时采用特异性抑制剂TAK-242抑制TLR4,在改善MA依赖海马神经炎症中的作用,为药物干预甲基苯丙胺依赖提供新的科学证据。
1. 材料与方法
1.1 材料
实验动物:健康雄性SD大鼠40只,选择体重在180~200 g,购于昆明医科大学实验动物学中心[动物使用许可证编号:SCXK(滇)K2015-002]。
药品试剂:实验所用甲基苯丙胺,由云南省公安厅禁毒技术公安部重点实验室合法提供,纯度在98%以上。BestarTMqPCR RT Kit、荧光定量试剂盒(DBI Bioscience);引物合成(擎科生物科技有限公司);TLR4 受体抑制剂(TAK-242,A3850,Apexbio公司MyD88抗体(ab2064,Abcam公司);TRAF6抗体(66494,Proteintech公司);IκB-α 抗体(9242,CST公司);p-IκB-α抗体(2859,CST公司);NF-κB p65抗体(8142s,CST公司);p-NF-κB p65抗体(sc-136548,Santa Cruz Biotechnology公司);TLR4抗体(sc-293072,Santa Cruz Biotechnology公司);β-actin抗体(ab6276,购自美国Abcam公司)。
主要仪器:大鼠 CPP 实验箱(XR-XT401,上海欣软信息有限公司);酶标仪(Touch 2,美国BioTek公司);普通PCR仪、荧光定量 PCR 仪(T100TM Thermal Cycler、C1000 Touch TM Thermal Cycler,美国Bio-Rad 公司);垂直电泳仪、半干转膜仪(552BR、221BR,美国Bio-Rad 公司)。
1.2 实验方法
1.2.1 实验动物分组及给药
健康雄性SD大鼠40只,随机分配为4组,包括生理盐水组:腹腔注射(生理盐水(10 mg/kg,qd,14 d);MA 实验组:给药 MA(10 mg/kg,ip,qd,14 d),大鼠形成MA依赖,CPP模型建模成功;TAK-242 组:给药 TAK-242(3 mg/kg,ip,qd,14 d);MA + TAK-242 组:给药 TAK-242(3 mg/kg,ip,qd,14 d)后 1 h给予 MA(10 mg/kg,ip,qd,14 d)。
1.2.2 条件性位置偏爱模型(CPP)
连续3 d将随机分组的大鼠放入实验检测的黑白箱中以适应检测环境,第4天检测每只大鼠的天然偏好时间;连续14 d对大鼠以10 mg/kg的MA进行腹腔注射给药,使得大鼠产生依赖,再进行CPP检测。
1.2.3 Western
Blot实验 用 10%的水合氯醛 ,按0.3 m L/100 g麻醉后迅速水合氯醛麻醉大鼠 , 用0.9%的氯化钠注射液对大鼠心脏灌注,将脑血管中的血液冲洗干净断头,取出全脑,分离大鼠海马组织解剖大鼠,取大鼠海马组织,匀浆,测定蛋白浓度。配制10%和12%的分离胶;上样、电泳,转膜、孵育一抗(β-actinantibody Anti-TLR4、Anti-Myd88、Anti-TRAF6、Anti-IκB-α、Anti-pIκB-α、Anti-NF-κBp65、Anti-P- NF-κBp65均按照1∶1000配制),放入4 ℃过夜,1xTBST 漂洗3次,温室孵育二抗(2 h),再次漂洗,采用ECL显影。 Image Pro Plus 图像分析软件分析目的条带与对应内参(β-actin)条带二者平均光密度比值,最后进行统计学分析。
1.2.4 荧光定量PCR实验
取海马组织80 mg,放入 EP 管中,匀浆,用酶标仪测定RNA浓度;按照说明书逆转录合成cDNA;荧光实时定量PCR仪,经94 ℃ 5 min预变性、94 ℃变性、58 ℃退火、72 ℃延伸,此循环进行40次,采用2-ΔΔCt法计算目的基因的相对表达量,荧光定量PCR引物序列见表1。
表 1 荧光定量PCR引物序列Table 1. Fluorescence quantitative PCR primer sequence基因名称 引物序列信息 温度 TLR4 上游引物:5'-TGCCTGAGACCAGGAAGCTTG 3'
下游引物:5'-CTTAAGATCTTCAGGGGGTTG3'54 ℃ Myd88 上游引物:5'-TGAGAAAAGGTGTCGTCGCA3'
下游引物:5'-GGGTCCAGAACCAGGACTTG'54 ℃ TRAF6 上游引物:5'-GCCCATGCCGTATGAAGAGA 3'
下游引物:5'-CGTGACAGCCAAACACACTG3'54 ℃ NF-κB p65 上游引物:5'-GAGACCTGGAGCAAGCCATT3'
下游引物:5'-AGTTCCGGTTTACTCGGCAG3'54 ℃ IKB-α 上游引物:5'-GAATCCTGACCTGGTCTCGC'
下游引物:5'-CACAGTCATCGTAGGGCAACT3'55 ℃ β-actin 上游引物:5'-AGACAGCCGCATCTTGT-3'
下游引物:5'-CTTGCCGTGGGTAGAGTCAT-3'55 ℃ 1.3 统计学处理
采用 SPSS 19.0进行数据分析,数值代表均数±标准差(
$\bar x \pm s $ )表示,用于统计分析的Prism软件5.0作图(GraphPad software),组内给药前后比较采用配对 t 检验;组间多组比较采用多因素方差分析(Multi-factor analysis of variance),多重比较方法采用 Tukey-HSD,P < 0.05 为差异有统计学意义。2. 结果
2.1 甲基苯丙胺依赖CPP大鼠海马中TLR4、MyD88、TRAF6、IκB-α、p-IκB-α、NF-κBp65、p-NF-κBp65蛋白表达
TLR4蛋白变化:图1A结果显示与生理盐水组相比,MA组TLR4蛋白表达升高(P < 0.01);与MA组相比,MA+TAK-242组TLR4的蛋白表达下降(P < 0.01)。
图 1 大鼠海马中TLR4/MyD88/NF-κB 信号转导通路蛋白表达水平变化。A:海马中TLR4的表达水平;B:海马中MyD884的表达水平;C:海马中TRAF6的表达水平;D:海马中p-IκB-α的表达水平;E:海马中IκB-α的表达水平;F:海马中p-NF-κBp65的表达水平;G:海马中NF-κBp65的表达水平。与对照组进行比较,*P < 0.05,**P < 0.01;与MA组比较,#P < 0.05,##P < 0.01 。Figure 1. The protein expression of TLR4/MyD88/NF-κB signal transduction pathway in the hippocampus of ratsMyD88蛋白变化:图1B结果显示与生理盐水组相比,MA组MyD88蛋白表达升高(P < 0.01);与MA组相比,MA+TAK-242组MyD88蛋白表达下降(P < 0.01)。
TRAF6蛋白变化:图1C结果显示与生理盐水组相比,MA组TRAF6的蛋白表达升高(P < 0.01);与MA组相比,MA+TAK-242组TRAF6的蛋白表达下降(P < 0.01)。
p-IκB-α蛋白变化:图1D结果显示与生理盐水组相比,MA组p-IκB-α蛋白表达升高p-IκB-α蛋白表达升高(P < 0.05),与MA组相比,MA+TAK-242组p-IκB-α蛋白表达下降(P < 0.01)。
IκB-α蛋白变化:图1E结果显示与生理盐水组相比,MA组IκB-α蛋白表达降低(P < 0.01);与MA组相比,MA+TAK-242组IκB-α蛋白表达升高(P < 0.01)。
p-NF-κBp65蛋白变化:图1F结果显示与生理盐水组相比,MA组p-NF-κBp65蛋白表达升高(P < 0.05);与MA组相比,MA+TAK-242组的p-NF-κBp65蛋白表达下降(P < 0.05)。
NF-κBp65蛋白变化:图1G结果显示与生理盐水组相比,MA组NF-κBp65蛋白表达升高(P < 0.01);与MA组相比,MA+TAK-242组的NF-κBp65蛋白表达下降(P < 0.05)。
上述结果提示MA可通过TLR4/MyD88/NF-κB信号通路诱导MA依赖CPP大鼠海马发生神经炎症。
2.2 甲基苯丙胺依赖CPP大鼠海马中TLR4、MyD88、TRAF6、IκB-α、NF-κBp65mRNA表达
TLR4 mRNA表达变化见表2和图2A,结果显示与生理盐水组相比,MA组TLR4mRNA表达上升(P < 0.01);与MA组相比,MA+TAK-242组TLR4mRNA表达下降(P < 0.01)。
表 2 大鼠海马中TLR4/MyD88/NF-κB 信号转导通路的mRNA表达(n = 6,$\bar x \pm s $ )Table 2. The mRNA expression of TLR4/MyD88/NF-κB signal transduction pathway in the hippocampus of rats (n = 6,$\bar x \pm s $ )因子 组别 生理盐水组 Meth组 TAK-242组 Meth+TAK-242 组 TLR4 0.82 ± 0.10 1.16 ± 0.20 ** 0.80 ± 0.22 0.83 ± 0.11 ## MyD88 0.90 ± 0.08 1.17 ± 0.13 ** 0.83 ± 0.15 0.86 ± 0.08 ## TRAF6 0.98 ± 0.27 1.62 ± 0.47 ** 0.84 ± 0.29 0.92 ± 0.25 ## IκB-α 1.04 ± 0.17 0.69 ± 0.11 ** 0.98 ± 0.14 1.00 ± 0.13 ## NF-κBp65 0.88 ± 0.12 1.14 ± 0.10 *** 0.89 ± 0.06 0.92 ± 0.16 ### 与对照组进行比较,**P < 0.01,***P < 0.001;与MA组进行比较,##P < 0.05 ,###P < 0.001。 图 2 大鼠海马中TLR4/MyD88/NF-κB 信号转导通路的mRNA表达 水平统计结果A:海马中TLR4的mRNA表达水平;B:海马中MyD884的mRNA表达水平;C:海马中TRAF6的mRNA表达水平;D:海马中IκB-α的mRNA表达水平;E:海马中NF-κBp65的mRNA表达水平。与对照组进行比较,**P < 0.01,***P < 0.001;与MA组进行比较,##P < 0.05 , ###P < 0.001。Figure 2. The mRNA expression of TLR4/MyD88/NF-κB signal transduction pathway in the hippocampusMyD88 mRNA表达变化:表2和图2B结果显示与生理盐水组相比,MA组MyD88mRNA表达上升(P < 0.01);与M组相比,MA+TAK-242组MyD88mRNA表达下降(P < 0.01)。
TRAF6 mRNA表达变化:表2和图2C结果显示与生理盐水组相比,MA组TRAF6mRNA表达上升(P < 0.01),与MA组相比,MA+TAK-242组TRAF6mRNA表达下降(P < 0.01)。
IκB-α mRNA表达变化:表2和图2D结果显示与生理盐水组相比,MA组IκB-α mRNA表达下降(P < 0.01),与MA组相比,MA+TAK-242组IκB-α mRNA表达上升(P < 0.01)。
NF-κBp65 mRNA表达变化:表2和图2E结果显示与生理盐水组相比,MA组NF-κBp65 mRNA表达上升(P < 0.001),与MA组相比,MA+TAK-242组NF-κBp65 mRNA表达下降(P < 0.001)。
3. 讨论
已有研究表明,MA依赖诱导海马神经炎症,造成了神经系统的损害。炎性因子过渡累积就会对机体产生严重的危害,其中与损害最为严重的海马脑区为例。本研究发现MA依赖的CPP大鼠激活了海马脑区TLR4/MYD88/NF-κB信号通路,诱导了海马神经炎症的发生。
TLR4作为天然免疫识别受体,通过Myd88通路发挥作用[14,15]。本研究表明:与对照组相比,MA组TLR4、MyD88、TRAF6蛋白和mRNA表达均增加。Xie等[16]的研究发现,在MA中毒大鼠模型中,MA可使大鼠纹状体中 TLR4,MyD88,TRAF6 蛋白表达增加;Du等的研究在 MA中毒小鼠模型中, MA也可使中脑和纹状体中TLR4 蛋白表达增加[8, 17],上述结果均与与本研究结果一致,但是本研究对于海马脑区的检测不仅包含上述因子蛋白水平的变化,还在mRNA水平进一步验证了MA依赖可通过激活TLR4/MyD88信号通路,诱导海马神经炎症发生。Qing-Peng Hu等[18]的研究表明,组蛋白乙酰化调节抑制剂(histone deacetylase inhibitor,HDACI)可抑制TLR4/MYD88信号通路中TLR4的表达,从而抑制小胶质细胞激活和神经元凋亡,这就表明阻断TLR4对神经炎症诱导的脑损伤具有潜在的神经保护作用。本研究采用TLR4受体抑制剂TAK-242预处理,特异性地抑制了海马脑区TLR4的表达,减少了MyD88、TRAF6的蛋白及mRNA的表达。
研究发现多种分子机制可以介导炎症过程,其中最显著的机制是通过核因子NF-κB信号通路[19],磷酸化的NF-κB抑制因子(inhibitor of NF-κB,IκB),使IKB降解,进而激活NF-κB,其中p65是NF-κB的主要活性亚单位[20]。本研究采用Western blot检测MA依赖CPP大鼠海马中p-IκB-α、NF-κBp65、p-NF-κBp65蛋白表达均增加,IκB-α的蛋白表达下降。Liu X等发现[21],苦碟子注射液(KDZ)可通过下调TLR4 依赖性 NF-κB信号通路,降低TRAF6、NF-κBp65和p-IκBα/IκBα的蛋白表达,保护大脑免受缺血性损伤。Long H等也发现[22],在大鼠Tourette综合征(TS)模型中,TS大鼠纹状体中IκB-α蛋白表达降低,p-IκB-α蛋白表达升高,结果均与本研究一致。不同的是本研究采用特异性TLR4拮抗剂TAK-242预处理后,p-IκB-α、NF-κBp65、p-NF-κBp65蛋白表达降低,IκB-α蛋白表达增加。此外,本研究发现IκB-αmRNA表达降低、NF-κBp65 mRNA表达增加,结果与蛋白水平一致。采用TLR4受体抑制剂(TAK-242)预处理,特异性地抑制了海马脑区TLR4的表达,减少了的NF-κB通路关键蛋白及mRNA的表达,从而减轻MA依赖大鼠海马脑区的神经炎症。
综上所述,TLR4/MyD88/NF-κB信号通路参与了MA依赖大鼠CPP效应的形成,该信号通路的激活可以诱导MA依赖大鼠海马神经炎症的发生。采用特异性的TLR4抑制剂可以改变TLR4/MyD88/NF-κB信号通路相关的因子的表达,减轻MA依赖的海马神经炎症。
-
表 1 Sanger测序人群验证及变异的致病性分析结果
Table 1. Population validation and pathogenicity analysis results of Sanger sequencing
基因
类型房间隔缺损患者 健康人群 P n 百分比(%) n 百分比(%) CT 5 2.52 0 0 0.014 TT 193 97.48 265 100 -
[1] Lindsey J B,Hillis L D. Clinical update:atrial septal defect in adults[J]. The Lancet,2007,369(9569):1244-1246. doi: 10.1016/S0140-6736(07)60576-5 [2] Humenberger M,Rosenhek R,Gabriel H,et al. Benefit of atrial septal defect closure in adults:impact of age[J]. European Heart Journal,2011,32(5):553-560. doi: 10.1093/eurheartj/ehq352 [3] Benjamin E J,Muntner P,Alonso A,et al. Heart disease and stroke statistics—2019 update:a report from the American Heart Association[J]. Circulation,2019,139(10):e56-e528. [4] Buijtendijk M F J,Barnett P,van den Hoff M J B,et al. Development of the human heart[J]. American Journal of Medical Genetics Part C-seminars In Medical Genetics,2020,184(1):7-22. doi: 10.1002/ajmg.c.31778 [5] Aoki H, Horie M. Electrical disorders in atrial septal defect: genetics and heritability[J]. Journal of Thoracic Disease, 2018, 10(Suppl 24): S2848. [6] Wessels M W,Willems P J. Genetic factors in non-syndromic congenital heart malformations[J]. Clinical Genetics,2010,78(2):103-123. doi: 10.1111/j.1399-0004.2010.01435.x [7] Fan D,Pang S,Chen J,et al. Identification and functional study of GATA4 gene regulatory variants in atrial septal defects[J]. BMC Cardiovasc Disord,2021,21(1):321. [8] Li Z,Huang J,Liang B,et al. Copy number variations in the GATA4,NKX2-5,TBX5,BMP4 CRELD1,and 22q11.2 gene regions in Chinese children with sporadic congenital heart disease[J]. J Clin Lab Anal,2019,33(2):e22660. [9] Huang S,Wu Y,Chen S,et al. Novel insertion mutation (Arg1822_Glu1823dup) in MYH6 coiled-coil domain causing familial atrial septal defect[J]. Eur J Med Genet,2021,64(11):104314. [10] Chawengsaksophak K,de Graaff W,Rossant J,et al. Cdx2 is essential for axial elongation in mouse development[J]. Proceedings of the National Academy of Sciences,2004,101(20):7641-7645. doi: 10.1073/pnas.0401654101 [11] Freund J N,Duluc I,Reimund J M,et al. Extending the functions of the homeotic transcription factor Cdx2 in the digestive system through nontranscriptional activities[J]. World Journal of Gastroenterology:WJG,2015,21(5):1436-1443. doi: 10.3748/wjg.v21.i5.1436 [12] Lengerke C,Wingert R,Beeretz M,et al. Interactions between Cdx genes and retinoic acid modulate early cardiogenesis[J]. Developmental Biology,2011,354(1):134-142. doi: 10.1016/j.ydbio.2011.03.027 [13] Davidson A J,Ernst P,Wang Y,et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes[J]. Nature,2003,425(6955):300-306. doi: 10.1038/nature01973 [14] Skromne I,Thorsen D,Hale M,et al. Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord[J]. Development,2007,134(11):2147-2158. doi: 10.1242/dev.002980 [15] Cho SW,Kim HK,Sung JH,et al. Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells[J]. BMB Rep,2021,54(9):464-469. [16] Louryan S,Vanmuylder N. Contributions of embryology and comparative anatomy for teaching of cranial nerves[J]. Morphologie,2018,102(337):111-121. [17] Hayward A G,Joshi P,Skromne I. Spatiotemporal analysis of zebrafish hox gene regulation by Cdx4[J]. Developmental Dynamics,2015,244(12):1564-1573. doi: 10.1002/dvdy.24343 [18] Hunt P,Krumlauf R. Deciphering the Hox code:clues to patterning branchial regions of the head[J]. Cell,1991,66(6):1075-1078. doi: 10.1016/0092-8674(91)90029-X [19] Foley T E,Hess B,Savory,J G A,et al. Role of Cdx factors in early mesodermal fate decisions[J]. Development,2019,146(7):dev170498. doi: 10.1242/dev.170498 [20] Su W,Zhu P,Wang R,et al. Congenital heart diseases and their association with the variant distribution features on susceptibility genes[J]. Clin Genet,2017,91(3):349-354. [21] Hofbauer P,Jahnel SM,Papai N,et al. Cardioids reveal self-organizing principles of human cardiogenesis[J]. Cell,2021,184(12):3299-3317. doi: 10.1016/j.cell.2021.04.034 [22] Lohnes D. The Cdx1 homeodomain protein:an integrator of posterior signaling in the mouse[J]. Bioessays,2003,25(10):971-980. doi: 10.1002/bies.10340 [23] Pilon N,Oh K,Sylvestre J R,et al. Cdx4 is a direct target of the canonical Wnt pathway[J]. Developmental Biology,2006,289(1):55-63. doi: 10.1016/j.ydbio.2005.10.005 [24] Reichman DE,Park L,Man L,et al. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors[J]. Development,2018,145(1):dev.159905. [25] Miao S,Zhao D,Wang X,et al. Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes[J]. Theranostics,2020,10(21):9686-9701. doi: 10.7150/thno.44146 [26] Xavier-Neto J,Sousa Costa A M,Figueira A C,et al. Signaling through retinoic acid receptors in cardiac development:doing the right things at the right times[J]. Biochimica et Biophysica Acta,2015,1849(2):94-111. [27] Xiaoqian,Zhang,Henghua,et al. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells[J]. Stem Cell Research,2017,20:21-29. doi: 10.1016/j.scr.2017.02.002 期刊类型引用(0)
其他类型引用(1)
-