留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肝纤维化病因与机制研究进展

何迪 陈鹏 刘锋 徐杨 韩磊 丁文静

何迪, 陈鹏, 刘锋, 徐杨, 韩磊, 丁文静. 肝纤维化病因与机制研究进展[J]. 昆明医科大学学报, 2022, 43(11): 165-171. doi: 10.12259/j.issn.2095-610X.S20221122
引用本文: 何迪, 陈鹏, 刘锋, 徐杨, 韩磊, 丁文静. 肝纤维化病因与机制研究进展[J]. 昆明医科大学学报, 2022, 43(11): 165-171. doi: 10.12259/j.issn.2095-610X.S20221122
Di HE, Peng CHEN, Feng LIU, Yang XU, Lei HAN, Wenjing DING. Progress in Etiology and Pathogenesis of Liver Fibrosis[J]. Journal of Kunming Medical University, 2022, 43(11): 165-171. doi: 10.12259/j.issn.2095-610X.S20221122
Citation: Di HE, Peng CHEN, Feng LIU, Yang XU, Lei HAN, Wenjing DING. Progress in Etiology and Pathogenesis of Liver Fibrosis[J]. Journal of Kunming Medical University, 2022, 43(11): 165-171. doi: 10.12259/j.issn.2095-610X.S20221122

肝纤维化病因与机制研究进展

doi: 10.12259/j.issn.2095-610X.S20221122
基金项目: 国家自然科学基金资助项目(81860124);昆明医科大学研究生创新基金资助项目(2021S056)
详细信息
    作者简介:

    何迪 (1993~),男,河南商丘人,医学硕士,住院医师,主要从事肝胆胰外科工作

    通讯作者:

    陈鹏,E-mail:398031131@qq.com

  • 中图分类号: R363

Progress in Etiology and Pathogenesis of Liver Fibrosis

  • 摘要: 肝纤维化(hepatic fibrosis,HF)是由遗传相关疾病、慢性病毒性肝炎、酒精性肝炎、胆汁淤积和药物性肝损伤等多种慢性肝病引起的过度修复反应产生多种细胞外基质(extracellular matrix,ECM)的异常沉积的结果。肝纤维化的发生发展机制和肝星状细胞(hepatic stellate cells,HSC)、肝巨噬细胞、内质网应激(endoplasmic reticulum stress,ERs)和自噬等有关。肝脏的纤维化是一个动态发展过程,在没有干预的情况下会继续发展成为肝硬化,甚至发展为肝细胞癌。因此,延缓或者逆转肝纤维化的发生具有非常重要的临床意义。对肝纤维化病因和发生发展机制总结,为抗肝纤维化的药物研究提供参考。
  • 表  1  遗传相关因素导致肝纤维化

    Table  1.   Liver fibrosis due to genetically related factors

    疾病名称基因基因功能组织损伤的原因相关临床表现
    进行性家族性肝内胆汁淤积症3型 ABCB4 胆汁磷脂分泌 磷脂和其他外来物质的堆积;胆汁淤积的损害 表现在儿童早期,黄疸,脾肿大,门静脉高压和身心发育迟缓
    威尔逊病 ATP7B 铜离子运输 肝内Cu2+蓄积 可无症状或伴有纤维化、急性肝炎、终末期肝病
    阿尔斯特伦综合征 ALMS1 中心体和基底相关
    蛋白:微管组织
    发病机制不明:可能与细胞内钙信号有关 多器官功能障碍:肝脏受累可从脂肪性肝炎到门脉高压症和肝硬化,并可导致肝性脑病和危及生命的食管静脉曲张
    遗传性果糖不耐受 ALDOB 将果糖转化为三糖,
    进入糖酵解和糖异生
    1-磷酸果糖的积累和无机磷水平的耗尽,抑制糖原分解 遗传性果糖不耐受、肝毒性、肝功能障碍进展为肝硬化
    糖原沉积病IV型 GBE1 糖原分支酶 积累无支链糖原引起肝毒性 典型的肝病表现包括肝功能不全、进展为肝硬化、5岁前不能正常生长。非进行性肝亚型表现为肝肿大、肝功能不全、肌病和低眼压;但可能存活,不会进一步发展为肝硬化。
    酪氨酸血症I型 FAH 酪氨酸分解代谢的
    最后一步
    富马酸乙酰乙酯和酪氨酸在肝细胞中的蓄积及其对细胞的氧化损伤 表现为肝或肾功能衰竭;在婴儿期早期;与肝脏相关的症状是低白蛋白血症,肝脏合成功能降低,导致脂肪变性、肝硬化和肝细胞癌
    精氨酸琥珀酸裂解酶缺乏症 ASL 将精氨酸琥珀酸分解成
    精氨酸和琥珀酸的
    尿素循环酶
    尿素循环中间产物,特别是氨的积累 两种形式:婴儿期早发伴有高氨血症和呕吐,发育迟缓,或晚发性高氨血症发作,肝硬化和神经系统症状
    柠檬酸缺乏症 SLC25A13 钙结合线粒体载体蛋白Aralar2(细胞质谷氨酸与线粒体天冬氨酸通过线粒体内膜交换) 瓜氨酸血症与氨蓄积 新生儿肝内胆汁淤积:胆汁淤积,纤维化,肝硬化;迟发性瓜氨酸血症2:神经精神症状
    非酒精性脂肪性肝病(NAFLD) PNPLA3 甘油三酯脂肪酶和视黄酸酯酶活性的多效性作用 甘油三酯蓄积、维甲酸受体信号转导受损及HSC纤维化通路激活 肝脏脂肪变性、纤维化、肝硬化、肝细胞癌
    下载: 导出CSV
  • [1] Berumen J,Baglieri J,Kisseleva T,et al. Liver fibrosis:pathophysiology and clinical implications[J]. WIREs Mechanisms of Disease,2021,13(1):e1499.
    [2] Bataller R,Brenner D A. Liver fibrosis[J]. The Journal of Clinical Investigation,2005,115(2):209-218. doi: 10.1172/JCI24282
    [3] Acharya P,Chouhan K,Weiskirchen S,et al. Cellular mechanisms of liver fibrosis[J]. Frontiers in Pharmacology,2021,12:671640. doi: 10.3389/fphar.2021.671640
    [4] Anstee Q M,Darlay R,Cockell S,et al. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort☆[J]. Journal of Hepatology,2020,73(3):505-515. doi: 10.1016/j.jhep.2020.04.003
    [5] Dong X C. PNPLA3—A potential therapeutic target for personalized treatment of chronic liver disease[J]. Frontiers in Medicine,2019,6:304. doi: 10.3389/fmed.2019.00304
    [6] Pirazzi C,Valenti L,Motta B M,et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells[J]. Human Molecular Genetics,2014,23(15):4077-4085. doi: 10.1093/hmg/ddu121
    [7] Bruschi F V,Claudel T,Tardelli M,et al. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells[J]. Hepatology,2017,65(6):1875-1890. doi: 10.1002/hep.29041
    [8] Woolbright B L,Jaeschke H. Inflammation and cell death during cholestasis:the evolving role of bile acids[J]. Gene Expression,2019,19(3):215. doi: 10.3727/105221619X15614873062730
    [9] Beretta-Piccoli B T,Mieli-Vergani G,Vergani D,et al. The challenges of primary biliary cholangitis:What is new and what needs to be done[J]. Journal of Autoimmunity,2019,105:102328. doi: 10.1016/j.jaut.2019.102328
    [10] Guyot C,Lepreux S,Combe C,et al. Hepatic fibrosis and cirrhosis:the (myo) fibroblastic cell subpopulations involved[J]. The International Journal of Biochemistry & Cell Biology,2006,38(2):135-151.
    [11] Breitkopf K,Godoy P,Ciuclan L,et al. TGF-β/Smad signaling in the injured liver[J]. Zeitschrift für Gastroenterologie,2006,44(1):57-66.
    [12] Presser L D,McRae S,Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1:role of TGF-β1 in hepatic stellate cell activation and invasion[J]. PloS One,2013,8(2):e56367. doi: 10.1371/journal.pone.0056367
    [13] Josan S,Billingsley K,Orduna J,et al. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1‐13C] pyruvate[J]. NMR in Biomedicine,2015,28(12):1671-1677. doi: 10.1002/nbm.3431
    [14] Weiskirchen R. Hepatoprotective and anti-fibrotic agents:It's time to take the next step[J]. Frontiers in Pharmacology,2016,6:303.
    [15] Puche J E,Saiman Y,Friedman S L. Hepatic stellate cells and liver fibrosis[J]. Compr Physiol,2013,3(4):1473-1492.
    [16] Marrone G,Shah V H,Gracia-Sancho J. Sinusoidal communication in liver fibrosis and regeneration[J]. Journal of Hepatology,2016,65(3):608-617. doi: 10.1016/j.jhep.2016.04.018
    [17] Khomich O,Ivanov A V,Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis[J]. Cells,2019,9(1):24. doi: 10.3390/cells9010024
    [18] Schnabel C,Sawitza I,Tag C G,et al. Expression of cytosolic and membrane associated tissue transglutaminase in rat hepatic stellate cells and its upregulation during transdifferentiation to myofibroblasts in culture[J]. Hepatology Research,2004,28(3):140-145. doi: 10.1016/j.hepres.2003.11.004
    [19] Perepelyuk M,Terajima M,Wang A Y,et al. Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2013,304(6):G605-G614. doi: 10.1152/ajpgi.00222.2012
    [20] Vallet S D,Ricard-Blum S. Lysyl oxidases:from enzyme activity to extracellular matrix cross-links[J]. Essays in Biochemistry,2019,63(3):349-364. doi: 10.1042/EBC20180050
    [21] Bonnans C,Chou J,Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nature Reviews Molecular Cell Biology,2014,15(12):786-801. doi: 10.1038/nrm3904
    [22] Cheng D,Chai J,Wang H,et al. Hepatic macrophages:Key players in the development and progression of liver fibrosis[J]. Liver International,2021,41(10):2279-2294. doi: 10.1111/liv.14940
    [23] Wang H,Lafdil F,Kong X,et al. Signal transducer and activator of transcription 3 in liver diseases:a novel therapeutic target[J]. International Journal of Biological Sciences,2011,7(5):536. doi: 10.7150/ijbs.7.536
    [24] 梁文杰,陈晶,杜雅菊. 参与肝纤维化形成的细胞和细胞因子的新进展[J]. 胃肠病学和肝病学杂志,2017,26(5):581-584. doi: 10.3969/j.issn.1006-5709.2017.05.028
    [25] Rahman A H,Aloman C. Dendritic cells and liver fibrosis[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2013,1832(7):998-1004. doi: 10.1016/j.bbadis.2013.01.005
    [26] Robbins S H,Walzer T,Dembélé D,et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling[J]. Genome biology,2008,9(1):1-27. doi: 10.1186/gb-2008-9-1-r1
    [27] Jiao J,Sastre D,Fiel M I,et al. Dendritic cell regulation of carbon tetrachloride–induced murine liver fibrosis regression[J]. Hepatology,2012,55(1):244-255. doi: 10.1002/hep.24621
    [28] Bleier J I,Katz S C,Chaudhry U I,et al. Biliary obstruction selectively expands and activates liver myeloid dendritic cells[J]. The Journal of Immunology,2006,176(12):7189-7195. doi: 10.4049/jimmunol.176.12.7189
    [29] Anelli T,Sitia R. Protein quality control in the early secretory pathway[J]. The EMBO Journal,2008,27(2):315-327. doi: 10.1038/sj.emboj.7601974
    [30] Chen P,Chen C,Hu M,et al. S-allyl-L-cysteine protects hepatocytes from indomethacin‐induced apoptosis by attenuating endoplasmic reticulum stress[J]. FEBS Open Bio,2020,10(9):1900-1911. doi: 10.1002/2211-5463.12945
    [31] Rana S V S. Endoplasmic reticulum stress induced by toxic elements—a review of recent developments[J]. Biological Trace Element Research,2020,196(1):10-19. doi: 10.1007/s12011-019-01903-3
    [32] Liu X,Green R M. Endoplasmic reticulum stress and liver diseases[J]. Liver Research,2019,3(1):55-64. doi: 10.1016/j.livres.2019.01.002
    [33] Li G,Mongillo M,Chin K T,et al. Role of ERO1-α–mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress–induced apoptosis[J]. Journal of Cell Biology,2009,186(6):783-792. doi: 10.1083/jcb.200904060
    [34] Iracheta-Vellve A,Petrasek J,Gyongyosi B,et al. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes[J]. Journal of Biological Chemistry,2016,291(52):26794-26805. doi: 10.1074/jbc.M116.736991
    [35] Su W,Tai Y,Tang S H,et al. Celecoxib attenuates hepatocyte apoptosis by inhibiting endoplasmic reticulum stress in thioacetamide-induced cirrhotic rats[J]. World Journal of Gastroenterology,2020,26(28):4094-4107. doi: 10.3748/wjg.v26.i28.4094
    [36] Koo J H,Lee H J,Kim W,et al. Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2[J]. Gastroenterology,2016,150(1):181-193.e8. doi: 10.1053/j.gastro.2015.09.039
    [37] Men R,Wen M,Dan X,et al. Nogo‐B:A potential indicator for hepatic cirrhosis and regulator in hepatic stellate cell activation[J]. Hepatology Research,2015,45(1):113-122. doi: 10.1111/hepr.12324
    [38] Bian M,He J,Jin H,et al. Oroxylin A induces apoptosis of activated hepatic stellate cells through endoplasmic reticulum stress[J]. Apoptosis,2019,24(11):905-920.
    [39] Zhou F,Yang Y,Xing D. Bcl‐2 and Bcl‐xL play important roles in the crosstalk between autophagy and apoptosis[J]. The FEBS Journal,2011,278(3):403-413. doi: 10.1111/j.1742-4658.2010.07965.x
    [40] 高宏,文楠,徐雪松,等. 内质网应激介导的 Kupffer 细胞源性 TNF-α 经 TNFR/caspase 8 途径诱导肝星状细胞凋亡[J]. Journal of Southern Medical University,2020,40(5):632.
    [41] Bian M,Chen X,Zhang C,et al. Magnesium isoglycyrrhizinate promotes the activated hepatic stellate cells apoptosis via endoplasmic reticulum stress and ameliorates fibrogenesis in vitro and in vivo[J]. Biofactors,2017,43(6):836-846. doi: 10.1002/biof.1390
    [42] Yang Z,Klionsky D J. Eaten alive:a history of macroautophagy[J]. Nature cell biology,2010,12(9):814-822. doi: 10.1038/ncb0910-814
    [43] Mizushima N,Yoshimori T,Levine B. Methods in mammalian autophagy research[J]. Cell,2010,140(3):313-326. doi: 10.1016/j.cell.2010.01.028
    [44] Mizushima N,Yoshimori T,Ohsumi Y. The role of Atg proteins in autophagosome formation[J]. Annual Review of Cell and Developmental Biology,2011,27:107-132. doi: 10.1146/annurev-cellbio-092910-154005
    [45] Khambu B, Yan S, Huda N, et al. Homeostatic role of autophagy in hepatocytes[C]//Seminars in Liver Disease. Thieme Medical Publishers, 2018, 38(4): 308-319.
    [46] Hernández–Gea V,Ghiassi–Nejad Z,Rozenfeld R,et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues[J]. Gastroenterology,2012,142(4):938-946. doi: 10.1053/j.gastro.2011.12.044
    [47] Lodder J,Denaës T,Chobert M N,et al. Macrophage autophagy protects against liver fibrosis in mice[J]. Autophagy,2015,11(8):1280-1292. doi: 10.1080/15548627.2015.1058473
    [48] Ni H M,Bockus A,Boggess N,et al. Activation of autophagy protects against acetaminophen‐induced hepatotoxicity[J]. Hepatology,2012,55(1):222-232. doi: 10.1002/hep.24690
    [49] Amir M,Zhao E,Fontana L,et al. Inhibition of hepatocyte autophagy increases tumor necrosis factor-dependent liver injury by promoting caspase-8 activation[J]. Cell Death & Differentiation,2013,20(7):878-887.
  • [1] 张梁, 王保全, 雷喜锋, 王旭, 柯阳, 张玮.  miR-29c-3p/IGF1分子轴对肝星状细胞活化,增殖和凋亡的作用机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230926
    [2] 李思琪, 邰文琳.  趋化因子CXCL10作为肝硬化生物标志物的意义, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220711
    [3] 张黎, 王清岑, 周罗慧, 杨娟, 王红.  木犀草素通过调控内质网应激抑制平滑肌细胞的迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220518
    [4] 张锡华, 贾涛, 刘伟涛, 万青, 王锦峰, 李溪, 刘劲松.  髋关节强直的病因与治疗现状, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210902
    [5] 田倪妮, 张鸿青, 田敏, 吕彩萍, 杨斌, 许峰, 李宏键, 潘兴华.  高龄女性急性心肌梗死患者临床特点及内质网应激因子HSP47、XBP-1S、GRP78的血清含量, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210417
    [6] 解琴, 梁艳平, 张引, 徐增辉, 尤丽英.  多种无创诊断模型诊断慢性肝病患者肝纤维化的效能, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210719
    [7] 孙月, 韦嘉, 陆永萍, 王锦, 邹玉, 王禹雪, 杨谧.  实时剪切波超声弹性成像对慢性乙型病毒性肝炎肝纤维化分期的定量分析, 昆明医科大学学报.
    [8] 胡建鹏.  龙血素A对大鼠肝星状细胞增殖及Frizzled-4受体蛋白表达的影响, 昆明医科大学学报.
    [9] 张红红.  昆明地区学龄前女童同性性早熟病因及临床特点分析, 昆明医科大学学报.
    [10] 王玉.  儿童再发性腹痛72例常见病因分析, 昆明医科大学学报.
    [11] 杨琼晖.  内质网应激与相关眼科疾病, 昆明医科大学学报.
    [12] 何敏.  超声组织弥散定量评估慢乙肝肝纤维化的临床价值, 昆明医科大学学报.
    [13] 李明明.  ASQ评价慢乙肝纤维化分期的研究, 昆明医科大学学报.
    [14] 毕丹青.  胃肠外科手术后急性肾损伤病因分析, 昆明医科大学学报.
    [15] 曾瑾.  人参皂苷Rg3、IFN-α治疗血吸虫病肝纤维化的肝脏电镜观察, 昆明医科大学学报.
    [16] 熊雁.  益生菌治疗婴儿抗生素相关性腹泻疗效分析, 昆明医科大学学报.
    [17] 徐芳.  早产病因237例分析, 昆明医科大学学报.
    [18] 李玉莲.  建立一种改良方法分离大鼠肝星状细胞, 昆明医科大学学报.
    [19] 胸腔积液74例病因临床诊断分析, 昆明医科大学学报.
    [20] 赵学英.  p53基因在内质网应激诱导的晶状体上皮细胞凋亡中的作用, 昆明医科大学学报.
  • 加载中
表(1)
计量
  • 文章访问数:  3480
  • HTML全文浏览量:  3880
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-16
  • 网络出版日期:  2022-10-29
  • 刊出日期:  2022-11-14

目录

    /

    返回文章
    返回