留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

QCT与 DXA对绝经后妇女骨质疏松症检出率的对比

苗辉 蒋萍 娄振凯 邱龙恒 周子然 李成勇 王兵

苗辉, 蒋萍, 娄振凯, 邱龙恒, 周子然, 李成勇, 王兵. QCT与 DXA对绝经后妇女骨质疏松症检出率的对比[J]. 昆明医科大学学报, 2022, 43(4): 55-61. doi: 10.12259/j.issn.2095-610X.S20220407
引用本文: 苗辉, 蒋萍, 娄振凯, 邱龙恒, 周子然, 李成勇, 王兵. QCT与 DXA对绝经后妇女骨质疏松症检出率的对比[J]. 昆明医科大学学报, 2022, 43(4): 55-61. doi: 10.12259/j.issn.2095-610X.S20220407
Hui MIAO, Ping JIANG, Zhenkai LOU, Longheng QIU, Ziran ZHOU, Chengyong LI, Bing WANG. A Comparative Study of QCT and DXA on Detection of Osteoporosis in Postmenopausal Women[J]. Journal of Kunming Medical University, 2022, 43(4): 55-61. doi: 10.12259/j.issn.2095-610X.S20220407
Citation: Hui MIAO, Ping JIANG, Zhenkai LOU, Longheng QIU, Ziran ZHOU, Chengyong LI, Bing WANG. A Comparative Study of QCT and DXA on Detection of Osteoporosis in Postmenopausal Women[J]. Journal of Kunming Medical University, 2022, 43(4): 55-61. doi: 10.12259/j.issn.2095-610X.S20220407

QCT与 DXA对绝经后妇女骨质疏松症检出率的对比

doi: 10.12259/j.issn.2095-610X.S20220407
基金项目: 国家自然科学基金资助项目(82060416)
详细信息
    作者简介:

    苗辉(1995~),女,山东威海人,在读硕士研究生,主要从事脊柱退行性疾病研究工作

    蒋萍与苗辉对本文有同等贡献

    通讯作者:

    王兵,E-mail:949739231@qq.com

  • 中图分类号: R683.2

A Comparative Study of QCT and DXA on Detection of Osteoporosis in Postmenopausal Women

  • 摘要:   目的  对比定量计算机断层扫描法(quantitative computed tomography,QCT)与双能 X 线吸收法( dual energy X-ray absorptiometry,DXA)在绝经后妇女中骨质疏松症的检出率,并分析两者差异性的原因。  方法  收集的148例绝经后妇女,平均年龄(63.7±10.4)岁,分别采用DXA、QCT测量腰椎骨密度(bone mineral density,BMD),计算2种方法对骨质疏松症的检出率,并对测量的结果进行分析比较,查看诊断不一致患者的腰椎CT平扫图像,以评估是否有椎体骨折、脊柱退行性改变和腹主动脉钙化等情况。  结果  148例受试者,QCT的检出率为45.9%(68/148),DXA的检出率为26.4%(39/148),差异有统计学意义(P < 0.05)。92例受试者(62.2%)的DXA和QCT的诊断是一致的;56例(37.8%)受试者DXA和QCT的诊断不一致,其中QCT诊断为骨质疏松,DXA为骨量减少的例数占48.2%(27/56);QCT为骨量减少,DXA为骨量正常的例数占33.9%(19/56)。在56例诊断不一致的患者中2例(2/56)为椎体压缩骨折,56例(56/56)均有腰椎退行性变(骨赘、终板硬化、韧带骨化或小关节骨关节炎),9例(9/56)有腹主动脉钙化。  结论  QCT与DXA对骨质疏松症的检出率不一致,这可能是由于患者存在脊柱退行性变、腹主动脉钙化和其他硬化性病变等情况,这会使DXA测得的BMD值升高,导致DXA检出率降低。相比于DXA,QCT是诊断绝经后妇女骨质疏松症一种更敏感的方法。
  • 图  1  DXA诊断为骨量减少的影像学图像

    A:腰椎矢状位CT显示椎体边缘及椎小关节增生硬化、唇样改变、腹主动脉钙化、腰椎退行性改变;B:腰椎横断面CT显示椎体增生硬化。

    Figure  1.  Images of osteopenia diagnosed by DXA

    图  2  DXA诊断为骨量正常的影像学图像

    A:腰椎矢状位CT显示椎体边缘及椎小关节增生硬化、唇样改变、腹主动脉钙化、脊柱侧弯;B:腰椎横断面CT显示椎体增生硬化、腹主动脉钙化。

    Figure  2.  Images of normal bone mass diagnosed by DXA

    表  1  QCT与DXA对骨质疏松检出率的比较[n(%)]

    Table  1.   Comparison of the detection rate of osteoporosis between QCT and DXA [n(%)]

    项目DXA
    骨量正常骨量减少骨质疏松总计
    QCT 骨量正常 35(23.6) 2(1.4) 1(0.7) 38(25.7)
    骨量减少 19(12.8) 21(14.2) 2(1.4) 42(28.4)
    骨质疏松 5(3.4) 27(18.2) 36(24.3) 68(45.9)
    总计 59(39.9) 50(33.8) 39(26.4) 148(100)
    McNemar-Bowker Test 37.980
    P 0.000*
      *P < 0.05。
    下载: 导出CSV
  • [1] Peck W A,Burckhardt P,Christiansen C,et al. Consensus development conference:Diagnosis,prophylaxis,and treatment of osteoporosis[J]. Am J Med,1993,94(6):646-650. doi: 10.1016/0002-9343(93)90218-E
    [2] 夏维波,章振林,林华,等. 原发性骨质疏松症诊疗指南(2017)[J]. 中国骨质疏松杂志,2019,25(3):281-309. doi: 10.3969/j.issn.1006-7108.2019.03.001
    [3] Wade S W,Strader C,Fitzpatrick L A,et al. Estimating prevalence of osteoporosis:Examples from industrialized countries[J]. Arch Osteoporos,2014,9(1):182. doi: 10.1007/s11657-014-0182-3
    [4] Seo S H,Lee J,Park I H. Efficacy of dual energy X-ray absorptiometry for evaluation of biomechanical properties:Bone mineral density and actual bone strength[J]. J Bone Metab,2014,21(3):205-212. doi: 10.11005/jbm.2014.21.3.205
    [5] Fang Y,Li W,Chen X,et al. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks[J]. Eur Radiol,2021,31(4):1831-1842. doi: 10.1007/s00330-020-07312-8
    [6] Genant H K,Engelke K,Fuerst T,et al. Noninvasive assessment of bone mineral and structure:State of the art[J]. J BoneMiner Res,1996,11(6):707-730.
    [7] Blake GM,Fogelman I. Technical principles of dual energy X-ray absorptiometry[J]. Semin Nucl Med,1997,27(3):210e228.
    [8] Zeng Q, Li N, Wang Q, et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey[J]. J Bone Miner Res, 2019 , 34(10): 1789-1797.
    [9] Wang P,She W,Mao Z,et al. Use of routine computed tomography scans for detecting osteoporosis in thoracolumbar vertebral bodies[J]. Skeletal Radiol,2021,50(2):371-379. doi: 10.1007/s00256-020-03573-y
    [10] Mao S S,Li D,Syed Y S,et al. Thoracic quantitative computed tomography (QCT) can sensitively monitor bone mineral metabolism:Comparison of thoracic QCT vs lumbar QCT and dual-energy X-ray absorptiometry in detection of age-relative change in bone mineral density[J]. Acad Radiol,2017,24(12):1582-1587. doi: 10.1016/j.acra.2017.06.013
    [11] Salzmann S N,Okano I,Jones C,et al. Thoracic bone mineral density measured by quantitative computed tomography in patients undergoing spine surgery[J]. Spine J,2021,21(11):1866-1872. doi: 10.1016/j.spinee.2021.05.016
    [12] Yuan Y,Zhang P,Tian W,et al. Application of bone turnover markers and DXA and QCT in an elderly Chinese male population[J]. Ann Palliat Med,2021,10(6):6351-6358. doi: 10.21037/apm-21-612
    [13] Amstrup A K,Jakobsen N F,Moser E,et al. Association between bone indices assessed by DXA,HR-pQCT and QCT scans in post-menopausal women[J]. J Bone Miner Metab,2016,34(6):638-645. doi: 10.1007/s00774-015-0708-9
    [14] Link T M. Osteoporosis imaging:State of the art and advanced imaging[J]. Radiology,2012,263(1):3-17. doi: 10.1148/radiol.12110462
    [15] López Picazo M,Humbert L,Di Gregorio S,et al. Discrimination of osteoporosis-related vertebral fractures by DXA-derived 3D measurements:A retrospective case-control study[J]. Osteoporos Int,2019,30(5):1099-1110. doi: 10.1007/s00198-019-04894-y
    [16] Genant H K,Engelke K,Hanley D A,et al. Denosumab improves density and strength parameters as measured by QCT of the radius in postmenopausal women with low bone mineral density[J]. Bone,2010,47(1):131-139. doi: 10.1016/j.bone.2010.04.594
    [17] Löffler M T,Jacob A,Valentinitsch A,et al. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA[J]. Eur Radiol,2019,29(9):4980-4989. doi: 10.1007/s00330-019-06018-w
    [18] Shuhart C R,Yeap S S,Anderson P A,et al. Executive summary of the 2019 ISCD position development conference on monitoring treatment,DXA cross-calibration and Least significant change,spinal cord injury,peri-prosthetic and orthopedic bone health,transgender medicine,and pediatrics[J]. Journal of Clinical Densitometry,2019,22(4):453-471. doi: 10.1016/j.jocd.2019.07.001
    [19] Johannesdottir F,Allaire B,Kopperdahl D L,et al. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location[J]. Osteoporos Int,2021,32(2):261-269. doi: 10.1007/s00198-020-05528-4
    [20] Pickhardt P J,Pooler B D,Lauder T,et al. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications[J]. Ann Intern Med,2013,158(8):588-595. doi: 10.7326/0003-4819-158-8-201304160-00003
    [21] 程晓光,李娜,余卫. 美国放射学院(ACR)关于定量CT(QCT)骨密度测量操作指南[J]. 中国骨质疏松杂志,2013,19(9):991-997. doi: 10.3969/j.issn.1006-7108.2013.09.026
    [22] Tothill P,Hannan W J,Cowen S,et al. Anomalies in the measurement of changes in total-body bone mineral by dual-energy X-ray absorptiometry during weight change[J]. J Bone Miner Res,1997,12(11):1908-1921. doi: 10.1359/jbmr.1997.12.11.1908
    [23] Link T M,Lang T F. Axial QCT:Clinical applications and new developments[J]. J Clin Densitom,2014,17(4):438-448. doi: 10.1016/j.jocd.2014.04.119
    [24] Okano I,Salzmann S N,Jones C,et al. The impact of degenerative disc disease on regional volumetric bone mineral density (vBMD) measured by quantitative computed tomography[J]. Spine,2020,20(2):181-190. doi: 10.1016/j.spinee.2019.02.017
    [25] Geng J,Wang L,Li Q,et al. The association of lumbar disc herniation with lumbar volumetric bone mineral density in a cross-sectional chinese study[J]. Diagnostics (Basel),2021,11(6):938. doi: 10.3390/diagnostics11060938
    [26] Paggiosi M A,Debono M,Walsh J S,et al. Quantitative computed tomography discriminates between postmenopausal women with low spine bone mineral density with vertebral fractures and those with low spine bone mineral density only:The SHATTER study[J]. Osteoporos Int,2020,31(4):667-675. doi: 10.1007/s00198-020-05317-z
    [27] Gehweiler D,Schultz M,Schulze M,et al. Material properties of human vertebral trabecular bone under compression can be predicted based on quantitative computed tomography[J]. BMC Musculoskelet Disord,2021,22(1):709. doi: 10.1186/s12891-021-04571-4
    [28] Hsu Y,Hsieh T J,Ho C H,et al. Effect of compression fracture on trabecular bone score at lumbar spine[J]. Osteoporos Int,2021,32(5):961-970. doi: 10.1007/s00198-020-05707-3
    [29] Wang X,Sanyal A,Cawthon P M,et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans[J]. J Bone MinerRes,2012,27(4):808-816. doi: 10.1002/jbmr.1539
    [30] Greenspan S L,Von Stetten E,Emond S K,et al. Instant vertebral assessment:A noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of osteoporosis[J]. J Clin Densitom,2001,4(4):373-380. doi: 10.1385/JCD:4:4:373
    [31] Lee S J,Binkley N,Lubner M G,et al. Opportunistic screening for osteoporosis using the sagittal reconstruction from routine abdominal CT for combined assessment of vertebral fractures and density[J]. Osteoporos Int,2016,27(3):1131-1136. doi: 10.1007/s00198-015-3318-4
    [32] Löffler M T,Jacob A,Scharr A,et al. Automatic opportunistic osteoporosis screening in routine CT:Improved prediction of patients with prevalent vertebral fractures compared to DXA[J]. Eur Radiol,2021,31(8):6069-6077. doi: 10.1007/s00330-020-07655-2
    [33] Marinova M,Edon B,Wolter K,et al. Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis[J]. Curr Med Res Opin,2015,31(10):1871-81. doi: 10.1185/03007995.2015.1074892
    [34] Amstrup A K,Jakobsen N F,Lomholt S,et al. Inverse correlation at the hip between areal bone mineral density measured by dual-energy X-ray absorptiometry and cortical volumetric bone mineral density measured by quantitative computed tomography[J]. J Clin Densitom,2016,19(2):226-33. doi: 10.1016/j.jocd.2015.01.002
    [35] Anderson K B, Holloway-Kew K L, Mohebbi M, et al. Is trabecular bone score less affected by degenerative-changes at the spine than lumbar spine BMD[J] Arch Osteoporos, 2018 , 13(1): 127.
    [36] Rajan R,Cherian K E,Kapoor N,et al. Trabecular bone score-an emerging tool in the management of osteoporosis[J]. Indian J Endocrinol Metab,2020,24(3):237-243. doi: 10.4103/ijem.IJEM_147_20
    [37] Tenne M,McGuigan F,Besjakov J,et al. Degenerative changes at the lumbar spine-implications for bone mineral density measurement in elderly women[J]. Osteoporos Int,2013,24(4):1419-1428. doi: 10.1007/s00198-012-2048-0
    [38] Kim Y W,Kim J H,Yoon S H,et al. Vertebral bone attenuation on low-dose chest CT:Quantitative volumetric analysis for bone fragility assessment[J]. Osteoporos Int,2017,28(1):329-338. doi: 10.1007/s00198-016-3724-2
    [39] Carlson B B,Salzmann S N,Shirahata T,et al. Prevalence of osteoporosis and osteopenia diagnosed using quantitative CT in 296 consecutive lumbar fusion patients[J]. Neurosurg Focus,2020,49(2):5. doi: 10.3171/2020.5.FOCUS20241
    [40] Adams J E. Quantitative computed tomography[J]. Eur J Radiol,2009,71(3):425-424. doi: 10.1016/j.ejrad.2008.04.060
    [41] Cherukuri L, Kinninger A, Birudaraju D, et al. Effect of body mass index on bone mineral density is age-specific. [J] Nutr Metab Cardiovasc Dis, 2021, 31(6): 1767-1773.
    [42] Löffler M T,Sollmann N,Mei K,et al. X-ray-based quantitative osteoporosis imaging at the spine[J]. Osteoporos Int,2020,31(2):233-250. doi: 10.1007/s00198-019-05212-2
    [43] Cheng X,Zhao K,Zha X,et al. China health big data (China biobank) project investigators. Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China:A nationwide,multicenter study[J]. J Bone Miner Res,2021,36(3):427-435. doi: 10.1002/jbmr.4187
    [44] Pan Y,Shi D,Wang H,et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening[J]. Eur Radiol,2020,30(7):4107-4116. doi: 10.1007/s00330-020-06679-y
    [45] Varney E,Abou Elkassem A,Khan M,et al. Prospective validation of a rapid CT-based bone mineral density screening method using colored spinal images[J]. Abdom Radiol (NY),2021,46(4):1752-1760. doi: 10.1007/s00261-020-02791-1
    [46] Yasaka K,Akai H,Kunimatsu A,et al. Prediction of bone mineral density from computed tomography:Application of deep learning with a convolutional neural network[J]. Eur Radiol,2020,30(6):3549-3557. doi: 10.1007/s00330-020-06677-0
    [47] Padlina I,Gonzalez-Rodriguez E,Hans D,et al. The lumbar spine age-related degenerative disease influences the BMD not the TBS:The Osteolaus cohort[J]. Osteoporos Int,2017,28(3):909-915. doi: 10.1007/s00198-016-3829-7
    [48] Deng G,Yin L,Li K,et al. Relationships between anthropometric adiposity indexes and bone mineral density in a cross-sectional Chinese study[J]. Spine J,2021,21(2):332-342. doi: 10.1016/j.spinee.2020.10.019
    [49] Alacreu E,Moratal D,Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe[J]. Osteoporos Int,2017,28(3):983-990. doi: 10.1007/s00198-016-3804-3
  • [1] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 张程, 韩竺君.  护骨素基因启动子区T950C多态性与2型糖尿病合并骨质疏松症的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220306
    [2] 牛玲, 李博一, 毛静秋, 唐艳, 马蓉, 刘方, 张程, 韩竹君, 苗翠娟, 张娴.  维生素D受体基因多态性与昆明地区2型糖尿病伴骨质疏松症的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210711
    [3] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 韩竺君, 张程.  降钙素受体基因多态性与昆明地区2型糖尿病伴骨质疏松症的相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210709
    [4] 李博一, 牛玲, 马蓉, 张娴, 刘方, 唐艳, 苗翠娟, 韩竺君, 张程.  护骨素基因启动子区T950C多态性与昆明地区2型糖尿病伴骨质疏松症的关系, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211112
    [5] 吴丽园, 罗夙医, 顾永洁, 王旗鹏, 许家豪.  三七总黄酮抗糖皮质激素诱发骨质疏松的效应, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201117
    [6] 季雨伟, 赵鑫, 陆姜利, 杨艺, 唐薇, 角建林.  恒古骨伤愈合剂对绝经后骨质疏松性骨折模型树鼩骨密度及骨生物力学的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201103
    [7] 张启玮, 李海峰, 李群辉.  昆明市骨质疏松症流行病学调查, 昆明医科大学学报.
    [8] 白彝华.  抑郁状态对维持性腹膜透析患者发生骨质疏松的影响, 昆明医科大学学报.
    [9] 杨继英.  2 519例儿童超声骨密度结果分析, 昆明医科大学学报.
    [10] 杨再英.  骨质疏松症对骨性关节炎发病机制的影响, 昆明医科大学学报.
    [11] 桂琦.  克龄蒙在绝经后妇女困难取环中的应用, 昆明医科大学学报.
    [12] 杨凤.  手术双侧卵巢去势法建立骨质疏松树鼩模型, 昆明医科大学学报.
    [13] 赵一慧.  化疗对乳腺癌患者骨密度的影响, 昆明医科大学学报.
    [14] 姚荣成.  JGYS对大鼠去卵巢高转换型骨质疏松症的影响, 昆明医科大学学报.
    [15] 刘军平.  影响绝经期妇女骨质疏松症的多因素分析, 昆明医科大学学报.
    [16] 徐玉善.  绝经后骨质疏松症的T细胞亚群的变化及意义, 昆明医科大学学报.
    [17] 吕涛.  男性肥胖骨质疏松患者性激素与骨代谢水平及相关性分析, 昆明医科大学学报.
    [18] 杨曼.  糖尿病SD大鼠骨密度及骨组织学特点研究, 昆明医科大学学报.
    [19] 李静.  2型糖尿病患者的临床流行特征及其与骨质疏松症的关系, 昆明医科大学学报.
    [20] 柯兴氏综合症致骨质疏松症28例临床分析, 昆明医科大学学报.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  2934
  • HTML全文浏览量:  1922
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 网络出版日期:  2022-03-15
  • 刊出日期:  2022-04-25

目录

    /

    返回文章
    返回