留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高流量鼻导管氧疗在高海拔性低氧血症中的应用

刘晓雪 杨莉 钱传云

刘记宏, 马志强, 王霖, 王晓燕, 田伟光, 李保萍, 董睿, 吕玉佳. 肺结核患者感染新冠病毒免疫功能的相关性分析[J]. 昆明医科大学学报, 2024, 45(4): 157-162. doi: 10.12259/j.issn.2095-610X.S20240423
引用本文: 刘晓雪, 杨莉, 钱传云. 高流量鼻导管氧疗在高海拔性低氧血症中的应用[J]. 昆明医科大学学报, 2022, 43(12): 88-92. doi: 10.12259/j.issn.2095-610X.S20221216
Jihong LIU, Zhiqiang MA, Lin WANG, Xiaoyan WANG, Weiguang TIAN, Baoping LI, Rui DONG, Yujia LV. Correlation Analysis of Immune Function of Tuberculosis Patients Infected with COVID-19[J]. Journal of Kunming Medical University, 2024, 45(4): 157-162. doi: 10.12259/j.issn.2095-610X.S20240423
Citation: Xiaoxue LIU, Li YANG, Chuanyun QIAN. Application of High-flow Nasal Cannula Oxygen Therapy in High-altitude Hypoxemia[J]. Journal of Kunming Medical University, 2022, 43(12): 88-92. doi: 10.12259/j.issn.2095-610X.S20221216

高流量鼻导管氧疗在高海拔性低氧血症中的应用

doi: 10.12259/j.issn.2095-610X.S20221216
基金项目: 云南省卫生内设研究机构科研基金资助项目(2018NS0147)
详细信息
    作者简介:

    刘晓雪(1993~),女,云南大理人,医学硕士,住院医师,主要从事急危重症临床及研究工作

    通讯作者:

    钱传云,E-mail:qianchuanyun@126.com

  • 中图分类号: R459.6

Application of High-flow Nasal Cannula Oxygen Therapy in High-altitude Hypoxemia

  • 摘要:   目的  探讨高流量鼻导管氧疗设备在海拔高于2500 m的地区对人体的氧合的改善。  方法  征集从中等海拔高度的昆明(海拔约1891 m)快速进入较高海拔的拉萨(海拔约3650 m)的志愿者,在拉萨使用高流量鼻导管氧疗设备吸入空气,比较使用高流量鼻导管氧疗设备前、后志愿者指端脉搏血氧饱和度(SpO2)、呼吸频率、心率、血压水平。  结果  在高原地区高流量鼻导管氧疗设备运行未出现故障,运转良好。在应用高流量鼻导管氧疗设备进行空气吸入后,随着吸入气体流量的增加,志愿者SpO2改善,呼吸频率减低,差异有统计学意义(P < 0.05)。  结论  高流量鼻导管氧疗设备能改善高海拔地区机体的氧合同时降低呼吸做功,在高海拔性低氧血症的治疗方面存在潜在临床治疗价值。
  • 结核病(tuberculosis,TB)是由结核分枝杆菌(mycobacterium tuberculosis,MTB)感染引起的慢性感染性疾病,最常受累呼吸道,引起肺结核。世界卫生组织 2023 年全球结核病报告统计:2022年全球新发结核病患者估算 1060 万,发病率133/10 万[1],我国人口基数众多,2022年估算结核病新发患者74.8 万,发病数居30个结核病高负担国家中的第 3 位,占全球发病数的 7.1%[2]。而新冠肺炎(COVID-19)是2019年起造成严重呼吸衰竭的重要原因,其免疫致病性与病毒毒力、先天性和适应性免疫反应间缺乏有效协调相关[3-5]。 COVID-19大流行期间,结核护理滞后及病人免疫状态不佳致使结核病罹患人数和死亡人数增加,同时,TB-COVID共发感染是临床死亡率上升不可忽视的重要原因之一,给传染病防治工作带来了极大挑战[6-7]

    结核病免疫治疗专家共识(2022年版)强调,TB的发生、进展、转归均与机体免疫状态密切相关,TB患者通常免疫功能低下、固有免疫和适应性免疫功能异常[8], T细胞是抗分枝杆菌宿主防御的重要参与部分,也是结核潜伏感染期间遏制分枝杆菌传播的关键环节[9-10]。新冠病毒对人体免疫系统的破坏呈嗜淋巴细胞性,包括淋巴细胞的直接损伤、诱导凋亡、分化障碍等,认为 “炎症风暴”是新冠病毒导致机体免疫紊乱的主要机制,在多项细胞因子的参与下,形成免疫炎症级联反应,释放炎症因子进一步介导淋巴细胞的增殖、活化[11]。目前针对结核病人共发感染新冠肺炎的免疫功能相关研究较少,且COVID-19感染对肺结核患者免疫功能造成的影响也尚不明确。因此,对淋巴细胞和细胞因子研究分析,可以为该类患者的免疫状态研究提供非常有价值的基础,并为其免疫状态的评估提供参考,对结核病的预防和治疗都有积极作用。

    回顾性分析2022年3月至2023年8月昆明市第三人民医院(昆明市结核病防治院、昆明市传染病医院)收治的肺结核患者资料,并根据是否合并新型冠状病毒感染进行分组:单纯肺结核患者为TB组,共计111例,肺结核合并新型冠状病毒感染者为TB-COVID组,共计1649例。2组研究对象根据年龄分别划分为≤20、21~40、41~60、>60(岁)4个亚组。

    诊断标准:TB的诊断符合《WS288~2017 肺结核诊断》[12],COVID-19的诊断符合《新型冠状病毒感染诊疗方案(试行第十版)》[13]。纳入标准:(1)符合上述TB、COVID-19诊断标准的患者;(2)实验室检查资料完整。排除标准:(1)确诊其他导致免疫功能改变的疾病(如系统性红斑狼疮、风湿免疫病、肿瘤等);(2)正在接受免疫调节治疗(激素、免疫抑制剂等)的患者。

    检测研究对象入院时CD16+CD56+、CD19+、CD3+T、CD4+T、CD8+T、CD4+/CD8+、CD4+CD8+双阳性、CD4-CD8-双阴性、NK细胞、淋巴细胞等绝对数、IL-10、12p70、IL-17、IL-1β、IL-2、IL-4、IL-5、IL-6、IL-8、IFN-α、IFN-γ、TFN-α共22项。以上指标均由迈瑞bricyte E6流式细胞仪检测所得,淋巴细胞亚群分型用T/B/NK四色试剂盒,12项细胞因子检测用多重微球流式免疫荧光发光法。

    采用SPSS 26.0统计学软件进行数据分析。计量资料中符合正态分布以均数±标准差($\bar x \pm s $)表示,用t检验进行组间比较;不符合正态分布以中位数和四分位数 [MP25,P75)]表示,用Mann Whitney检验比较。以P < 0.05为差异有统计学意义。

    较单纯TB感染组,TB-COVID组年龄更大(P < 0.05),TB-COVID组男性占比多于TB组(P < 0.05),见表1

    表  1  TB-COVID组和TB组流行病学比较[M(P25,P75)]
    Table  1.  Epidemiological comparison between TB-COVID and TB [M(P25,P75)]
    检验指标TB-COVIDTBZP
    年龄(岁) 49 (31,62 ) 44 (29,57 ) −2.117 0.034*
    性别(男∶女) 111(70∶41) 1649(880∶769) 2.871 0.047*
      *P < 0.05。
    下载: 导出CSV 
    | 显示表格

    将2组患者进行PSM分析 ,降低组间混杂因素 ,排除2组间年龄、性别、基础疾病差异后,每组各111例样本,比较实验室指标,结果TB-COVID组CD19+、CD3+、CD4+、lymphocyte和IL-8低于TB组,IL-10、IL-17和IL-6高于TB组,差异有统计学意义(P < 0.05),见表2图1;CD16+CD56+、CD8+、CD4+/CD8+、CD4+CD8+、CD4-CD8-、NK、IL-12p70、IL-1β、IL-2、IL-4、IFN-α、IFN-γ和TFN-α共13项指标组间差异无统计学意义(P > 0.05),见表2

    表  2  TB-COVID组和TB组实验室指标分析[M(P25,P75)]
    Table  2.  Analysis of laboratory indicators in TB-COVID and TB [M(P25,P75)]
    检验指标TB-COVIDTBZP
    CD16+CD56+(个/μL) 191(148,285) 169(109,262) 1.048 0.298
    CD19+(个/μL) 109(43,209) 171(104.5,270) −4.417 <0.001*
    CD3+(个/μL) 830(584,1131) 1005(737.5,1317) −3.206 0.043*
    CD4+(个/μL) 437(322,631) 567(405.5,765) −3.516 0.006*
    CD8+(个/μL) 350(223,490) 381(268,538.5) −3.044 0.469
    CD4+/CD8+(个/μL) 1.46(0.99,2.04) 1.47(1.12,1.905) −1.507 0.057
    CD4+CD8+(个/μL) 12(8,22) 16(11,25) −2.681 0.086
    CD4-CD8(个/μL) 40(22,68) 43(24,71) −1.406 0.096
    NK(个/μL) 50(26,75) 61(38,97.5) −2.761 0.074
    lymphocyte(个/μL) 1210.0(893.0,1597.0) 1400.0(1063.5,1827.5) −2.913 0.042*
    IL-10(pg/mL) 2.97(2.42,5.37) 2.71(2.45,3.115) 3.573 0.007*
    IL-12p70(pg/mL) 2.59(2.24,3.14) 2.41(2.23,2.67) 2.435 0.052
    IL-17(pg/mL) 5.72(1.36,11.47) 2.36(1.45,9.39) 2.465 0.021*
    IL-1β(pg/mL) 2.90(1.94,6.10) 4.30(2.11,8.78) −1.542 0.308
    IL-2(pg/mL) 2.50(2.10,3.09) 2.49(2.22,2.91) 0.389 0.436
    IL-4(pg/mL) 2.40(1.74,2.62) 2.14(1.86,2.515) 0.601 0.834
    IL-6(pg/mL) 9.73(3.11,18.85) 3.72(2.83,6.02) 3.665 0.001*
    IL-8(pg/mL) 1.31(0.87,3.69) 1.32(1.11,4.665) −1.653 0.034*
    IFN-α(pg/mL) 2.50(2.21,3.14) 2.64(2.35,3.00) −0.475 0.531
    IFN-γ(pg/mL) 3.36(2.29,7.88) 4.00(2.83,7.84) −0.007 0.591
    TFN-α(pg/mL) 2.48(1.47,2.93) 2.19(1.52,3.23) 1.048 0.338
      *P < 0.05。
    下载: 导出CSV 
    | 显示表格
    图  1  TB-COVID和TB组间有统计学意义的差异指标
    A:淋巴细胞差异;B:细胞因子差异。
    Figure  1.  Statistically significance between TB-COVID and TB

    根据年龄段将研究对象划分为≤20、21~40、41~60、>60(岁)4个亚组,比较TB-COVID和TB各个亚组研究对象细胞因子表达水平的平均值,IL-1β、IL-2、IL-4、IL-8、TFN-α、IL-12p70表现为TB-COVID组21~40岁阶段急剧攀升远超TB组,并随年龄增长逐渐回落,见图2

    图  2  不同年龄段人群中的细胞因子水平比较
    A: IFN-γ ;B: IL-1β;C: IL-2;D:IL-4;E: IL-5;F: IL-6;G: IL-8;H: IL-10;I: IL-12p70;J: IL-17;K: IFN-α;L:TFN-α。
    Figure  2.  Comparison of cytokines in different age groups

    TB的免疫机制复杂,感染结合分枝杆菌后人体免疫系统被激活,其中T细胞介导的细胞免疫是最为重要的免疫方式, T细胞水平会随着病情的加重而降低[14-15],新冠病毒可以快速激活致病性Th1细胞以分泌促炎因子,如粒细胞巨噬细胞集落刺激因子(GM-CSF),细胞因子环境诱导高表达IL-14的CD16+单核细胞并加速炎症,同时,激活的单核细胞产生大量IL-6、TNF-α和其他细胞因子,这些细胞因子的短时内高表达是COVID-19的特征之一[16],已发现COVID-19和TB发生的免疫应答失调交叉影响,这表明合并感染带来的双重风险会加重COVID-19的恶化程度,同时COVID-19感染诱发的超炎症环境也可能会加速TB的进展[14],重症COVID-19的特征是淋巴细胞减少,加之免疫抑制药物的使用,或导致机体对MTB特异性抗原的免疫反应降低,这也解释了此次研究中TB-COVID组CD19+、CD3+、CD4+、lymphocyte均显著低于TB组(P < 0.05)的原因,南非的一项研究显示[17],COVID-19患者外周血中TB特异性CD19+B细胞显著降低,这与本次研究结果一致,认为TB患者淋巴细胞减少会降低机体对COVID-19的免疫反应,也降低了特异性CD4+T细胞的多功能潜力,在潜伏性结核分枝杆菌感染者中,COVID-19引起的严重淋巴细胞减少和类固醇治疗可能由于细胞免疫的短暂抑制而使患者进展为活动性结核病或通过减少靶向结核分枝杆菌的记忆T细胞池增加进行性原发性结核感染的风险。COVID-19感染除了会损害适应性免疫系统中的CD4+T淋巴细胞外,对CD19+淋巴细胞的损伤也不容忽视,学者对早期COVID-19感染后幸存者进行免疫组库测序,显示T细胞和B细胞表达和功能异常,T细胞受体/B细胞受体克隆增多,多样性降低,类转换重组异常,CD19+淋巴细胞数量减少,对病毒的易感性高[17],与本研究中CD19+的结果一致。

    细胞因子风暴,是抗炎和促炎的平衡紊乱引起机体免疫调控失衡,涉及始动、免疫细胞的活化及器官功能障碍等多个阶段,目前已被报道可能参与COVID-19细胞因子风暴的细胞因子以及下游信号通路包括IL-6/JAK/STAT、IFN-γ/JAK/STAT、TNFα/NF-κB、IL-1β/NLRP3、IL-2/IL-2R/JAK/STAT5、IL-7/IL-7R、IL-10、IL-17、IL-12以及GM-CSF通路[18-19], IL-6通过血小板膜糖蛋白6(gp6)与可溶性sIL-130受体结合形成IL-6-sIL-6R复合物,可激活非免疫细胞中的信号传导及转录激活蛋白(STAT3),核因子κB(NF-κB)和STAT3都能够激活IL-6放大器以诱导各种促炎细胞因子和趋化因子,包括血管内皮生长因子、单核细胞趋化蛋白1(MCP-1)、IL-8和IL-6[20]。IL-6不仅与sIL-6R结合以参与顺式信号传导,而且还可以通过gp6与膜结合的IL-6受体(mIL-130R)结合以在反式信号传导中起作用,后者可导致获得性免疫途径受损和先天免疫不受控制等多效性作用,导致细胞因子风暴[21],此次研究中,IL-10、IL-17和IL-6在TB-COVID组中高表达,认为与COVID-19感染导致的细胞因子风暴密不可分。有学者提出,青少年结核高发的情况下,不该忽视宿主年龄对TB和COVID-19免疫反应的影响,以期得到有关2种感染间相互作用的更直观可靠数据[22],对此,笔者将研究对象按年龄分组进行比较后,原本组间差距不显著的IL-1β、IL-2、IL-4、TFN-α均在21~40岁时表现出TB-COVID组远超TB组,并随年龄增长逐渐回落,认为与该年龄段人群自身免疫功能较强导致炎症发生后机体内即刻反应并激活这部分细胞因子参与抗炎有密不可分的关系,而不能因全TB-COVID组人群中未与TB组拉开差距而忽视其作用。

    此次研究为回顾性分析,数据的完整性和同质性尚有不足。今后的研究中,团队会对TB及COVID-19感染者的病程等因素进行分层分析,评估COVID-19与TB之间的相互作用,进一步明确TB合并COVID-19患者体内免疫指标的变化,通过特异性或非特异性的策略及时有效地靶向不同的细胞因子通路,协助临床制定更合理的策略以加强痨病防治。

  • 图  1  试验实施流程

    Figure  1.  Flow of Research

    表  1  不同氧流量下温度和吸入氧浓度比较($\bar x \pm s $)

    Table  1.   Comparison of temperature and oxygen concentration under different oxygen flow ($\bar x \pm s $)

    指标治疗前10 L/min20 L/min30 L/min40 L/minFP
    温度(℃)36.70 ± 0.4736.50 ± 1.3636.83 ± 0.5336.87 ± 0.3536.67 ± 0.990.9320.447
    FiO2(%)21.00 ± 0.0022.33 ± 3.2122.97 ± 2.1623.10 ± 2.4522.90 ± 2.230.5280.664
    下载: 导出CSV

    表  2  治疗前及不同吸氧流量下的氧饱和度、血压、呼吸频率、心率($\bar x \pm s $)

    Table  2.   Oxygen saturation,blood pressure,respiratory rate,heart rate before treatment and under different oxygen inhalation flow ($\bar x \pm s $)

    指标治疗前10 L/min20 L/min30 L/min40 L/minFP
    收缩压(mmHg) 118.70 ± 15.23 120.90 ± 17.17 118.17 ± 14.22 114.40 ± 16.35 112.90 ± 9.93 1.474 0.213
    舒张压(mmHg) 75.87 ± 11.89 74.87 ± 11.77 75.83 ± 8.49 75.23 ± 8.92 77.43 ± 10.35 0.268 0.898
    平均动脉压(mmHg) 90.13 ± 11.14 90.23 ± 12.67 89.93 ± 9.99 88.33 ± 10.96 89.27 ± 9.58 0.158 0.959
    心率(次/min) 82.47 ± 10.68 85.07 ± 9.86 85.37 ± 10.14 84.77 ± 9.22 81.27 ± 9.68 1.003 0.408
    呼吸频率(次/min) 17.43 ± 4.38 14.53 ± 3.60 10.73 ± 3.07 9.20 ± 2.41 8.53 ± 1.83 70.78 < 0.001*
    SpO2(%) 89.90 ± 3.02 90.73 ± 1.66 91.00 ± 2.51 94.03 ± 2.13 94.97 ± 1.75 71.76 < 0.001*
      *P < 0.05。
    下载: 导出CSV
  • [1] Roach R C,Greene E R,Schoene R B,et al. Arterial oxygen saturation for prediction of acute mountain sickness[J]. Aviation,Space,and Environmental Medicine,1998,69(12):1182-1185.
    [2] Kasic J F,Yaron M,Nicholas R A,et al. Treatment of acute mountain sickness:Hyperbaric versus oxygen therapy[J]. Annals of Emergency Medicine,1991,20(10):1109-1112. doi: 10.1016/S0196-0644(05)81385-X
    [3] Grimminger J,Richter M,Tello K,et al. Thin air resulting in high pressure:Mountain sickness and hypoxia-induced pulmonary hypertension[J]. Canadian Respiratory Journal,2017,2017:8381653.
    [4] Prince T S, Thurman J, Huebner K. Acute mountain sickness[M]. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022, 56.
    [5] Sharma S, Danckers M, Sanghavi D, et al. High flow nasal cannula[M]. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2022, 205.
    [6] Riera J,Perez P,Cortes J,et al. Effect of high-flow nasal cannula and body position on end-expiratory lung volume:A cohort study using electrical impedance tomography[J]. Respiratory Care,2013,58(4):589-596. doi: 10.4187/respcare.02086
    [7] Onodera Y,Akimoto R,Suzuki H,et al. A high-flow nasal cannula system with relatively low flow effectively washes out CO2 from the anatomical dead space in a sophisticated respiratory model made by a 3D printer[J]. Intensive Care Medicine Experimental,2018,6(1):7. doi: 10.1186/s40635-018-0172-7
    [8] Roca O,Perez-Teran P,Masclans J R,et al. Patients with New York Heart Association class III heart failure may benefit with high flow nasal cannula supportive therapy:High flow nasal cannula in heart failure[J]. Journal of Critical Care,2013,28(5):741-746. doi: 10.1016/j.jcrc.2013.02.007
    [9] Ricard J D. High flow nasal oxygen in acute respiratory failure[J]. Minerva Anestesiologica,2012,78(7):836-841.
    [10] Delorme M,Bouchard P A,Simon M,et al. Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure[J]. Critical Care Medicine,2017,45(12):1981-1988. doi: 10.1097/CCM.0000000000002693
    [11] Ni Y N,Luo J,Yu H,et al. Can high-flow nasal cannula reduce the rate of endotracheal intubation in adult patients with acute respiratory failure compared with conventional oxygen therapy and noninvasive positive pressure ventilation? A systematic review and meta-analysis[J]. Chest,2017,151(4):764-775. doi: 10.1016/j.chest.2017.01.004
    [12] Monro-Somerville T,Sim M,Ruddy J,et al. The effect of high-flow nasal cannula oxygen therapy on mortality and intubation rate in acute respiratory failure:A systematic review and meta-analysis[J]. Critical Care Medicine,2017,45(4):449-456. doi: 10.1097/CCM.0000000000002091
    [13] Oczkowski S,Ergan B,Bos L,et al. ERS clinical practice guidelines:High-flow nasal cannula in acute respiratory failure[J]. Eur Respir J,2022,59(4):2101574. doi: 10.1183/13993003.01574-2021
    [14] Carratala Perales J M,Llorens P,Brouzet B,et al. High-Flow therapy via nasal cannula in acute heart failure[J]. Revista Espanola de Cardiologia,2011,64(8):723-725. doi: 10.1016/j.recesp.2010.10.034
    [15] Moriyama K,Satoh T,Motoyasu A,et al. High-Flow nasal cannula therapy in a patient with reperfusion pulmonary edema following percutaneous transluminal pulmonary angioplasty[J]. Case Reports in Pulmonology,2014,2014:837612.
    [16] Atwood C W Jr,Camhi S,Little K C,et al. Impact of heated humidified high flow air via nasal cannula on respiratory effort in patients with chronic obstructive pulmonary disease[J]. Chronic Obstructive Pulmonary Diseases (Miami,Fla),2017,4(4):279-286. doi: 10.15326/jcopdf.4.4.2017.0169
    [17] Chatila W,Nugent T,Vance G,et al. The effects of high-flow vs low-flow oxygen on exercise in advanced obstructive airways disease[J]. Chest,2004,126(4):1108-1115. doi: 10.1378/chest.126.4.1108
    [18] Hernandez G,Vaquero C,Colinas L,et al. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients:A Randomized Clinical Trial[J]. JAMA,2016,316(15):1565-1574. doi: 10.1001/jama.2016.14194
    [19] Hernandez G,Vaquero C,Gonzalez P,et al. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients:A randomized clinical trial[J]. JAMA,2016,315(13):1354-1361. doi: 10.1001/jama.2016.2711
  • [1] 李娟, 邓成俊, 何舒丽, 李英, 王美芬.  云南地区53例先天性高胆红素血症临床特征及UGT1A1基因多态性分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240521
    [2] 徐建洪, 任正敏, 赵燕娇, 李世云, 张瑞娟, 张发国.  心脏杂音听诊联合脉搏氧饱和度筛查安宁地区新生儿不同时间段先心病, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230425
    [3] 张彩营, 奎正平, 王琼, 赵小龙, 侯晓梅, 齐志业.  新生儿高促甲状腺素血症围产期危险因素分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220929
    [4] 许小志, 杨景晖.  换血治疗与强光源治疗新生儿高胆红素血症疗效比较, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201131
    [5] 熊青青, 罗晓东, 付步芳, 钟家依, 和国莲.  右美托咪定对高海拔地区全麻手术患者术后呼吸的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201224
    [6] 杨荆, 王淑娴, 周竹.  有氧运动与营养管理对维持性血透患者营养不良的疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20201123
    [7] 蒋榆辉, 刘玲, 和灿琳, 李阳.  UGT1A1基因多态性与新生儿高胆红素血症的相关性, 昆明医科大学学报.
    [8] 陈红梅, 刘利.  经鼻高流量湿化氧疗对AECOPD患者血气分析、再插管率及舒适度的影响, 昆明医科大学学报.
    [9] 曾小英, 张川, 乐涛, 江利东, 王玺, 叶丹, 柯丽, 张亦.  高流量氧疗对重症Ⅰ型呼吸衰竭患者动脉血气、呼吸力学及28d病死率的影响, 昆明医科大学学报.
    [10] 徐溧婕, 潘玲, 范艳黔, 李惠芳, 雷英, 李敏.  运用经鼻高流量氧疗对肝移植受体术后低氧血症的影响, 昆明医科大学学报.
    [11] 张乐, 夏加伟, 陈海云, 黄瑛.  高流量鼻导管湿化氧疗治疗肺结核并呼吸衰竭, 昆明医科大学学报.
    [12] 李志伟, 李超, 董权, 马继韬, 王丽兰, 李杨, 张红星, 杨丽娜.  经鼻高流量氧疗与无创通气治疗腹部外科术后患者脱机后低氧血症的临床疗效比较, 昆明医科大学学报.
    [13] 赖碁.  ACS合并低氧血症患者NIMV治疗的应用时机, 昆明医科大学学报.
    [14] 李蓝江.  GPIHBP1基因rs142861814位点多态性与高甘油三酯血症的相关性, 昆明医科大学学报.
    [15] 戴百章.  慢性阻塞性肺病急性加重期低氧血症与CAT评分, 昆明医科大学学报.
    [16] 和学忠.  云南怒江州傈僳族高尿酸血症伴发高脂血症、高糖血症人群状况分析, 昆明医科大学学报.
    [17] 业英.  健康小课堂对慢性阻塞性肺疾病患者氧疗遵医行为的影响, 昆明医科大学学报.
    [18] 马珊.  凉血活血药物对氧诱导小鼠视网膜新生血管实验中HIF-1和NF-κB的影响, 昆明医科大学学报.
    [19] 王雅楠.  高同型半胱氨酸血症中肝脏的脂肪变性, 昆明医科大学学报.
    [20] 费献民.  昆明地区新生儿高未结合胆红素血症788例临床分析, 昆明医科大学学报.
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  2977
  • HTML全文浏览量:  1920
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 网络出版日期:  2022-12-06
  • 刊出日期:  2022-12-25

目录

/

返回文章
返回