Research Progress in Pathogenesis of Diabetic Encephalopathy
-
摘要: 糖尿病脑病(diabetic encephalopathy,DE)是一种与糖尿病相关的慢性并发症之一,受多种危险因素影响,其主要临床表现为认知功能减退、决策障碍及情绪障碍等。目前其可能的发病机制有胰腺淀粉样多肽稳态失衡、MicroRNAs、巨噬细胞自噬、脂素Lipin1、晚期糖基化终末产物(AGEs)、氧化应激、Tau蛋白过度磷酸化、钙稳态失调等,多种机制共同作用,影响脑内组织细胞的功能,引起糖尿病脑病相应的病理改变,促成糖尿病脑病的发生发展。Abstract: Diabetic encephalopathy (DE) is one of the chronic complications associated with diabetes. It is affected by many risk factors. Its main clinical manifestations are cognitive impairment, decision making disorders and emotional disorders. At present, the possible pathogenesis is pancreatic amyloid polypeptide homeostasis imbalance, MicroRNAs, macrophage autophagy, lipoprotein Lipin1, advanced glycation end products (AGEs), oxidative stress, overphosphorylation of Tau protein, calcium homeostasis, and other mechanisms, which affect the function of brain tissue cells and cause corresponding pathological changes of diabetic encephalopathy. Promote the development of diabetic encephalopathy.
-
Key words:
- Diabetic encephalopathy /
- Type 3 diabetes /
- Cognitive dysfunction /
- Pathogenesis
-
[1] Reske-Nielsen E,Lundbæk K,Rafaelsen O J. Pathological changes in the central and peripheral nervous system of young long-term diabetics:I. Diabetic encephalopathy[J]. Diabetologia,1966,1(3-4):233-241. doi: 10.1007/BF01257917 [2] Mijnhout G S,Scheltens P,Diamant M,et al. Diabetic encephalopathy:A concept in need of a definition[J]. Diabetologia,2006,49(6):1447-1448. doi: 10.1007/s00125-006-0221-8 [3] Gudala K,Bansal D,Schifano F,et al. Diabetes mellitus and risk of dementia:A meta-analysis of prospective observational studies[J]. J Diabetes Investig,2013,4(6):640-650. [4] Leszek J,Trypka E,Tarasov V V,et al. Type 3 diabetes mellitus:A novel implication of alzheimers disease[J]. Curr Top Med Chem,2017,17(12):1331-1335. doi: 10.2174/1568026617666170103163403 [5] International Diabetes Federation. IDF diabetes atlas[M]. 10th ed. Brussels, Belgium: International Diabetes Federation, 2021: 1-141. [6] Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature,2001,414(6865):813-820. doi: 10.1038/414813a [7] Cardoso S,Correia S C,Santos R X,et al. Hyperglycemia,hypoglycemia and dementia:roleof mitochondria and uncoupling proteins[J]. Curr Mol Med,2013,13(4):586-601. [8] Launer L J,Miller M E,Williamson J D,et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND):A randomised open-label substudy[J]. Lancet Neurol,2011,10(11):969-977. doi: 10.1016/S1474-4422(11)70188-0 [9] Hwang J J,Parikh L,Lacadie C,et al. Hypoglycemia unawareness in type 1 diabetes suppresses brain responses to hypoglycemia[J]. J Clin Invest,2018,128(4):1485-1495. doi: 10.1172/JCI97696 [10] Geijselaers S L,Sep S J,Stehouwer C D,et al. Glucose regulation,cognition,and brain MRI in type 2 diabetes:A systematic review[J]. Lancet Diabetes Endocrinol,2015,3(1):75-89. doi: 10.1016/S2213-8587(14)70148-2 [11] Walker K A,Power M C,Gottesman R F. Defining the relationship between hypertension,cognitive decline,and dementia:A review[J]. Curr Hypertens Rep,2017,19(3):24. doi: 10.1007/s11906-017-0724-3 [12] Ma C,Yin Z,Zhu P,et al. Blood cholesterol in late-life and cognitive decline:a longitudinal study of the Chinese elderly[J]. Mol Neurodegener,2017,12(1):24. doi: 10.1186/s13024-017-0167-y [13] 李睿,刘扬,陈伟红,等. 血脂异常和他汀类药物对认知功能的影响[J]. 国际神经病学神经外科学杂志,2018,45(5):528-532. [14] Dye L,Boyle N B,Champ C,et al. The relationnship between obesity and cognitive health and decline[J]. Proceedings of the Nutrition Society,2017,76(4):443-454. doi: 10.1017/S0029665117002014 [15] Rebelos E,Rinne J O,Nuutila P,et al. Brain glucose metabolism in health,obesity,and cognitive decline-does insulin have anything to do with it? A narrative review[J]. J Clin Med,2021,10(7):1532. doi: 10.3390/jcm10071532 [16] 孙芩玲,雷曦,曹英,等. 吸烟对中老年人轻度认知功能障碍的影响[J]. 湖北医药学院学报,2017,36(4):330-333,337. [17] Swan G E,Lessov-Schlaggar C N. The effects of tobacco smoke and nicotine on cognition and the brain[J]. Neuropsychol Rev,2007,17(3):259-273. doi: 10.1007/s11065-007-9035-9 [18] 刘申贝,古小云,钟志江,等. KKAy糖尿病脑病模型的探索及相关机制研究[J]. 中药药理与临床,2020,36(1):210-218. [19] den Heijer T,Vermeer S E,van Dijk E J,et al. Type 2 diabetes and atrophy of medial temporal lobe structures on brain MRI[J]. Diabetologia,2003,46(12):1604-1610. doi: 10.1007/s00125-003-1235-0 [20] 刘雪梅,谢明国. 3.0T MRI弥散张量成像(DTI)在诊断早期糖尿病脑病中的应用[J]. 糖尿病新世界,2020,23(13):18-19. [21] 尹华静,王伟平,王晓良. 糖尿病脑病突触可塑性损伤的研究进展[J]. 中国药学杂志,2018,53(21):1805-1809. [22] Liu Y,Li M,Zhang Z,et al. Role of microglia-neuron interactions in diabetic encephalopathy[J]. Ageing Res Rev,2018,42:28-39. [23] Lampron A,Elali A,Rivest S. Innate immunity in the CNS:redefining the relationship between the CNS and Its environment[J]. Neuron,2013,78(2):214-232. doi: 10.1016/j.neuron.2013.04.005 [24] Abdelwahed O M,Tork O M,Gamal El Din M M,et al. Effect of glucagon-like peptide-1 analogue; Exendin-4,on cognitive functions in type 2 diabetes mellitus; possible modulation of brain derived neurotrophic factor and brain Visfatin[J]. Brain Res Bull,2018,139:67-80. [25] 刘慧,王小军,胡蓉,等. 星形胶质细胞[J]. 生命科学进展,2004,35(1):86-91. [26] 师思,王晓良. 星形胶质细胞在糖尿病脑病中的变化及作用[J]. 国际药学研究杂志,2016,43(1):56-61. [27] Shimizu F,Sano Y,Tominaga O,et al. Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-β by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro[J]. Neurobiol Aging,2013,34(7):1902-1912. doi: 10.1016/j.neurobiolaging.2013.01.012 [28] van Sloten T T,Sedaghat S,Carnethon M R,et al. Cerebral microvascular complications of type 2 diabetes:stroke,cognitive dysfunction,and depression[J]. Lancet Diabetes Endocrinol,2020,8(4):325-336. doi: 10.1016/S2213-8587(19)30405-X [29] Emerging Risk Factors Collaboration,Sarwar N,Gao P,et al. Diabetes mellitus,fasting blood glucose concentration,and risk of vascular disease:a collaborative meta-analysis of 102 prospective studies[J]. Lancet,2010,375(9733):2215-2222. doi: 10.1016/S0140-6736(10)60484-9 [30] Cheng G,Huang C,Deng H,et al. Diabetes as a risk factor for dementia and mild cognitive impairment:a meta-analysis of longitudinal studies[J]. Intern Med J,2012,42(5):484-491. doi: 10.1111/j.1445-5994.2012.02758.x [31] Ly H,Despa F. Diabetes-related amylin dyshomeostasis:A contributing factor to cerebrovascular pathology and dementia[J]. J Lipid Atheroscler,2019,8(2):144-151. doi: 10.12997/jla.2019.8.2.144 [32] Verma N,Despa F. Contributing factors to diabetic brain injury and cognitive decline[J]. Diabetes Metab J,2019,43(5):560-567. [33] Grieco G E,Brusco N,Licata G,et al. Targeting microRNAs as a therapeutic strategy to reduce oxidative stress in diabetes[J]. Int J Mol Sci,2019,20(24):6358. doi: 10.3390/ijms20246358 [34] Wang B,Huang J,Li J,et al. Control of macrophage autophagy by miR-384-5p in the development of diabetic encephalopathy[J]. Am J Transl Res,2018,10(2):511-518. [35] Shi L,Zhang R,Li T,et al. Decreased miR-132 plays a crucial role in diabetic encephalopathy by regulating the GSK-3β/Tau pathway[J]. Aging (Albany NY),2020,13(3):4590-4604. [36] Lei Y,Yang M,Li H,et al. miR-130b regulates PTEN to activate the PI3K/Akt signaling pathway and attenuate oxidative stress-induced injury in diabetic encephalopathy[J]. Int J Mol Med,2021,48(1):141. doi: 10.3892/ijmm.2021.4974 [37] Mizushima N,Komatsu M. Autophagy:renovation of cells and tissues[J]. Cell,2011,147(4):728-741. doi: 10.1016/j.cell.2011.10.026 [38] Shao B Z,Han B Z,Zeng Y X,et al. The roles of macrophage autophagy in atherosclerosis[J]. Acta Pharmacol Sin,2016,37(2):150-156. doi: 10.1038/aps.2015.87 [39] Wang B,Zhong Y,Li Q,et al. Autophagy of macrophages is regulated byPI3k/Akt/mTOR signalling in the development of diabeticencephalopathy[J]. Aging (Albany NY),2018,10(10):2772-2782. doi: 10.18632/aging.101586 [40] Xie M,Wang M,Liu W,et al. Lipin1 is involved in the pathogenesis of diabetic encephalopathy through the PKD/limk/cofilin signaling pathway[J]. Oxid Med Cell Longev,2020,2020:1723423. [41] Chen R,Shi J,Yin Q,et al. Morphological and pathological characteristics of brain in diabetic encephalopathy[J]. JAlzheimers Dis,2018,65(1):15-28. doi: 10.3233/JAD-180314 [42] 景光婵,张梦仁. 糖尿病脑病的氧化应激损伤及治疗[J]. 中国糖尿病杂志,2011,19(1):68-70. doi: 10.3969/j.issn.1006-6187.2011.01.018 [43] Luc K,Schramm-Luc A,Guzik T J,et al. Oxidative stress and inflam-matory markers in prediabetes and diabetes[J]. J PhysiolPharmacol,2019,70(6):809-824. [44] Wang Z,Huang Y,Cheng Y,et al. Endoplasmic reticulum stress-induced neuronal inflammatory response and apoptosis likely plays a key role in the development of diabetic encephalopathy[J]. Oncotarget,2016,7(48):78455-78472. doi: 10.18632/oncotarget.12925 [45] Fernandes V,Choudhary M,Kumar A,et al. Proteotoxicity and mitochondrial dynamics in aging diabetic brain[J]. Pharmacol Res,2020,159:104948. [46] Powers E T,Morimoto R I,Dillin A,et al. Biological and chemical approaches to diseases of proteostasis deficiency[J]. Annu Rev Biochem,2009,78(2009):959-991. [47] 赵子艾. A2AR活化在脑创伤后tau蛋白过度磷酸化及认知障碍中的作用与机制[D]. 重庆: 第三军医大学, 2014. [48] Singhal K,Sandhir R. L-type calcium channel blocker ameliorates diabetic encephalopathy by modulating dysregulated calcium homeostasis[J]. J Neurosci Res,2015,93(2):296-308. doi: 10.1002/jnr.23478 [49] Huo M,Wang Z,Fu W,et al. Spatially resolved metabolomics based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging reveals region-specific metabolic alterations in diabetic encephalopathy[J]. J Proteome Res,2021,20(7):3567-3579. doi: 10.1021/acs.jproteome.1c00179 [50] Xu T,Liu J,Li X R,et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy[J]. Mol Neurobiol,2021,58(8):3848-3862. doi: 10.1007/s12035-021-02390-1
点击查看大图
计量
- 文章访问数: 3602
- HTML全文浏览量: 824
- PDF下载量: 92
- 被引次数: 0