Application of Whole-cell Patch Clamp Techniques in Inherited Long QT Syndrome and Sudden Unexplained Death
-
摘要: 基因突变导致的心脏离子通道疾病被认为是引起不明原因猝死的首要死因,长QT综合征作为最常见的心脏离子通道疾病之一,其致病基因突变在各类SUD中被不断报道。利用全细胞膜片钳技术进行心脏离子通道功能验证对于评估基因突变的致病性、明确SUD死者的死亡原因、筛查SUD危险人群具有重要的法医学意义。对全细胞膜片钳技术的基本原理及其在长QT综合征的发病机制与不明原因猝死研究中的应用进行综述。Abstract: Cardiac channelopathy caused by genetic mutations have been recognized as a leading cause of sudden unexplained death (SUD). Long QT syndrome is one of the most common cardiac channelopathies and its pathogenic genetic mutations have been continuously reported in various types of SUD. The functional verification of cardiac ion channel using whole-cell patch clamp techniques has important forensic significance for assessing of pathogenic of genetic mutations, identifying of cause of death of SUD and screening of risk population of SUD. This review summarizes the basic principles of whole-cell patch clamp techniques and its application in the study of pathogenesis of long QT syndrome and sudden unexplained death.
-
表 1 长QT综合征各亚型相关的致病基因和致病机制
Table 1. Pathogenic genes and mechanism of different LQTS subtypes
亚型 突变基因 染色体位置 编码蛋白 干扰离子(电流) 致病机制 LQTS1 KCNQ1 11p15.5 KV7.1 K+(IKs) 减少IKs延长动作电位复极过程 LQTS2 KCNH2 7q35-36 KV11.1 K+(IKr) 减少IKr延长QT间期导致心脏复极过程延长 LQTS3 SCN5A 3p21-24 NaV1.5 Na+(INA) 增加Nav1.5电流延长QT间期致心脏复极延长 LQTS4 ANK2 4q25-27 Ankyrin-B Na+(INA) 钙离子稳态破坏导致复极化延迟长 LQTS5 KCNE1 21q22.1-22.2 KCNE1 K+(IKs) 破坏多聚体复合离子通道稳定性 LQTS6 KCNE2 21q22.1-22.2 KCNE2 K+(IKr) 破坏多聚体复合离子通道稳定性 LQTS7 KCNJ2 17q23 Kir2.1 K+(Kir2.1) 干扰钾离子流 LQTS8 CACNA1C 12p13.3 CaV1.2 Ca2+(ICa-L) 破坏开放状态失活的电压依赖的L型钙通道 LQTS9 CAV3 3p25 Caveolin-3 Na+(INA) 功能获得型导致晚期Na电流增加 LQTS10 SCN4A 11q23.3 NaVB4 Na+(INA) 功能获得型导致晚期Na电流增加 LQTS11 AKAP9 7q21-22 Yotiao K+(IKs) 降低与KCNQ1的相互作用 LQTS12 SNTA1 20q11.2 α-syntrophin Na+(INA) 功能获得型导致晚期Na电流增加 LQTS13 KCNJ5 11q24.3 Kir3.4 K+(Kir) 心室复极异常导致QT间期、QT波峰延长 LQTS14 CALM1 14q24-31 Calmodulin Ca2+ 破坏Ca2+与相关蛋白质的结合 LQTS15 CALM2 2p21.1-21.3 Calmodulin Ca2+ 同上 LQTS16 CALM3 19q13.2-13.3 Calmodulin Ca2+ 同上 LQTS17 Triadin 6p13 Triadin Ca2+ 干扰Ca2+释放及兴奋-收缩偶联导致心律失常 -
[1] Behere S P,Weindling S N. Inherited arrhythmias:The cardiac channelopathies[J]. Ann Pediatr Cardiol,2015,8(3):221-220. doi: 10.4103/0974-2069.164692 [2] Ackerman M J,Priori S G. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European heart rhythm association (EHRA)[J]. Heart Rhythm,2011,8(8):1308-1039. doi: 10.1016/j.hrthm.2011.05.020 [3] Baskar S,Aziz P F. Genotype-phenotype correlation in long QT syndrome[J]. Glob Cardiol Sci Pract,2015,2015(2):26. doi: 10.5339/gcsp.2015.26 [4] Schwartz P J,Ackerman M J. The long QT syndrome:A transatlantic clinical approach to diagnosis and therapy[J]. Eur Heart J,2013,34(40):3109-3116. doi: 10.1093/eurheartj/eht089 [5] 李翠兰,王震. 长QT综合征发病机制研究新进展[J]. 心血管病学进展,2014,35(6):625-629. doi: 10.3969/j.issn.1004-3934.2014.06.001 [6] Magi S,Lariccia V,Maiolino M,et al. Sudden cardiac death:focus on the genetics of channelopathies and cardiomyopathies[J]. J Biomed Sci,2017,24(1):56. doi: 10.1186/s12929-017-0364-6 [7] Ackerman M J,Tester D J,Porter C J,et al. Molecular diagnosis of the inherited long-QT syndrome in a woman who died after near-drowning[J]. N Engl J Med,1999,341(15):1121-1125. doi: 10.1056/NEJM199910073411504 [8] Liu C,Zhao Q,Su T,et al. Postmortem molecular analysis of KCNQ1,KCNH2,KCNE1 and KCNE2 genes in sudden unexplained nocturnal death syndrome in the Chinese Han population[J]. Forensic Sci Int,2013,231(1-3):82-87. doi: 10.1016/j.forsciint.2013.04.020 [9] Jia P L,Wang Y B,Fu H,et al. Postmortem analysis of 4 mutation hotspots of KCNQ1,KCNH2,and SCN5A genes in sudden unexplained death in southwest of China[J]. Am J Forensic Med Pathol,2018,39(3):218-222. doi: 10.1097/PAF.0000000000000411 [10] Choi Y,Sims G E,Murphy S,et al. Predicting the functional effect of amino acid substitutions and indels[J]. PLoS One,2012,7(10):46688. doi: 10.1371/journal.pone.0046688 [11] Ng P C,Henikoff S. Predicting deleterious amino acid substitutions[J]. Genome Res,2001,11(5):863-874. doi: 10.1101/gr.176601 [12] Neher E, Sakmann B.Single-chanel currents recorded from membrane of denervated frog muscle-fibers [J]. Nature, 1976, 260(5554): 799-802. [13] Peters C H,Watkins A R,Poirier O L,et al. E1784K,the most common brugada syndrome and long-QT syndrome type 3 mutant,disrupts sodium channel inactivation through two separate mechanisms[J]. J Gen Physiol,2020,152(9):202012595. doi: 10.1085/jgp.202012595 [14] Nakajima T,Dharmawan T,Kawabata-Iwakawa R,et al. Biophysical defects of an SCN5A V1667I mutation associated with epinephrine-induced marked QT prolongation[J]. J Cardiovasc Electrophysiol,2020,31(8):2107-2115. doi: 10.1111/jce.14575 [15] 贾炜姣,代广斌,耿国帅,等. 膜片钳技术在细胞电生理研究方面的最新应用[J]. 高校化学工程学报,2018,32(4):767-778. doi: 10.3969/j.issn.1003-9015.2018.04.004 [16] Zhou X,Bueno-Orovio A,Schilling R J,et al. Investigating the complex arrhythmic phenotype caused by the gain-of-function mutation KCNQ1-G229D[J]. Front Physiol,2019,10:259. [17] Furushima H,Chinushi M,Sato A,et al. Fetal atrioventricular block and postpartum augmentative QT prolongation in a patient with long-QT sy ndrome with KCNQ1 mutation[J]. J Cardiovasc Electrophysiol,2010,21(10):1170-1173. doi: 10.1111/j.1540-8167.2010.01758.x [18] 冯莉,马克娟,李新. 快速激活延迟整流钾离子通道a亚基F129I突变致长QT综合征机制研究[J]. 心肺血管病杂志,2020,39(7):781-785. [19] Daniel L L,Yang T,Kroncke B,et al. SCN5A variant R222Q generated abnormal changes in cardiac sodium current and action potentials in mur ine myocytes and Purkinje cells[J]. Heart Rhythm,2019,16(11):1676-1685. doi: 10.1016/j.hrthm.2019.05.017