Risk Factors Analysis and Assessment of Ruptured Posterior Communicating Artery Aneurysm
-
摘要:
目的 分析后交通动脉瘤破裂的风险因素,筛选形态学和血流动力学预测指标。 方法 选取2019年3月至2021年12月南京医科大学附属苏州医院、苏州大学附属第一医院收治的后交通动脉瘤患者资料共78例。其中破裂动脉瘤49 例作为观察组,未破裂动脉瘤29 例作为对照组。比较性别,年龄,吸烟史,高血压病史,糖尿病史、动脉瘤大小、高宽比(aspect ratio,AR)、大小比率(size ratio,SR)、波动指数(undulation index,UI)、非球形指数(nonsphericity index,NSI)、椭形指数(ellipticity Index,EI)、壁面切应力(wall shear stress, WSS)、切应力梯度(wall shear stress gradient, WSSG)、振荡剪切指数(oscillatory shear index,OSI)等参数。 结果 2组临床因素中年龄、性别、吸烟史、高血压及糖尿病史,差异均无统计学意义(P > 0.05);形态学分析结果:最大径、SR、UI、NSI 2组比较,差异有统计学意义(P < 0.05),AR、NSI、EI差异无统计学意义(P > 0.05);形态学分析结果:WSS(Pa) 2组比较,差异有统计学意义(P < 0.05);WSSG(Pa/mm)、OSI差异无统计学意义(P > 0.05)。 结论 动脉瘤的大小、不规则的瘤壁形态与动脉瘤破裂有密切联系;低WSS可能是后交通动脉瘤破裂的独立风险因素。 Abstract:Objective To investigate the risk factors of rupture of posterior communicating aneurysm and screen the morphologic and hemodynamic predictors. Methods A total of 78 patients with posterior communicating aneurysm diagnosed in the neurosurgery department of the Affiliated Suzhou Hospital of Nanjing Medical University, the First Affiliated Hospital of Soochow University from March 2019 to December 2021 with complete clinical data and meeting the inclusion criteria were retrospectively analyzed. 49 cases of ruptured aneurysm were in the observation group, and 29 cases of unruptured aneurysm were in the control group. Clinical data included sex, age, smoking history, history of hypertension, history of diabetes. Morphological data included aneurysm size, aspect ratio (AR), size ratio (SR), undulation index (UI), nonsphericity index (NSI), elliptic Index (EI). The hemodynamic parameters include Wall Shear Stress (WSS), Wall Shear Stress Gradient (WSSG) and Oscillatory Shear index (OSI). Results There was no statistically significant difference between the two groups (P > 0.05) in age, sex, history of smoking, hypertension and diatetes. Morphological analysis showed that there were significant differences in maximum diameter, SR, UI and NSI between two groups (P < 0.05). There were no significant differences in AR, NSI and EI (P > 0.05). Morphological analysis showed that WSS (Pa) was significantly different between the two groups (P < 0.05), WSSG (Pa/mm) and OSI had no significant difference (P > 0.05). Conclusion Aneurysm size and irregular wall shape are closely related to aneurysm rupture. Low WSS may be an independent risk factor for posterior communicating aneurysm rupture. -
Key words:
- Intracranial aneurysm /
- Risk factors /
- Epidemiology /
- Hemodynamics
-
表 1 破裂组与未破裂组基线资料 [n(%)]
Table 1. Baseline Data of ruptrured Group and non ruptured Group [n(%)]
分组 破裂组(n = 49) 未破裂组(n = 29) χ2 P 男性 17(21.8) 14(18.0) 1.403 0.236 女性 32(41.0) 15(19.2) 年龄大于70岁 21(26.9) 11(14.1) 0.183 0.669 年龄小于70岁 28(35.9) 18(23.1) 有吸烟史 17(21.8) 12(15.4) 0.349 0.555 无吸烟史 32(41.0) 17(21.8) 有高血压病 34(43.6) 14(17.9) 3.431 0.064 无高血压病 15(19.2) 15(19.2) 有糖尿病史 8(10.3) 4(5.1) 0.069 0.792 无糖尿病史 42(53.8) 25(30.8) 表 2 破裂组与未破裂组患者形态学参数比较
Table 2. Comparison of morphological parameters between two groups
分组 n 形态学参数 最大径(mm) AR SR UI NSI EI 破裂组 49 3.92 $ \text{±} $ 1.38 1.18 $ \text{±} $ 0.38 1.55 $ \text{±} $ 0.41 2.37 $ \text{±} $ 1.24 0.24 $ \text{±} $ 0.11 0.68 $ \text{±} $ 0.37 未破裂组 29 2.89 $ \text{±} $ 1.36 1.03 $ \text{±}0.61 $ 0.84 $ \text{±} $ 0.62 1.79 $ \text{±}0.85 $ 0.14 $ \text{±} $ 0.09 0.30 $ \text{±} $ 0.20 t/χ2 3.112 0.194 0.251 2.045 1.878 0.267 P 0.023* 0.629 0.041* 0.045* 0.234 0.366 *P < 0.05。 表 3 破裂组与未破裂组患者血流动力学参数比较
Table 3. Comparison of hemodynamic parameters between the two groups
分组 n 血流动力学参数 平均WSS(Pa) WSSG(Pa/mm) OSI 破裂组 49 69.36 $ \pm $ 19.31 11.05 $ \pm $ 15.57 0.18 $ \pm $ 0.24 未破裂组 29 76.59 $ \pm $ 45.47 −14.76 $ \pm $ 32.41 0.19 $ \pm $ 0.14 t 0.267 8.53 1.728 P 0.042* 0.710 0.073 *P < 0.05。 -
[1] 丁煜昊,谢涛,王剑刃,等. 颅内未破裂动脉瘤破裂风险因素研究进展[J]. 国际外科学杂志,2021,48(10):700-705. doi: 10.3760/cma.j.cn115396-20210904-00346 [2] ThomPson B G,Brown R D,Aminhanjani S,et al. Guidelines for the management of Patients with unruPtured intracranial aneurysms:A guideline for healthcare Professionals from the American Heart Association/American Stroke Association[J]. Stroke; A Journal of Cerebral Circulation,2015,46(8):2368. doi: 10.1161/STR.0000000000000070 [3] Etminan N,Brown R D Jr,Beseoglu K,et al. The unruPtured intracranial aneurysm treatment score:A multidisciPlinary consensus[J]. Neurology,2015,85(10):881-889. doi: 10.1212/WNL.0000000000001891 [4] Zhang J,Can A,Lai P M R,et al. Age and morphology of posterior communicating artery aneurysms[J]. Sci ReP,2020,10(1):11545. doi: 10.1038/s41598-020-68276-9 [5] Chen S,Li C,Karmonik C,et al. Performance of rupture-related morphological parameters in posterior communicating artery aneurysms with fetal-type variant[J]. Folia Morphol (Warsz),2021. [6] 中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组,中华医学会神经病学分会神经血管介入协作组. 中国蛛网膜下腔出血诊治指南2019[J]. 中华神经科杂志,2019,52(12):16. [7] Hosmann A,Klenk S,Wang W T,et al. Endogenous arterial blood pressure increase after aneurysmal subarachnoid hemorrhage[J]. Clin Neurol Neurosurg,2020,190:105639. [8] Liu Q,Jiang P,Wu J,et al. Intracranial aneurysm ruPture score may cor-relate to the risk of rebleeding before treatment of ruPtured intracranial aneurysm-s[J]. Neurol Sci.,2019,40(8):1683-1693. doi: 10.1007/s10072-019-03916-1 [9] Juchler N,Schilling S,Bijlenga P,et al. Shape irregularity of the intracranial aneurysm lumen exhibits diagnostic value[J]. Acta Neurochir (Wien),2020,162(9):2261-2270. doi: 10.1007/s00701-020-04428-0 [10] Jirjees S,Htun Z M,Aldawudi I,et al. Role of morphological and hemodynamic factors in predicting intracranial aneurysm rupture:A Review[J]. Cureus,2020,12(7):e9178. [11] Baek H,Jayaraman M V,Karniadakis G E. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation[J]. Annals of Biomedical Engineering,2009,7(12):2469-2487. [12] Liu Q,Zhang Y,Yang J,et al. The relationship of morphological-hemodynamic characteristics,inflammation,and remodeling of aneurysm wall in unruPtured intracranial aneurysms[J]. Translational Stroke Research,2022,13(1):88-99. doi: 10.1007/s12975-021-00917-1 [13] Ishida F,Tsuji M,Tanioka S,et al. Computational fluid dynamics for cerebral aneurysms in clinical settings[J]. Acta Neurochir Suppl,2021,132:27-32. [14] Uchiyama Y,Fujimura S,Takao H,et al. Role of patient-specific blood properties in computational fluid dynamics simulation of flow diverter deployed cerebral aneurysms[J]. Technol Health Care,2022,30(4):839-850. doi: 10.3233/THC-213216 [15] Krylov V,Grigoryeva E,Dolotova D,et al. CFD Modelling of local hemodynamics in intracranial aneurysms harboring arterial branches[J]. Stud Health Technol Inform,2017,238:64-67. [16] Russin J,Babiker H,Ryan J,et al. Computational fluid dynamics to evaluate the management of a giant internal carotid artery aneurysm[J]. World Neurosurg,2015,83(6):1057-65. doi: 10.1016/j.wneu.2014.12.038 [17] Busch A,Hartmann E,Grimm C,et al. Heterogeneous histomorphology,yet homogeneous vascular smooth muscle cell dedifferentiation,characterize human aneurysm disease[J]. J Vasc Surg,2017,66(5):1553-1564.e6. doi: 10.1016/j.jvs.2016.07.129