留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于血浆渗透压建立急性ST段抬高型心肌梗死重症患者发生院内死亡风险预测模型

贾吉 陶四明

贾吉, 陶四明. 基于血浆渗透压建立急性ST段抬高型心肌梗死重症患者发生院内死亡风险预测模型[J]. 昆明医科大学学报, 2022, 43(12): 58-65. doi: 10.12259/j.issn.2095-610X.S20221212
引用本文: 贾吉, 陶四明. 基于血浆渗透压建立急性ST段抬高型心肌梗死重症患者发生院内死亡风险预测模型[J]. 昆明医科大学学报, 2022, 43(12): 58-65. doi: 10.12259/j.issn.2095-610X.S20221212
Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction[J]. Journal of Kunming Medical University, 2022, 43(12): 58-65. doi: 10.12259/j.issn.2095-610X.S20221212
Citation: Ji JIA, Siming TAO. Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction[J]. Journal of Kunming Medical University, 2022, 43(12): 58-65. doi: 10.12259/j.issn.2095-610X.S20221212

基于血浆渗透压建立急性ST段抬高型心肌梗死重症患者发生院内死亡风险预测模型

doi: 10.12259/j.issn.2095-610X.S20221212
基金项目: 云南省卫生和计划生育委员会医学后备人才培养计划基金资助项目(H-2017019);云南省“高层次人才培养支持计划”入选名医专项基金资助项目(YNWR-MY-2020-024)
详细信息
    作者简介:

    贾吉(1988~),男,云南昭通人,医学硕士,主治医师,主要从事心血管内科起搏电生理工作

    通讯作者:

    陶四明,E-mail:taosm6450@126.com

  • 中图分类号: R541.4

Development of A Plasma Osmolality Prediction Model for the Risk of In-hospital Death in Critically Ill Patients with Acute ST-segment Elevation Myocardial Infarction

  • 摘要:   目的   建立并验证血浆渗透压对急性ST段抬高型心肌梗死(acute ST-segment elevation myocardial infarction,STEMI)重症患者院内死亡风险预测模型。  方法  通过回顾性分析患者电子病历资料,选取2015年1月至2020年12月于云南大学附属医院心血管内科住院的STEMI重症患者,提取患者的一般信息、实验室检查、合并疾病及用药情况等,筛选STEMI重症患者院内死亡风险危险因素并建立预测模型。  结果  利用LASSO回归及多因素Logistic回归筛选出白蛋白(ALB)、白细胞(WBC)、血小板(PLT)、血肌酐(Scr)、是否服用他汀类药物、是否服用血管紧张素转化酶抑制剂(ACEI)或血管紧张素转化酶受体拮抗剂(ARB)类药物、血浆渗透压为STEMI重症患者是否发生院内死亡的独立预测因子(P < 0.05),据此7个预测变量绘制列线图,模型检验结果显示其区分度、校准度较好,决策曲线分析(DCA)显示阈值概率5%~95%时,临床使用该模型是可以获益的。  结论  构建的包含7个变量预测模型具有较好的区分度和校准度,可作为评估STEMI重症患者院内死亡风险参考工具。
  • 图  1  22个变量的LASSO曲线

    Figure  1.  LASSO curves for 22 variables

    图  2  在LASSO模型中通过10倍交叉验证的方法筛选最合适λ的过程

    Figure  2.  Selection of predictors using the LASSO Logistic regression model

    图  3  STEMI重症患者发生院内死亡风险的预测模型列线图(注:变量单位见表3)

    Figure  3.  Nomogram predicting in-hospital mortality in critically ill patients with STEMI

    图  4  预测模型预测STEMI重症患者发生院内死亡风险ROC曲线

    Figure  4.  ROC of the nomogram for predicting in-hospital mortality in critically ill patients with STEMI

    图  5  预测模型在训练集中的校准曲线

    Figure  5.  Calibration curve of prediction model in training sub-cohort

    图  6  预测模型在验证集中的校准曲线

    Figure  6.  Calibration curve of prediction model in validation sub-cohort

    图  7  预测模型在训练集及验证集中的DCA分析

    Figure  7.  Decision curve analysis of the nomogram predicting in-hospital mortality in critically ill patients with STEMI

    表  1  患者一般资料比较[($\bar x \pm s $),n(%),M(P25,P75)]

    Table  1.   Comparison of general information of patients [($\bar x \pm s $),n(%),M(P25,P75)]

    临床特征未发生院内死亡(n=632)院内死亡(n = 177)W/t/χ2P
    男性 402(63.6) 107(60.5) 0.463 0.496
    年龄(岁) 68.0 ± 13.7 71.8 ± 13.6 −3.294 < 0.001*
    吸烟史 113(17.9) 63(35.6) 0.183 0.669
    高血压 359(56.8) 90(50.8) 1.753 0.186
    糖尿病 231(36.6) 64(36.2) 0.000 0.993
    Killip≥2级 322(50.9) 102(57.6) 2.212 0.137
    COPD(%) 17(2.7) 10(5.6) 2.894 0.089
    慢性肾脏病 132(20.9) 52(29.4) 5.203 0.022*
    高脂血症 324(51.3) 69(39.0) 7.867 0.005*
    瓣膜病 133(21.0) 44(24.9) 0.965 0.326
    心房颤动 201(31.8) 76(42.9) 7.127 0.008*
    脑梗死 37(5.9) 15(8.5) 1.173 0.279
    服用阿司匹林 618(97.8) 155(87.6) 31.569 < 0.001*
    服用他汀类 600(94.9) 128(72.3) 76.037 < 0.001*
    服用ACEI/ARB 584(92.4) 73(41.2) 233.870 < 0.001*
    WBC(×109/L) 8.9(7.0,10.9) 14.0(9.5,17.5) 28211 < 0.001*
    PLT(×109/L) 246(192,338) 172(100,279) 75920 < 0.001*
    RDW(%) 14.4(13.5,15.8) 15.9(14.6,17.7) 34000 < 0.001*
    ALB(g/L) 35(30,39) 28(24,32) 84690 < 0.001*
    Scr(μmol/L) 88.4(70.7,114.9) 167.9(97.2,265.2) 31276 < 0.001*
    cTnT(ng/mL) 0.62(0.05,2.58) 0.92(0.16,4.11) 46775 < 0.001*
    血浆渗透压(mOsm/L) 294.5(289.7,298.0) 297.4(288.9,307.3) 36175 < 0.001*
      COPD = 慢性阻塞性肺疾病。*P < 0.05。
    下载: 导出CSV

    表  2  训练集和验证集的一般资料比较[($\bar x \pm s $),n(%),M(P25,P75)]

    Table  2.   Comparison of data in training and validation groups [($\bar x \pm s $),n(%),M(P25,P75)]

    临床特征训练集(n = 573)验证集(n = 236)W/t/χ2P
    男性 357(62.3) 152(64.4) 0.793 0.629
    年龄(岁) 68.9 ± 13.6 68.7 ± 14.2 0.237 0.939
    有吸烟史 123(21.5) 53(22.5) 0.217 0.511
    高血压 311(54.3) 138(58.5) 0.018 0.310
    糖尿病 213(37.2) 82(34.7) 0.695 0.577
    Killip≥2级 302(52.7) 122(51.7) 0.337 0.854
    COPD 17(3.0) 10(4.2) 0.871 0.484
    慢性肾脏病 131(22.9) 53(22.5) 0.021 0.974
    高脂血症 275(48.0) 118(50.0) 1.271 0.659
    瓣膜病 126(22.0) 51(21.6) 0.048 0.980
    心房颤动 199(34.7) 78(33.1) 0.093 0.707
    脑梗死 35(6.1) 17(7.2) 0.174 0.674
    服用阿司匹林 545(95.1) 228(96.6) 0.227 0.452
    服用他汀类 511(89.2) 217(91.9) 0.027 0.287
    服用ACEI/ARB 461(80.5) 196(83.1) 2.024 0.447
    WBC(×109/L) 9.5(7.5,11.9) 9.1(7.0,11.9) 64445 0.114
    PLT(×109/L) 237(172,328) 242(176,329) 64776 0.592
    RDW(%) 14.7(13.6,16.3) 14.7(13.7,16.2) 65879 0.959
    ALB(g/L) 33(28,38) 34(28,38) 72021 0.881
    Scr(μmol/L) 88.4(70.7,132.6) 97.2(70.7,150.3) 66992 0.439
    cTnT(ng/mL) 0.81(0.07,3.05) 0.57(0.08,1.99) 68391 0.128
    血浆渗透压(mOsm/L) 294.5(289.7,298.9) 294.6(289.4,300.2) 66566 0.691
      注:COPD = 慢性阻塞性肺疾病。
    下载: 导出CSV

    表  3  LASSO回归筛选的8个变量的多因素Logistic回归结果

    Table  3.   Multivariate Logistic regression analysis of 8 variables

    变量OR95%CIP
    WBC(×109/L)
    4.0~10(参照)

    1.0

    -

    -
    < 4.0 3.607 0.890~14.693 0.072
    > 10.0 6.851 4.001~12.133 < 0.001*
    ALB(g/L)
    ≥40(参照)

    1.0

    -

    -
    < 40 2.602 1.570~4.335 < 0.001*
    PLT(×109/L)
    100~300(参照)

    1.0

    -

    -
    < 100 5.625 2.493~13.249 < 0.001*
    > 300 0.475 0.267~0.827 0.009*
    Scr(μmol/L)
    < 110(参照)

    1.0

    -

    -
    > 110 3.231 1.928~5.466 < 0.001*
    RDW(%)
    13~14(参照)

    1.0

    -

    -
    < 13.0 0.477 0.068~1.998 0.370
    > 14.0 1.563 0.831~3.025 0.174
    血浆渗透压(mOsm/L)
    280~310(参照)

    1.0

    -

    -
    < 280 1.255 0.724~2.177 0.417
    > 310 15.765 4.706~73.703 < 0.001*
    服用他汀类药物 0.350 0.174~0.701 0.003*
    服用ACEI或ARB 0.144 0.084~0.244 < 0.001*
      *P < 0.05。
    下载: 导出CSV
  • [1] Liu S,Li Y,Zeng X,et al. Burden of cardiovascular diseases in China,1990-2016:Findings from the 2016 global burden of disease study[J]. JAMA Cardiol,2019,4(4):342-352. doi: 10.1001/jamacardio.2019.0295
    [2] Fan F,Li Y,Zhang Y,et al. Chest pain center accreditation is associated with improved in-hospital outcomes of acute myocardial infarction patients in China:Findings from the CCC-ACS project[J]. J Am Heart Assoc,2019,8(21):e013384. doi: 10.1161/JAHA.119.013384
    [3] Garcia-Osuna A,Sans-Rosello J,Ferrero-Gregori A,et al. Risk assessment after ST-segment elevation myocardial infarction:Can biomarkers improve the performance of clinical variables[J]. J Clin Med,2022,11(5):1266.
    [4] Roohafza H, Noohi F, Hosseini S G, et al. A cardiovascular risk assessment model according to behavioral, psychosocial and traditional factors in patients with ST-segment elevation myocardial infarction (cras-mi): Review of literature and methodology of a multi-center cohort study[J]. Curr Probl Cardiol, 2022, 101158.
    [5] Kahraman S,Agus H Z,Avci Y,et al. The neutrophil to lymphocyte ratio (nlr) is associated with residual syntax score in patients with ST-segment elevation myocardial infarction[J]. Angiology,2021,72(2):166-173. doi: 10.1177/0003319720958556
    [6] Lim E,Cheng Y,Reuschel C,et al. Risk-adjusted in-hospital mortality models for congestive heart failure and acute myocardial infarction:Value of clinical laboratory data and race/ethnicity[J]. Health Serv Res,2015,50(Suppl 1):1351-1371.
    [7] Wang X,Wang Z,Li B,et al. Prognosis evaluation of universal acute coronary syndrome:The interplay between syntax score and apob/apoa1[J]. BMC Cardiovasc Disord,2020,20(1):293. doi: 10.1186/s12872-020-01562-6
    [8] Fukutomi M, Nishihira K, Honda S, et al. Difference in the in-hospital prognosis between ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction with high killip class: Data from the Japan acute myocardial infarction registry[J]. Eur Heart J Acute Cardiovasc Care, 2020, 2048872620926681.
    [9] Rohla M,Freynhofer M K,Tentzeris I,et al. Plasma osmolality predicts clinical outcome in patients with acute coronary syndrome undergoing percutaneous coronary intervention[J]. Eur Heart J Acute Cardiovasc Care,2014,3(1):84-92. doi: 10.1177/2048872613516018
    [10] Shen Y,Cheng X,Ying M,et al. Association between serum osmolarity and mortality in patients who are critically ill:A retrospective cohort study[J]. BMJ Open,2017,7(5):e015729.
    [11] Thygesen K,Alpert J S,Jaffe A S,et al. Fourth universal definition of myocardial infarction (2018)[J]. J Am Coll Cardiol,2018,72(18):2231-2264. doi: 10.1016/j.jacc.2018.08.1038
    [12] Dorwart W V,Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations,and the prognostic value of such calculations[J]. Clin Chem,1975,21(2):190-194. doi: 10.1093/clinchem/21.2.190
    [13] Kosmidou I,Redfors B,Selker H P,et al. Infarct size,left ventricular function,and prognosis in women compared to men after primary percutaneous coronary intervention in ST-segment elevation myocardial infarction:Results from an individual patient-level pooled analysis of 10 randomized trials[J]. Eur Heart J,2017,38(21):1656-1663.
    [14] Reinstadler S J,Stiermaier T,Eitel C,et al. Impact of atrial fibrillation during ST-segment-elevation myocardial infarction on infarct characteristics and prognosis[J]. Circ Cardiovasc Imaging,2018,11(2):e006955.
    [15] Goriki Y,Tanaka A,Nishihira K,et al. A novel predictive model for in-hospital mortality based on a combination of multiple blood variables in patients with ST-segment-elevation myocardial infarction[J]. J Clin Med,2020,9(3):852. doi: 10.3390/jcm9030852
    [16] Liu Z,Liu L,Cheng J,et al. Risk prediction model based on biomarkers of remodeling in patients with acute anterior ST-segment elevation myocardial infarction[J]. Med Sci Monit,2021,27(74):e927404.
    [17] Puodzhiukinene M Z,Mitskiavichene A A,Bluzhaĭte I. electrolyte concentration in the plasma and tissue cells of patients with ventricular arrhythmias in the acute period of myocardial infarction[J]. Kardiologiia,1987,27(2):98-100.
    [18] Urrows S T. Fluid and electrolyte balance in the patient with a myocardial infarction[J]. Nurs Clin North Am,1980,15(3):603-615. doi: 10.1016/S0029-6465(22)00573-4
    [19] D A, Pandit V R, Kadhiravan T, et al, Cardiac arrhythmias, electrolyte abnormalities and serum cardiac glycoside concentrations in yellow oleander (cascabela thevetia) poisoning - a prospective study[J]. Clin Toxicol (Phila), 2019, 57(2): 104-111.
    [20] Epstein M,Roy-Chaudhury P. Arrhythmias and sudden cardiac death in hemodialysis patients. Temporal profile,electrolyte abnormalities,and potential targeted therapies[J]. Nephrol News Issues,2016,30(4):23-26.
    [21] Capes S E,Hunt D,Malmberg K,et al. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes:A systematic overview[J]. Lancet,2000,355(9206):773-778. doi: 10.1016/S0140-6736(99)08415-9
    [22] Laichuthai N,Abdul-Ghani M,Kosiborod M,et al. Newly discovered abnormal glucose tolerance in patients with acute myocardial infarction and cardiovascular outcomes:A meta-analysis[J]. Diabetes Care,2020,43(8):1958-1966. doi: 10.2337/dc20-0059
    [23] Lee J H,Bae M H,Yang D H,et al. Prognostic value of the age,creatinine,and ejection fraction score for 1-year mortality in 30-day survivors who underwent percutaneous coronary intervention after acute myocardial infarction[J]. Am J Cardiol,2015,115(9):1167-1173. doi: 10.1016/j.amjcard.2015.02.001
    [24] Acet H,Ertaş F,Bilik M Z,et al. The relationship between neutrophil to lymphocyte ratio,platelet to lymphocyte ratio and thrombolysis in myocardial infarction risk score in patients with ST elevation acute myocardial infarction before primary coronary intervention[J]. Postepy Kardiol Interwencyjnej,2015,11(2):126-135.
    [25] Islam M S,Islam M N,Kundu S K,et al. Serum albumin level and in-hospital outcome of patients with first attack acute myocardial infarction[J]. Mymensingh Med J,2019,28(4):744-751.
    [26] Liu H,Zhang J,Yu J,et al. Prognostic value of serum albumin-to-creatinine ratio in patients with acute myocardial infarction:Results from the retrospective evaluation of acute chest pain study[J]. Medicine (Baltimore),2020,99(35):e22049.
    [27] Palatini P. Glomerular hyperfiltration:A marker of early renal damage in pre-diabetes and pre-hypertension[J]. Nephrol Dial Transplant,2012,27(5):1708-1714. doi: 10.1093/ndt/gfs037
    [28] Shiyovich A,Gilutz H,Plakht Y. White blood cell subtypes are associated with a greater long-term risk of death after acute myocardial infarction[J]. Tex Heart Inst J,2017,44(3):176-188. doi: 10.14503/THIJ-16-5768
    [29] Han Y,Gong Z,Sun G,et al. Dysbiosis of gut microbiota in patients with acute myocardial infarction[J]. Front Microbiol,2021,12:680101. doi: 10.3389/fmicb.2021.680101
    [30] Vavalle J P,van Diepen S,Clare R M,et al. Renal failure in patients with ST-segment elevation acute myocardial infarction treated with primary percutaneous coronary intervention:Predictors,clinical and angiographic features,and outcomes[J]. Am Heart J,2016,173:57-66. doi: 10.1016/j.ahj.2015.12.001
  • [1] 方杰, 光雪峰, 林霄峰, 戴海龙, 左桐曦, 赖碁.  主动脉内球囊反搏在ST段抬高型心肌梗死合并室间隔穿孔时应用的研究, 昆明医科大学学报.
    [2] 刘幸, 李畏娴, 朱翔, 刘梦醒, 李娜, 夏加伟, 张乐, 武彦, 李生浩.  基于Lasso回归构建恙虫病合并脓毒症的列线图模型, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240906
    [3] 曾慧娟, 田波, 袁红伶, 何杰, 李冠羲, 茹国佳, 许敏, 詹东.  机器学习算法构建慢性肾脏病伴高血压或糖尿病的预测模型, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240315
    [4] 姬燕梅, 李文俊, 李青芸, 郭妮, 蒙妮, 周丹, 李秋宇, 金醒昉.  急性缺血性脑卒中后认知障碍相关因素分析及列线图模型构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240511
    [5] 字正梅, 郝丽, 王南, 陈国兵.  联合预测模型对急性A型主动脉夹层破裂的诊断价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230128
    [6] 杨镜玉, 许宁, 张雨涛, 黄凤昌, 蒋元明, 殷亮.  基于基线T2WI图对进展期直肠癌经放化同期治疗后病理完全缓解的多模型预测比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230512
    [7] 薛淋淋, 李秉翰, 刘春云, 李卫昆, 常丽仙, 李慧敏, 祁燕伟, 刘立.  预测普通病房中丙型肝炎肝硬化并脓毒症患者潜在死亡列线图的建立及评价, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230630
    [8] 周敏, 马智慧, 李加艳, 范建华, 林灵, 余亭颖, 张慧芳, 刘立.  肝硬化并胸水再发危险因素的预测, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220524
    [9] 王虹, 杨德兴, 王强, 周维钰, 唐杰夫, 王振方, 付凯, 刘圣哲, 刘荣.  ICU脓毒症患者发生再喂养综合征的危险因素分析及预测模型建立, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221102
    [10] 张桂梅, 陈蜀, 宋云华, 吴阳, 周虹媛.  AECOPD患者再入院危险因素分析及预测模型的构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220830
    [11] 刘幸, 刘媛, 刘向芳, 陈洁, 陈永刚, 孙辉, 马玲.  头孢哌酮钠舒巴坦钠不良反应分析与预测模型构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210622
    [12] 戴靖榕, 李婕, 何旭, 李杨, 李燕.  云南某医院老年医学科住院患者抑郁状态的危险因素分析及风险预测模型的构建, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211104
    [13] 蒋恩琰, 杨博伟, 刘建和.  基于24 h尿液代谢构建列线图模型预测高危泌尿系结石的复发, 昆明医科大学学报.
    [14] 兰建军, 王琳, 王世海, 曾晓斌, 徐大文, 温华知.  急性心肌梗死患者创伤后成长状况及PTG的预测因素, 昆明医科大学学报.
    [15] 陈芝菊.  全程优化护理在ST段抬高型心肌梗死患者急诊中的应用, 昆明医科大学学报.
    [16] 王南.  急性ST段抬高型心肌梗死在急诊临床路径的应用及效果评价, 昆明医科大学学报.
    [17] 李福萍.  瑞替普酶治疗急性ST段抬高心肌梗死临床疗效观察, 昆明医科大学学报.
    [18] 庞明杰.  NT-proBNP对ST段抬高的急性心梗患者急诊PCI术后临床结果的预测价值, 昆明医科大学学报.
    [19] 廖祁伟.  急性ST段抬高型心肌梗死并发心源性休克的相关危险因素分析, 昆明医科大学学报.
    [20] 黄宁玉.  临床路径管理模式应用于急性ST段抬高性心肌梗死治疗的重要性, 昆明医科大学学报.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  3684
  • HTML全文浏览量:  2107
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-08
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2022-12-25

目录

    /

    返回文章
    返回