[1]
|
Moore K J,Sheedy F J,Fisher E A. Macrophages in atherosclerosis:A dynamic balance[J]. Nat Rev Immunol,2013,13(10):709-721. doi: 10.1038/nri3520
|
[2]
|
Mills C D,Ley K. M1 and M2 macrophages:The chicken and the egg of immunity[J]. J Innate Immun,2014,6(6):716-726. doi: 10.1159/000364945
|
[3]
|
Murray P J,Allen J E,Biswas S K,et al. Macrophage activation and polarization:Nomenclature and experimental guidelines[J]. Immunity,2014,41(1):14-20. doi: 10.1016/j.immuni.2014.06.008
|
[4]
|
Schmitz G,Grandl M. Role of redox regulation and lipid rafts in macrophages during Ox-LDL-mediated foam cell formation[J]. Antioxid Redox Signal,2007,9(9):1499-1518. doi: 10.1089/ars.2007.1663
|
[5]
|
杨新春,张大鹏. 慢性冠状动脉综合征的概念和要点及意义[J]. 中国心血管病研究,2019,17(10):871-873. doi: 10.3969/j.issn.1672-5301.2019.10.002
|
[6]
|
Stoger J L,Gijbels M J,Van Der Velden S,et al. Distribution of macrophage polarization markers in human atherosclerosis[J]. Atherosclerosis,2012,225(2):461-468. doi: 10.1016/j.atherosclerosis.2012.09.013
|
[7]
|
Kuznetsova T,Prange K H M,Glass C K,et al. Transcriptional and epigenetic regulation of macrophages in atherosclerosis[J]. Nature Reviews Cardiology,2020,17(4):216-228. doi: 10.1038/s41569-019-0265-3
|
[8]
|
Van der Veken B,De Meyer G R,Martinet W. Intraplaque neovascularization as a novel therapeutic target in advanced atherosclerosis[J]. Expert Opin Ther Targets,2016,20(10):1247-1257. doi: 10.1080/14728222.2016.1186650
|
[9]
|
徐声波,吴平路,余晖,等. AIS患者CTRP1、MMP-9水平与颈动脉硬化斑块稳定性及神经功能缺损程度的关系[J]. 脑与神经疾病杂志,2021,29(8):492-496.
|
[10]
|
Ganta V C,Choi M,Farber C R,et al. Antiangiogenic VEGF165b regulates macrophage polarization via S100A8/S100A9 in peripheral artery disease[J]. Circulation,2019,139(2):226-242. doi: 10.1161/CIRCULATIONAHA.118.034165
|
[11]
|
Clemente C,Rius C,Alonso-Herranz L,et al. MT4-MMP deficiency increases patrolling monocyte recruitment to early lesions and accelerates atherosclerosis[J]. Nat Commun,2018,9(1):910. doi: 10.1038/s41467-018-03351-4
|
[12]
|
戴海龙,肖娟,潘云. 冠心病患者外周血单核细胞中miR-125a-3p的表达研究[J]. 中国心血管病研究,2020,18(3):203-205. doi: 10.3969/j.issn.1672-5301.2020.03.003
|
[13]
|
Mushenkova N V,Nikiforov N G,Melnichenko A A,et al. Functional phenotypes of intraplaque macrophages and their distinct roles in atherosclerosis development and atheroinflammation[J]. Biomedicines,2022,10(2):452. doi: 10.3390/biomedicines10020452
|
[14]
|
Barquera S,Pedroza-Tobias A,Medina C,et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease[J]. Arch Med Res,2015,46(5):328-338. doi: 10.1016/j.arcmed.2015.06.006
|
[15]
|
Guilliams M,Mildner A,Yona S. Developmental and functional heterogeneity of monocytes[J]. Immunity,2018,49(4):595-613. doi: 10.1016/j.immuni.2018.10.005
|
[16]
|
Bouhlel M A,Derudas B,Rigamonti E,et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties[J]. Cell Metab,2007,6(2):137-143. doi: 10.1016/j.cmet.2007.06.010
|
[17]
|
Rupaimoole R,Slack F J. MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov,2017,16(3):203-222. doi: 10.1038/nrd.2016.246
|
[18]
|
Bartel D P. MicroRNAs:Genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297. doi: 10.1016/S0092-8674(04)00045-5
|
[19]
|
Lujambio A,Lowe S W. The microcosmos of cancer[J]. Nature,2012,482(7385):347-355. doi: 10.1038/nature10888
|
[20]
|
Lv L L,Feng Y,Wu M,et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury[J]. Cell Death Differ,2020,27(1):210-226. doi: 10.1038/s41418-019-0349-y
|
[21]
|
Mao Y,Liu X,Song Y,et al. VEGF-A/VEGFR-2 and FGF-2/FGFR-1 but not PDGF-BB/PDGFR-β play important roles in promoting immature and inflammatory intraplaque angiogenesis[J]. PloS One,2018,13(8):e0201395. doi: 10.1371/journal.pone.0201395
|
[22]
|
Bot P T,Pasterkamp G,Goumans M J,et al. Hyaluronic acid metabolism is increased in unstable plaques[J]. Eur J Clin Invest,2010,40(9):818-827. doi: 10.1111/j.1365-2362.2010.02326.x
|