Correlation between CD3+ HLA-DR Expression and Vita Level in Severe Mycoplasma Pneumoniae Pneumonia
-
摘要:
目的 探讨重症肺炎支原体肺炎外周血淋巴细胞CD3+HLA-DR表达、血清Vitamin A(VitA)水平及其相关性。 方法 回顾性分析2017年1月至2020年12月入住昆明医科大学第二附属医院儿科病房,符合重症肺炎支原体肺炎诊断标准的24例患儿,随机选取同期住院的普通肺炎支原体肺炎47例为普通组;单纯上呼吸道感染、身材矮小症住院的23例为对照组;入院次日晨采集空腹静脉血,其中非抗凝血1 mL和抗凝血3 mL送检;肺炎支原体抗体滴度测定选用微量血被动凝集法,CD19,CD4,CD8,CD3+HLA-DR选用美国贝曼流式细胞仪及试剂测定,血清VitA检测:采用高效液相色谱法;统计学分析:采用单因素方差分析,两两比较采用LSD-t检验;相关性分析采用 Pearson 分析;危险因素采用Logistic分析。 结果 (1) 重症肺炎支原体肺炎者 24 例,男14 例、女 10 例,年龄(4.97±1.79)岁;普通肺炎支原体肺炎者 47 例,男30 例、女 17 例,平均年龄(4.87±1.79)岁;同期单纯上呼吸道感染、身材矮小症住院的23例患儿,男12例、女11 例,平均年龄(4.77±2.11)岁,3组患儿年龄、性别比较,差异无统计学意义(P > 0.05) ;(2)3组患儿CD19,CD4,CD8,CD3+HLA-DR,VitA值比较:重症组淋巴细胞CD4,CD3+HLA-DR表达及血清VitA水平明显降低[(34.2±4.54),(11.83±2.57),(0.23±0.10)],CD19(18.66±2.56)明显增高,与普通组[(38.1±4.04),(17.11±2.71),(0.33±0.14)]和对照组[(39.35±3.86),18.78±1.86),0.40±0.14)]比较,差异有统计学意义(P < 0.05);VitA与CD4,CD3+HLA-DR正相关(r = 0.371,0.688,P < 0.05);Logistic回归分析结果显示,血清VitA水平、CD3+HLA-DR表达的下降均是SMMP的独立危险因素(OR = 4.42、2.38,P < 0.05)。 结论 淋巴细胞活化参与了MPP的发生发展,过强的免疫反应不仅会诱发过分的免疫反应,而且还会导致自身免疫损伤(免疫麻痹),重症发生的基础,推测VitA也参与调控淋巴细胞的活化。 -
关键词:
- 肺炎支原体肺炎 /
- 重症 /
- CD3+HLA-DR /
- VitA /
- 免疫功能
Abstract:Objective To investigate the expression of CD3 + HLA-DR in peripheral blood lymphocytes and the level of serum VitA in severe Mycoplasma pneumoniae pneumonia. Methods 24 children who met the diagnostic criteria of severe Mycoplasma pneumoniae pneumonia admitted to the pediatric ward of our hospital from January 2017 to December 2020 were analyzed retrospectively. 47 cases of common Mycoplasma pneumoniae pneumonia hospitalized in the same period were randomly selected as the general group; 23 patients with simple upper respiratory tract infection and short stature were the control group; Fasting venous blood was collected in the morning of the next day after the admission, including non anticoagulant 1ml and anticoagulant 3ml; The antibody titer of Mycoplasma pneumoniae was determined by micro blood passive agglutination method, CD19, CD4, CD8, CD3 + HLA-DR was determined by American Berman flow cytometry and reagent, and serum VA was detected by high performance liquid chromatography; Statistical analysis: one-way ANOVA was used, and LSD-t test was used for pairwise comparison; Pearson analysis was used for correlation analysis; The risk factors were analyzed by logistic analysis. Results 1. There were 24 cases of severe Mycoplasma pneumoniae pneumonia, 14 males and 10 females, aged (4.97 ± 1.79) years; There were 47 cases of Mycoplasma pneumoniae pneumonia, 30 males and 17 females, with an average age of (4.87 ± 1.79) years; In the same period, there were 23 hospitalized children with simple upper respiratory tract infection and short stature, including 12 males and 11 females, with an average age of (4.77 ± 2.11) years. There was no significant difference in age and gender among the three groups (P > 0.05); 2. Comparison of CD19, CD4, CD8, CD3 + HLA-DR and vita values among the three groups: the expression of CD4, CD3 + HLA-DR and serum Vita levels in lymphocytes of the severe group were significantly lower (34.2 ± 4.54, 11.83 ± 2.57, 0.23 ± 0.10), CD19 (18.66 ± 2.56) increased significantly, which was significantly higher than that in the general group [38.1 ± 4.04, 17.11 ± 2.71, 0.33 ± 0.14] and the control group (39.35 ± 3.86, 18.78 ± 1.86, 0.40 ± 0.14) (P < 0.05); Vita was positively correlated with CD4, CD3 + HLA-DR (r = 0.371, 0.688, P < 0.05). The results of logistic regression analysis showed that the decrease of serum Vita level and CD3 + HLA-DR expression were independent risk factors of SMMP (or = 4.42, 2.38, P < 0.05). Conclusion lymphocyte activation was involved in the occurrence and development of MPP. Excessive immune response would not only induce excessive immune response, but also lead to autoimmune injury (immune paralysis). It is speculated that VitA is also involved in regulating lymphocyte activation. -
Key words:
- Mycoplasma pneumoniae pneumonia /
- Severe /
- CD3 + HLA-DR /
- VitA /
- Immune function
-
表 1 重症组、普通组、对照组年龄性别 CD19,CD4,CD8,CD3+HLA-DR,VitA比较[
$\bar x \pm s$ /n(%)]Table 1. Comparison of age,sex,CD19,CD4,CD8,CD3 + HLA-DR,Vita in severe group,normal group and control group
组别 N(例) 男/女 年龄(岁) CD19(%) CD4(%) CD8(%) CD3+HLA-DR(%) VitA(mg/L) 重症组 24 14/10 4.97 ± 1.79 18.66 ± 2.56* 34.2 ± 4.54* 29.37 ± 4.48 11.83 ± 2.57* 0.23 ± 0.10*△ 普通组 47 30/17 4.87 ± 1.79 17.1 ± 2.91 38.1 ± 4.04 28.21 ± 2.65 17.11 ± 2.71 0.33 ± 0.14△ 对照组 23 12/11 4.77 ± 2.11 16.13 ± 1.86 39.35 ± 3.86 28.69 ± 2.36 18.78 ± 1.86 0.40 ± 0.14 F/χ2 0.892 0.186 6.748 10.380 1.080 52.201 10.082 p 0.640 0.851 0.002 < 0.001 0.344 < 0.001 < 0.001 两两比较,*P < 0.05;与对照组比较,△P < 0.05。 表 2 3组血清VitA水平状况 n(%)
Table 2. Serum VitA level in 3 groups n(%)
分型 重症组(%) 普通组(%) 对照组(%) 合计 临床缺乏 4(16.7) 1(2.1) 0(0) 5(5.3) 亚临床缺乏 15(62.5) 9(19.2) 1(4.3) 25(26.6) 可疑亚临床缺乏 4(16.7) 11(23.4) 5(21.7) 10(10.6) 正常 1(4.1) 26(55.3) 17(73.9) 44(46.8) 秩均值 21.52 53.10 63.17 χ2 36.064 P 0.0001* *P < 0.05。 表 3 SMMP影响因素的Logistic回归分析
Table 3. Logistic regression analysis of influencing factors of SMMP
变量 回归系数 标准误 Waldχ2 P OR(95%CI) EXP(B)的95%CI 下限 上限 CD19(%) 0.096 0.155 0.381 0.537 1.10 0.812 1.493 CD4(%) 0.155 0.101 2.374 0.123 1.16 0.959 1.424 CD3+HLA-DR(%) 0.868 0.235 13.63 0.000* 2.38 1.503 3.779 VitA(mg/L) 10.65 4.723 5.084 0.024* 4.42 4.027 44.298 常量 −21.918 7.073 9.602 0.002* 0.000 *P < 0.05。 -
[1] M Miyata,T Hamaguchi. Prospects for the gliding Mechanism of Mycoplasma mobile[J]. Curr Opin Microbil,2016,29(2):15-20. [2] Maya W Haaker,Arie B Vaandrager,J Bernd Helms. Retinoids in health and disease:A role for hepatic stellate cells in affecting retinoid levels[J]. BBA-Molecular and Cell Biology of Lipids,2020,1865(6):158674. doi: 10.1016/j.bbalip.2020.158674 [3] 刘金荣, 赵成松, 赵顺英. 儿童社区获得性肺炎诊疗规范(2019年版)解读[J]. 中国实用儿科杂志, 2020, 35(3): 185-187. [4] 国家卫生计生委合理用药专家委员会儿童用药专业组. 中国儿童肺炎支原体感染实验室诊断规范和临床实践专家共识[J]. 中华儿科杂志,2020,58(5):366-370. [5] 中华预防医学会儿童保健分会. 中国儿童维生素A、维生素D临床应用专家共识[J]. 中国儿童保健杂志,2021,29(1):110-116. [6] 方柯南,王晶,倪婧雯. 重症肺炎支原体肺炎患儿肺炎支原体DNA复制水平与病情的相关性[J]. 中国当代儿科杂志,2019,21(9):876-880. doi: 10.7499/j.issn.1008-8830.2019.09.006 [7] 余丹阳 . 重视支原体肺炎诊治中面临的困难和挑战[J]. 中华结核和呼吸杂志, 2021, 44(1): 8-10. [8] PM Meyer Sauteur,AM Van Rossum,C Vink. Mycoplasma pneumoniae in children:Carriage,pathogenesis,and antibiotic resistance[J]. Curr Opin Infect Dis,2014,27(3):220-227. doi: 10.1097/QCO.0000000000000063 [9] 蔡辰,胡培培,陆敏,等. 肺泡灌洗液中细胞因子及细胞学水平与重症肺炎支原体肺炎相关性[J]. 中华实用儿科临床杂志,2020,35(18):1421-1424. doi: 10.3760/cma.j.cn101070-20190621-00558 [10] S Vijayan,T Sidiq,S Yousuf,et al. Class I transactivator,NLRC5:A central player in the MHC class I pathway and cancer immune surveillance[J]. Immunogenetics,2019,71(3):273-282. doi: 10.1007/s00251-019-01106-z [11] 邵晓丽,刘淑梅,周国忠,等. 单核细胞表面抗原HLA-DR及CD14+在肺炎支原体肺炎患儿中的变化[J]. 中华医院感染学杂志,2013,23(7):1500-1502. [12] Manzoli T F,Troster E J,Ferranti J F,et al. Prolonged suppression of monocytic human leukocyte antigen-DR expression correlates with mortality in pediatric septic patients in a pediatric tertiary intensive care unit[J]. Crit Care,2016,33(6):84-90. [13] Koshelev R V,Vatazin A V,Zulkarnayev A B,et al. The state of the immune system in abdominal sepsis[J]. Ter Arkh,2019,91(2):82-86. [14] Mestre-Ferrer A,Scholz E,Humet-Alsius J,et al. PRBAM:A new tool to analyze the MHC class 1 and HLA-DR anchor motifs[J]. Immunology,2019,156(2):187-198. doi: 10.1111/imm.13020 [15] I H Hiemstra,M R Beijer,H Veninga,et al. The identification and developmental requirements of colonic CD169+ macrophages[J]. Immunology,2014,142(2):269-278. [16] Danielle Ter Braake,Naomi Benne,Chun Yin Jerry Lau,et al. Retinoic acid-containing liposomes for the induction of antigen-specific regulatory T cells as a treatment for autoimmune diseases[J]. Pharmaceutics,2021,13(11):1949. doi: 10.3390/pharmaceutics13111949 [17] 杨振宇. 中国居民营养与健康状况监测报告(2010-2013)0-5岁儿童营养与健康状况[M]. 北京: 人民卫生出版社, 2020: 12-14