Chemical Compounds Isolated from Cremastra Appendiculata and Their Bioactive Activity
-
摘要:
目的 研究杜鹃兰化学成分,发现其抗肿瘤活性成分。 方法 杜鹃兰经95%乙醇提取、硅胶柱层析、半制备HPLC和Sephadex LH-20柱层析进行分离纯化,波谱分析(核磁共振氢谱、碳谱、和质谱)确定结构;应用MTT法,对部分化合物进行体外抗肿瘤活性筛选。 结果 从杜鹃兰分离鉴定12个化合物,分别为bisbenzopyran (1),(22E)-ergosta-6,22-dien-3β,5α,8α-triol (2),3β-hydroxycholesta-5-ene (3),β-sistosterol (4),pinoresinol (5),5,4′-dihydroxy-7-(4-hydroxybenzoyl) -3′- methoxyflavone (6),4-methoxy-2,3,7-trihydroxyphenanthrene (7),2-hydroxy-4,7-dimethoxyphenanthrene (8),4,4′-dimethoxy-[1,1′-biphenanthrene]- 2,2′,7,7′-tetrol (9),4,7,4′,9′-tetramethoxy-[1,1′-biphenanthrene] 2,2′,7,7′-tetrol (10),Bavachinine (11),3-hydroxyphenpropionic acid-(2′-methoxy-4′- carboxy-phenol) ester (12);化合物7~12抗肿瘤活性测试结果表明9和10对MCF-7/S细胞株显示了很好的抑制活性。 结论 化合物2,3,5,7,10,12为首次从本植物中分离得到,9,10对MCF-7/S细胞株IC50分别为2.16,5.09 μmol/L。 Abstract:Objective To study the chemical compounds from the medicinal plants of Cremastra appendiculata and find its antitumor bioactive compounds. Methods The compounds were extracted by alcohol (95%) and isolated by column chromatography on silica gel and Sephadex LH-20. Their structures were identified by spectroscopic analysis (1H NMR, 13CNMR and EIMS). The antitumor activity of the compounds was studied by MTT assay in vitro. Results Twelve compounds were obtained and identified as bisbenzopyran (1), (22E)-ergosta-6, 22-dien-3β, 5α, 8α-triol (2), 3β-hydroxycholesta-5-ene (3), β-sistosterol (4), pinoresinol (5), 5, 4′-dihydroxy-7- (4-hydroxybenzoyl) -3′- methoxyflavone (6), 4-methoxy-2, 3, 7- trihydroxyphenanthrene (7), 2-hydroxy-4, 7-dimethoxyphenanthrene (8), 4, 4′-dimethoxy-[1, 1′-biphenanthrene]- 2, 2′, 7, 7′-tetrol (9), 4, 7, 4′, 9′-tetramethoxy-[1, 1′-biphenanthrene] 2, 2′, 7, 7′-tetrol (10), Bavachinine (11), 3-hydroxyphenpropionic acid- (2′-methoxy-4′- carboxy-phenol) ester (12); . The results of anti-tumor activity test of compounds 7~12 showed that 9 and 10 showed good inhibitory activity on MCF-7/S cell line. Conclusions Compounds 2, 3, 5, 7, 10 and 12 were isolated from this plant for the first time. IC50 of 9 and 10 on MCF-7/S cell lines were 2.16 and 5.09 respectively μmol/L. -
Key words:
- Cremastra appendiculata /
- Chemical constituents /
- Bioactive activity
-
杜鹃兰 [Cremastra appendiculata (D. Don) Makino] 为兰科杜鹃兰属植物,该属植物仅有2种,另一种为斑叶杜鹃兰[Cremastra unguiculata (Finet) Finet in Bull ]。杜鹃兰生于林下湿地或沟边湿地上,海拔500~2900 m。分布于中国、尼泊尔、不丹、锡金、印度、越南、泰国和日本[1]。国内外学者从该药用植物分离得到菲类、二氢菲类、联苄类、二聚菲、菲醌等结构类型的化合物,药理研究表明所得化合物具有抗氧化、抗炎、抗肿瘤活性[2]。为发现新的活性化合物,笔者对其进行了化合物的分离、结构鉴定和化合物生物活性筛选。
1. 材料与方法
1.1 研究材料
核磁共振仪: Bruker ASENDAVIIIHD 600 MHz (TMS为内标),N-1100旋转蒸发仪,葡聚糖凝胶Sephadex LH-20 (20~80 μm,Pharmacia Uppsala),柱层析硅胶(80~100目,200~300目,青岛海洋化工厂),高效薄层层析硅胶G板,HPLC (RP-18)半制备柱(10 min×250 mm,YMC-Pack ODS),有机溶剂均为工业纯,重蒸后使用;显色剂为10%硫酸乙醇溶液。三种肿瘤细胞株A549、MCF-7/S、SKOV-3由昆明医科大学药学院提供,SKOV-3培养于McCoy’s 5A Medium Modified含10% Fetal Bovine Serum FBS (premium grade,USA),A549、MCF-7/S均培养于ATCC-formulated RPMI-1640 Medium含10% Fetal Bovine Serum FBS (premium grade,USA)。
1.2 植物来源
杜鹃兰药材于2019年5月由昆明植分公司娄安瑞先生采自四川乐山,植物学名经昆明医科大学药学院陆露研究员鉴定。标本(编号:20190525)保存在昆明医科大学药学院。
1.3 研究方法
1.3.1 提取与分离方法
杜鹃兰假鳞茎,切片、阴干 (7.53 kg),经95%的乙醇提取3次。将提取液在减压下浓缩,得到褐色浸膏,加水溶解,经石油醚、乙酸乙酯和正丁醇萃取,得到乙酸乙酯萃取部分为 (165.71 g)。将该部分浸膏以80~100目硅胶拌样,样品经硅胶柱层析,混合溶剂体系石油醚/ 乙酸乙酯 (100∶0、90∶10、80∶20、70∶30、60∶40、50∶50、0∶1) 洗脱,薄层检测合并为7个部分 (Fr.1~7)。
Fr.2 (5.90 g) 经硅胶柱层析,石油醚/EtOAc (25∶1、15∶1、10∶1、5∶1、0∶1) 梯度洗脱,薄层检测合并为5个部分(Fr.2.1~2.5),Fr.2.1 (1.1g) 经凝胶柱层析(CHCl3/CH3OH 10:90) 得到3个化合物2 (15.0 mg),3 (7.3 mg);Fr.2.2 (0.5 g) 经制备薄层层析得到化合物4 (7.6 mg);Fr.2.3 (0.7 g)经半制备HPLC得到化合物5 (11.5 mg),6 (6.5 mg);Fr.2.5 (0.3g) 经凝胶柱层析 (CH3OH/ H2O,90∶10)得到化合物1 (10.5 mg)。
Fr.3 (16.52 g) 经RP-18柱色谱 (CH3OH/H2O 7∶3),硅胶柱层析CHCl3 / EtOAc (25∶1、20∶1、15∶1、10∶1、5∶1、1∶1、0∶1),薄层检测合并为3个部分 (Fr.3.1~3.3),Fr.3.1 (2.3 g) 经硅胶柱层析CHCl3 / 丙酮 (15∶1)得到化合物7 (25.7 mg) 和化合物37 (31.3 mg);Fr.3.2 (0.52 g) 经HPLC (CH3OH/H2O,65∶35),得到化合物8 (39.8 mg); Fr.3.3 (8.2 g) 经硅胶柱层析 (氯仿/丙酮10∶1) 洗脱,经Sephadex LH-20 (CH3OH/CHCl3,10∶1) 进行纯化,得到化合物9 (9.2 mg),10 (8.5 mg),11 (9.3 mg),12 (30.1 mg)。
1.3.2 抗肿瘤活性筛选方法
A549、MCF-7/S细胞接种于含10%FBS的RPMI-1640培养液中,SKOV-3细胞接种于含10%FBS的McCoy’s 5A 培养液中,均在37 ℃,95%湿度,5%CO2培养箱中培养,1~2 d传代1次,调整细胞浓度不超过6×104/mL,取指数生长期细胞进行实验。用MTT法检测化合物对A549、MCF-7/S、SKOV-3细胞增殖的抑制作用。取对数生长期的A549、MCF-7/S、SKOV-3细胞,调整细胞浓度为6×104/mL,加入96孔培养板(使其终浓度为6×103/100 μL),接种细胞之后静置1 h再放入细胞培养箱 (避免96孔板的边缘效应)。24 h细胞贴壁之后再加化合物7~12使其终浓度为200,100,50,25,12.5,6.25 μmol/L,每个浓度设5个平行孔,并设阳性、阴性、空白及DMSO对照孔,在37 ℃,95%湿度,5%CO2培养箱中孵育48 h后加入MTT 20 μL,继续孵育4 h后,以570 nm、630 nm双波长检测OD值。按公式计算不同浓度的OD值均数及标准差,再计算细胞增殖抑制率,实验重复3次,减少误差。
2. 结果
2.1 化合物波谱数据
化合物1 bisbenzopyran:白色晶体,MF: C14H10O2,MW:210;1HNMR (CD3OD, 600 MHz): δ 4.23 (2H,dd,J = 9.0,6.8 Hz,H-2a,H- 2a′),3.84 (2H,dd,J= 9.0,6.5 Hz,H-2e,H- 2e′),3.04 (2H,m,H-3,H- 3′),4.70 (2H,d,J = 4.2 Hz,H-4,H-4′),6.95 (2H,d,J = 1.8Hz,H-5,H-5′),6.80 (2H ,dd,J = 8.0,1.8 Hz,H-7,H-7′),6.82 (2H,dd,J = 8.0 Hz,H-8,H-8′),3.86 (6H,s,-OCH3). 13C NMR (CD3OD, 150 MHz):δC 71.2 (t,C-2,C-2′),53.9 (d,C-3,C-3′), 86.1 (d,C-4,C-4′),114.4 (d,C-5,C-5′),147.7 (s,C-6,C-6′) ,118.6 (d,C-7,C-7′),109.6 (d,C-8,C-8′),145.9 (s,C-9,C-9′),132.4 (s,C-10,C-10′),55.0 (q,6,6′-OCH3),其波谱数据与文献报道基本一致。
化合物2 (22E)-ergosta-6,22-dien-3β,5α,8α-triol:黄色固体,MF:C28H46O3,ESI-MS m/z:431 [M+H]+. 1HNMR (CDCl3):δ 6.61 (1H,d ,J = 8.3 Hz,H-7),6.25 (1H,d,J = 8.3 Hz,H-6),5.20 (1H,m,H-23),5.18 (1H,m,H-22),2.10 and 1.91 (2H,m,CH2-4),2.04 (1H,m,H-24),2.03 (1H,m,H-2β),1.94 (1H,m,H-2α),1.86 (1H,m,H-20),1.76 and 1.58 (2H,m,CH2-12),1.68 (1H,m,H-1β),1.61 (2H,m,CH2-11),1.58 (1H,m,H-9),1.48 (1H,m,H-25),1.34 (1H,m,CH2-16),1.25 (1H,m,H-2α),1.22 (2H,m,CH2-15),1.21 (1H,m,H-14),1.09 (3H,d,J = 6.3 Hz,CH3-28),0.92 (3H,d,J = 6.1 Hz,CH3-21),0.90 (3H,s,CH3-19),0.84 (3H,d,J = 6.5 Hz,CH3-26),0.82 (3H,s,CH3-18),0.81 (3H,d,J = 6.5 Hz,CH3-27). 13CNMR (CDCl3):δ 33.4 (t,C-1),30.5 (t,C-2),66.8 (d,C-3),39.7 (t,C-4),82.5 (s,C-5),135.8 (d,C-6),131.1 (d,C-7),79.8 (s,C-8),51.5 (d,C-9),37.3 (s,C-10),20.3 (t,C-11),37.3 (t,C-12),44.9 (s,C-13),51.5 (d,C-14),23.8 (t,C-15),29.0 (t,C-16),56.7 (d,C-17),13.2 (q,C-18),18.5 (q,C-19),40.0 (d,C-20),20.3 (q,C-21),135.6 (d,C-22),131.1 (d,C-23),43.2 (d,C-24),33.4 (d,C-25),20.0 (q,C-26),21.0 (q,C-27),17.9 (q,C-28)。
化合物3 3β-hydroxy-cholesta-5-ene:白色晶体,MF:C27H46O,ESI-MS m/z:389 [M+H]+. 1HNMR (CDCl3):δ 5.35 (1H,s ,H-6),3.54 (1H,m,H-3),1.01 (3H,s,H-19),0.81~0.92 (9H,m,3×CH3),0.68 (3H,s,18-CH3). 13CNMR (CDCl3):δ 37.3 (t,C-1),31.7 (t,C-2),71.8 (d,C-3),42.3 (t,C-4),140.8 (s,C-5),121.7 (d,C-6),31.9 (t,C-7),31.9 (s,C-8),50.2 (d,C-9),36.5 (s,C-10),21.1 (t,C-11),39.8 (t,C-12),42.3 (s,C-13),56.8 (d,C-14),24.3 (t,C-15),28.2 (t,C-16),56.1 (d,C-17),12.0 (q,C-18),19.1 (q,C-19),36.2 (d,C-20),18.8 (q,C-21),29.2 (t,C-22),23.1 (t,C-23),39.8 (t,C-24),28.2 (d,C-25),23.1 (q,C-26),23.1 (q,C-27)。
化合物4:β-sistosterol 白色针状晶体,易溶于氯仿。与标准品β-sistosterol共薄层层析,在三种溶剂系统均显一个点,Rf与β-谷甾醇基本一致。
化合物5 Pinoresinol :白色固体,C20H22O6, 1HNMR (CD3OD, 600 MHz): δ 6.95 (2H,s,H-2′,H- 2′′),6.81 (2H,d,J = 8.0 Hz,H-6′,H- 6′′),6.77 (2H,d,J = 8.0 Hz,H-5′,H-H-5′′),4.70 (2H,d,J = 4.2 Hz,H-2,H-6),4.22 (2H ,dd,J = 9.0,6.8 Hz,Hb-4,H-8),3.87 (6H,s,-OCH3),3.86 (2H,dd,J= 9.3,3.7 Hz,Ha-4,H-8),3.03 (2H,m,H-1,H-5). 13CNMR (CD3OD, 150 MHz): δ 147.7 (s,C-3′,C-3′′),145.9 (s,C-4′,C-4′′), 132.4 (s,C-1′,C-1′′),118.6 (d,C-6′,C-6′′) ,114.4 (d,C-5′,C-5′′),109.6 (d,C-2′,C-2′′),86.1 (d,C-2,C-6),71.2 (t,C-4,C-8),55.0 (d,C-3′,C-3′′)。
化合物6 5,4′-dihydroxy-7-(4-hydroxybenzoyl)-3′-methoxyflavone:黄色粉末,MF:C23H16O8,MW:420;EI-MS,420 [M]+;1HNMR [CD3OD,500 MHz]:δ 6.90 (2H,d,J = 8.6,H-3′′,5′′),7.82 (2H,d,J = 8.6,H-2′′,6′′),6.57 (1H,s,H-3),6.19 (1H,s,H-6),6.44 (1H,s,H-8),7.45 (1H,s,H-2′),6.92 (2H,d,J = 8.0,H-5′),7.47 (1H,d,J = 8.0,H-6′),3.95(3H,s,3′-OCH3); 13CNMR [CD3OD,125 MHz]: δ 166.3 (s,C-2),103.8 (s,C-3),183.9 (s,C-4),100.1 (d,C-4a),163.2 (s,C-5),100.1 (s,C-6),166.6 (s,C-7),95.0 (d,C-8),159.4 (s,C-8a),123.2 (s,C-1′),107.0 (d,C-2′),149.1(s,C-3′),152.5 (s,C-4′),117.0 (d,C-5′),121.7 (d,C-6′),117.5 (s,C-1′′),129.4 (d,C-2′′,6′′),117.0 (d,C-3′′,5′′),162.8 (s,C-4′′),166.3 (s,C-7′′),64.1 (q,3′-OCH3),其波谱数据与文献报道基本一致。
化合物7 4-methoxy-2,3,7-trihydroxyphenanthrene:白色粉末,MF:C15H12O4,MW:256;ESI-MS:m/z 257[M+H]+,1HNMR [(CD3)2CO,600 MHz]:δ 7.12 (1H,s,H-1),9.38 (1H,d,J = 9.3,H-5),7.20 (1H,d,J = 9.3,2.8,H-6),7.29 (1H,d,J = 2.8,H-8),7.98 (1H,d,J = 8.7,H-9),7.29 (1H,d,J = 8.7,H-10),4.07 (3H,s,4-OCH3);13CNMR [(CD3)2CO,125MHz]:δ 107.9 (d,C-1),155.2 (s,C-2),153.2 (s,C-3),156.7 (s,C-4),121.0 (s,C-4a),124.4 (s,C-4b),129.1 (d,C-5),115.8 (d,C-6),159.2 (s,C-7),115.9 (d,C-8),133.2 (s,C-8a),127.3 (d,C-9),125.1 (d,C-10),125.1 (s,C-10a),54.2 (q,3-OCH3)。
化合物8 2-hydroxy-4,7-dimethoxyphenanthrene:紫色固体,MF:C16H14O3,MW:254;ESI-MS:m/z 255[M+H]+,1HNMR [(CD3)2CO,600 MHz]:δ 9.44 (1H,d,J = 9.4,H-5),7.64 (1H,d,J = 8.7,H-9),7.57 (1H,d,J = 8.7,H-10),7.32 (1H,d,J = 2.8,H-8),7.19 (1H,d,J = 9.4,2.8,H-6),6.94 (1H,d,J = 1.9,H-1),6.85 (1H,d,J = 1.9,H-3),4.11 (3H,s,4-OCH3),3.95 (3H,s,7-OCH3);13CNMR [(CD3)2CO,125MHz]:δ 159.5 (s,C-4),156.7 (s,C-2),155.5 (s,C-7),134.8 (s,C-10a),133.1 (s,C-8a),129.0 (d,C-5),127.7 (d,C-9),127.1 (d,C-10),125.0 (s,C-4b),116.2 (d,C-6),114.7 (s,C-4a),108.7 (d,C-8),104.6 (d,C-1),99.5 (d,C-3),55.1 (q,4-OCH3),54.6 (q,7-OCH3),其波谱数据与文献报道基本一致。
化合物9 4,4′-dimethoxy-[1,1′-biphenanthrene] 2,2′,7,7′-tetrol:红色油状物,MF:C30H22O6,MW: 478; ESI-MS:m/z 479 [M+H]+,1HNMR [CD3OD,600 MHz]: δ 9.49 (2H,d,J = 9.30,H-5,5′),7.14 (2H,dd,J = 9.30,2.7,H-6,6′),7.33 (2H,d,J = 9.2,H-9,9′),7.03 (1H,d,J = 9.2,H-10,10′),7.01 (2H,s,H-3,3′),7.09 (2H,d,J = 2.7,H-8,8′),4.18 (6H,s,4,4′-OCH3); 13CNMR [(CD3)2CO,125MHz]: δ 110.1 (d,C-1,1′),159.2 (s,C-2,2′),99.0 (d,C-3,3′),153.2 (s,C-4,4′),115.6 (s,C-4a,4a′),124.4 (s,C-4b,4b′),129.1 (d,C-5,5′),110.7 (d,C-6,6′),154.0 (s,C-7,7′),115.9 (d,C-8,8′),133.2 (s,C-8a,8a′),127.1 (d,C-9,9′),124.6 (d,C-10,10′),134.1 (s,C-10a,10a′),54.7 (q,4,4′-OCH3),其波谱数据与文献报道基本一致。
化合物10 4,7,4′,9′-tetramethoxy-[1,1′-biphenanthrene]2,2′,7,7′-tetrol :红色油状物,MF: C32H26O8,ESI-MS: m/z 537[M-H]+; 1HNMR [(CD3)2CO,600 MHz]: δ 6.95 (1H,s,H-3),9.32 (1H,d,J = 9.4,H-5),7.20 (1H,dd,J = 9.4,2.4,H-6),7.76 (1H,d,J = 2.4,H-8),6.94 (1H,s,H-10),4.15 (3H,s,4-OCH3),3.84 (3H,s,9-OCH3),7.03 (1H,s,H-3′),9.25 (1H,s,H-5′),7.24 (1H,s,H-8′),7.39 (1H,d,J = 8.6,H-9′),7.01 (1H,d,J = 8.6,H-10′),4.24 (3H,s,4′-OCH3),4.07 (3H,s,6′-OCH3); 13CNMR [(CD3)2CO,150 MHz]: δ 109.3 (s,C-1),159.4 (s,C-2),99.2 (d,C-3),159.5 (s,C-4),115.5 (s,C-4a),125.4 (s,C-4b),127.2 (d,C-5),122.4 (d,C-6),159.4 (s,C-7),109.0 (d,C-8),127.1 (s,C-8a),154.2 (s,C-9),101.0 (d,C-10),134.6 (s,C-10a),55.2 (q,4-OCH3),55.1 (q,9-OCH3),111.3 (s,C-1′),150.0 (s,C-2′),99.7 (d,C-3′),159.4 (s,C-4′),120.7 (s,C-4a′),124.9 (s,C-4b′),109.3 (d,C-5′),147.7 (s,C-6′),145.2 (s,C-7′),111.3 (d,C-8′),127.1 (s,C-8a′),126.7 (d,C-9′),124.5 (d,C-10′),134.2 (s,C-10a′),60.5 (q,4′-OCH3) ,55.3 (q,6′-OCH3)。
化合物11 Bavachinine:黄色粉末,MF: C21H22O4,MW: 338; ESI-MS,361 [M+Na]+; 1HNMR [CDCl3,500 MHz]: δ 7.30 (2H,d,J = 8.0,H-3′,5′),6.91 (2H,d,J = 8.0,H-2′,6′),7.67 (1H,s,H-5),6.43 (1H,s,H-8),5.36 (1H,dd,J = 13.0,3.0,H-2),5.27 (1H,m,H-12),3.23 (2H,d,J = 7.5,H-11),3.03 (1H,dd,J = 17.0,,13.5,H-3a),2.78 (1H,d,J = 17.0,3.0,H-3b),1.72 (3H,s,H-14),1.68 (1H,s,H-15),3.85(3H,s,7-OCH3); 13CNMR [CDCl3,125 MHz]: δ 80.2 (d,C-2),44.3 (t,C-3),192.6 (s,C-4),127.5 (d,C-5),125.5 (s,C-6),164.9 (s,C-7),99.3 (d,C-8),163.1 (s,C-9),114.2 (s,C-10),28.2 (t,C-11),122.1 (d,C-12),133.5 (s,C-13),18.1 (q,C-14),26.2 (q,C-15),130.8 (s,C-1′),128.3 (d,C-2′,6′),116.2 (d,C-3′,5′),157.2 (s,C-4′),其波谱数据与文献报道基本一致。
化合物12 3-hydroxy-phenpropionic acid-(2′-methoxy-4′-carboxy-phenol) ester :红色晶体,MF: C17H16O6,MW: 316; ESI-MS: m/z 317[M+H]+; 1HNMR [(CD3)2CO,600 MHz]: δ 6.69 (1H,M,H-2),6.61 (1H,dd,J = 7.9,1.9,H-4),6.93 (1H,t,J = 7.9,H-5),6.91 (2H,m,H-6),2.79 (2H,t,J = 8.0,H-7),2.06 (2H,t,J = 8.0,H-8),7.60 (1H,s,H-3′),7.57 (1H,d,J = 8.0,H-5′),6.92 (1H,d,J = 8.0,H-6′),3.93 (3H,s,2′-OCH3); 13CNMR [(CD3)2CO,125MHz]: δ 143.2 (s,C-1),115.1 (d,C-2),161.7 (s,C-3),112.6 (d,C-4),130.0 (d,C-5),119.5 (d,C-6),29.3 (t,C-7),37.7 (t,C-8),170.0 (s,C-9),151.2 (s,C-1′),147.2 (d,C-2′),114.6 (d,C-3′),122.0 (s,C-4′),124.0 (d,C-5′),115.1 (d,C-6′),54.4 (q,2′-OCH3),166.7 (s,-COOH)。
2.2 化合物7~12抗肿瘤活性筛选结果
对化合物7~12进行了人体肺癌细胞株 (A549)、人体乳腺癌药物敏感细胞株 (MCF-7/S)、人体卵巢癌细胞株 (SKOV-3) 抑制活性,见表1。
表 1 化合物7~12对3种细胞株的细胞毒活性IC50 (μmol/L)Table 1. Cytotoxic activities of compounds 7~12 on three cell lines IC50 (μmol/L)化合物 A549 MCF-7/S SKOV-3 7 41.33 43.30 41.57 8 87.08 92.87 40.59 9 51.69 2.16 56.05 10 23.33 5.09 23.08 11 44.34 40.47 20.11 12 15.73 12.30 22.95 DDP 22.02 10.02 14.15 研究结果如上表,研究发现化合物9和10对MCF-7/S细胞株显示了很好的抑制活性,其IC50分别为2.16,5.09 μmol/L,以上作用强于阳性对照品DDP。
3. 讨论
药用植物杜鹃兰分离鉴定化合物结构类型为:化合物1为吡喃酮类二聚体[3],化合物3~4为甾体化合物[4-8],化合物5为木脂素类化合物[9],化合物6为黄酮类化合物[10],化合物7~10为菲类化合物[7-15],化合物11为二氢黄酮类化合物[16-17],化合物12为酯类化合物[16-17]。 抗肿瘤活性测试结果表明化合物9和10对MCF-7/S细胞株显示了很好的抑制活性。该研究为杜鹃兰的开发和利用提供了基础研究。
近年来,国内学者Wang Y等 [18]从杜鹃兰中分离得到化合物Blestriarene A,Blestriarene B,使用 MTT 方法评估化合物对 A549 和 Bel7402 细胞系的细胞毒性,以bufalin作为阳性对照。在检测的化合物中,两个化合物对A549细胞株表现出较弱的细胞毒活性(IC50分别为47.5、48.2 l M)。刘量等[19] 从杜鹃兰分离出5种新的双菲cremaphenanthrenes A-E 以及6个已知的双菲,对所获得的化合物都在体外测试了对结肠 (HCT-116)、宫颈 (Hela) 和乳腺癌 (MDA-MB-231) 癌细胞系的细胞毒性活性,所得二聚菲化合物均对三种细胞株表现出中等或弱的细胞毒性。《中国药典》中收载的中药材山慈菇,为兰科植物杜鹃兰、独蒜兰或云南独蒜兰的干燥假鳞茎。随着对山慈菇及其提取物生物活性研究的不断深入,其抗肿瘤、抗氧化、神经保护、抗菌、抗痛风、降脂降糖、提高造血功能及增强免疫等药理作用受到广泛关注;山慈菇还常与其他中药组成复方,在呼吸系统、消化系统、内分泌代谢系统等疾病的治疗方面疗效确切,具有很好的临床应用前景[20~22]。
-
表 1 化合物7~12对3种细胞株的细胞毒活性IC50 (μmol/L)
Table 1. Cytotoxic activities of compounds 7~12 on three cell lines IC50 (μmol/L)
化合物 A549 MCF-7/S SKOV-3 7 41.33 43.30 41.57 8 87.08 92.87 40.59 9 51.69 2.16 56.05 10 23.33 5.09 23.08 11 44.34 40.47 20.11 12 15.73 12.30 22.95 DDP 22.02 10.02 14.15 -
[1] 中国科学院中国植物志编辑委员会. 中国植物志(第18卷)[M]. 北京: 科学出版社, 1999: 164-167. [2] 董海玲,郭顺星,王春兰,等. 山慈菇的化学成分和药理作用研究进展[J]. 中草药,2007,38(11):1734-1738. doi: 10.3321/j.issn:0253-2670.2007.11.048 [3] Saleem R,Faizi S,Deeba F,et al. A New Bisbenzopyran from Aloe barbadensis Roots[J]. Planta Medica,1997,63(5):454-456. doi: 10.1055/s-2006-957732 [4] Rivera A,Benavides OL,Rios-Motta J. (22E)-Ergosta-6,22-diene-3β,5α,8α-triol: A new polyhydroxysterol isolated from Lentinus edodes (Shiitake)[J]. Natural Product Research,2009,23(3):293-300. doi: 10.1080/14786410802038671 [5] 刘涛,李占林,王宇,等. 海洋来源真菌Hypocrea virens的次级代谢产物研究[J]. 沈阳药科大学学报,2012,29(2):93-97. [6] 张海龙,田黎,付红伟,等. 海洋真菌Alternalia sp. 发酵液中化学成分的研究[J]. 中国中药杂志,2005,30(5):351. doi: 10.3321/j.issn:1001-5302.2005.05.008 [7] Wang Z,Xu F,An S. Chemical constituents from the root bark of Dictamnus dasycarpus Turcz[J]. China journal of Chinese materia medica,1992,17(9):551-552,576. [8] Li S R,Yang H,Tan C,et al. Chemical constituents of ethyl acetate fraction from the stems of Saprosma merrillii Lo[J]. Chinese Pharmaceutical Journal,2015,50(12):1017-1020. [9] Hassan A E,Sayed M E,Hamed A I,et al. Bioactive constituents of Leptadenia arborea[J]. Fitoterapia,2003,74(1-2):184-187. doi: 10.1016/S0367-326X(02)00314-3 [10] Ahmad I,Janbaz C K H. Cinerasenone,a new flavonoid from Vernonia cinerascens[J]. Journal Chemical Society of Pakistan,2010,32(1):101-103. [11] Leong Y W,Harrison L J,Powell A D. Phenanthrene and other aromatic constituents of Bulbophyllum vaginatum[J]. Phytochemistry,1999,50(7):1237-1241. doi: 10.1016/S0031-9422(98)00687-6 [12] Leong Y W,Kang C C,Harrison L J,et al. Phenanthrenes,dihydrophenanthrenes and bibenzyls from the orchid Bulbophyllum vaginatum[J]. Phytochemistry,1997,44(1):157-165. doi: 10.1016/S0031-9422(96)00387-1 [13] Xue Z,Li S,Wang S J,et al. Mono-,Bi-,and Triphenanthrenes from the Tubers of Cremastra appendiculata[J]. Journal of Natural Products,2006,69(6):907-913. doi: 10.1021/np060087n [14] Yamaki M,Bai L,Inoue K,et al. Biphenanthrenes from Bletilla striata[J]. Phytochemistry,1989,28(12):3503-3505. doi: 10.1016/0031-9422(89)80373-5 [15] Wang C,Shao S Y,Han S W,et al. Atropisomeric bi (9,10-dihydro) phenanthrene and phenanthrene/bibenzyl dimers with cytotoxic activity from the pseudobulbs of Pleione bulbocodioides[J]. Fitoterapia,2019,138:1-7. [16] Trinh P T N,Hao N C,Thao P T,et al. Chemical components of the rhizomes of Drynaria fortunei (KUNZE) J. Sm. (polypodiaceae) in Vietnam[J]. Collection of Czechoslovak Chemical Communications,2011,76(9):1133-1139. doi: 10.1135/cccc2010098 [17] Xu Q X,Ying,Li G Y,Xu W,et al. Multi-Target Anti-Alzheimer Activities of Four Prenylated Compounds from Psoralea Fructus[J]. Molecules,2018,23(614):1-12. [18] Wang Y,Guan S H,Meng Y H,et al. Phenanthrenes,9,10-dihydrophenanthrenes,bibenzyls with their derivatives,and malate or tartrate benzyl ester glucosides from tubers of Cremastra appendiculata[J]. Phytochemistry,2013,94:268-276. doi: 10.1016/j.phytochem.2013.06.001 [19] Liu L,Li J,Zeng K W,et al. Five New Biphenanthrenes from Cremastra appendiculata[J]. Molecules,2016,21(8):1-10. [20] 陈诗,赵玥,王振,等. 山慈菇药理作用及临床应用研究进展[J]. 中华中医药学刊,2022,29(12):1-14. [21] 司函瑞,司雨,焦玉凤,等. 山慈菇化学成分及其药理作用研究进展[J]. 辽宁中医药大学学报,2020,22(5):151-155. [22] 王宏伟,田欣圆,于蕾. 山慈菇的化学成分及其抗肿瘤作用机制研究进展[J]. 内蒙古医科大学学报,2022,44(3):305-309. 期刊类型引用(4)
1. 赵小红,雷美艳,韩量,蒲潇,韦中强,肖波. 杜鹃兰种子共生萌发真菌的生物学特性. 菌物学报. 2025(01): 64-74 . 百度学术
2. 张林果,王福安,乔曼华,郝丽亚,刘丽. 白毛藤化学成分及其抗肿瘤活性研究. 中成药. 2024(07): 2252-2258 . 百度学术
3. 杨梅,刘益溢,方海猛,唐木花,陆胜波,杨玉婷. 杜鹃兰的分布现状及生产栽培管理技术. 南方园艺. 2024(06): 31-34 . 百度学术
4. 初雨萌,李迪佳,李雅静,姚芳,张子英,高瑞霞. 山慈菇的乙酸乙酯、石油醚、氯仿萃取物挥发性成分鉴定. 山东医药. 2024(36): 45-50 . 百度学术
其他类型引用(1)
-