Chemical Compounds Isolated from Cremastra Appendiculata and Their Bioactive Activity
-
摘要:
目的 研究杜鹃兰化学成分,发现其抗肿瘤活性成分。 方法 杜鹃兰经95%乙醇提取、硅胶柱层析、半制备HPLC和Sephadex LH-20柱层析进行分离纯化,波谱分析(核磁共振氢谱、碳谱、和质谱)确定结构;应用MTT法,对部分化合物进行体外抗肿瘤活性筛选。 结果 从杜鹃兰分离鉴定12个化合物,分别为bisbenzopyran (1),(22E)-ergosta-6,22-dien-3β,5α,8α-triol (2),3β-hydroxycholesta-5-ene (3),β-sistosterol (4),pinoresinol (5),5,4′-dihydroxy-7-(4-hydroxybenzoyl) -3′- methoxyflavone (6),4-methoxy-2,3,7-trihydroxyphenanthrene (7),2-hydroxy-4,7-dimethoxyphenanthrene (8),4,4′-dimethoxy-[1,1′-biphenanthrene]- 2,2′,7,7′-tetrol (9),4,7,4′,9′-tetramethoxy-[1,1′-biphenanthrene] 2,2′,7,7′-tetrol (10),Bavachinine (11),3-hydroxyphenpropionic acid-(2′-methoxy-4′- carboxy-phenol) ester (12);化合物7~12抗肿瘤活性测试结果表明9和10对MCF-7/S细胞株显示了很好的抑制活性。 结论 化合物2,3,5,7,10,12为首次从本植物中分离得到,9,10对MCF-7/S细胞株IC50分别为2.16,5.09 μmol/L。 Abstract:Objective To study the chemical compounds from the medicinal plants of Cremastra appendiculata and find its antitumor bioactive compounds. Methods The compounds were extracted by alcohol (95%) and isolated by column chromatography on silica gel and Sephadex LH-20. Their structures were identified by spectroscopic analysis (1H NMR, 13CNMR and EIMS). The antitumor activity of the compounds was studied by MTT assay in vitro. Results Twelve compounds were obtained and identified as bisbenzopyran (1), (22E)-ergosta-6, 22-dien-3β, 5α, 8α-triol (2), 3β-hydroxycholesta-5-ene (3), β-sistosterol (4), pinoresinol (5), 5, 4′-dihydroxy-7- (4-hydroxybenzoyl) -3′- methoxyflavone (6), 4-methoxy-2, 3, 7- trihydroxyphenanthrene (7), 2-hydroxy-4, 7-dimethoxyphenanthrene (8), 4, 4′-dimethoxy-[1, 1′-biphenanthrene]- 2, 2′, 7, 7′-tetrol (9), 4, 7, 4′, 9′-tetramethoxy-[1, 1′-biphenanthrene] 2, 2′, 7, 7′-tetrol (10), Bavachinine (11), 3-hydroxyphenpropionic acid- (2′-methoxy-4′- carboxy-phenol) ester (12); . The results of anti-tumor activity test of compounds 7~12 showed that 9 and 10 showed good inhibitory activity on MCF-7/S cell line. Conclusions Compounds 2, 3, 5, 7, 10 and 12 were isolated from this plant for the first time. IC50 of 9 and 10 on MCF-7/S cell lines were 2.16 and 5.09 respectively μmol/L. -
Key words:
- Cremastra appendiculata /
- Chemical constituents /
- Bioactive activity
-
秋花独蒜兰[Pleione maculata (Lindl.) Lindl]为兰科独蒜兰属植物,产云南西部(高黎贡山),生于阔叶林中树干上或苔藓覆盖的岩石上,海拔600~1600 m。尼泊尔、不丹、印度、缅甸和泰国也有分布[1]。药典记载该属植物中的独蒜兰和云南独蒜兰的干燥假鳞茎是中药山慈菇的重要来源[2]。为合理开发利用秋花独蒜兰,笔者对其化学成分和药理活性进行筛选。
1. 材料与方法
1.1 材料
高效薄层层析硅胶G板,HPLC (RP-18)半制备柱(10×250 mm,YMC-Pack ODS),柱层析硅胶(80~100目,200~300目,青岛海洋化工厂),有机溶剂均为工业纯,重蒸后使用,显色剂为10%硫酸乙醇溶液;核磁共振仪:Bruker ASENDAVIIIHD 600 MHz (TMS为内标),N-1100旋转蒸发仪,葡聚糖凝胶Sephadex LH-20 (20~80 μm,Pharmacia Uppsala)。3种肿瘤细胞株A549、MCF-7/S、SKOV-3由昆明医科大学药学院提供。
1.2 植物来源
杜鹃兰药材于2019年5月由昆明植分公司娄安瑞先生采自四川乐山,植物学名经昆明医科大学药学院陆露研究员鉴定。标本(编号:20190525)保存在昆明医科大学药学院。
1.3 方法
1.3.1 提取与分离方法
秋花独蒜兰风干全草 (4.30 kg),经95%的乙醇 (25 L) 提取3次。将提取液在减压下浓缩,得到深褐色浸膏 (253.90 g)。将浸膏溶解于蒸馏水中,然后依次用石油醚,AcOEt和n-BuOH萃取。乙酸乙酯萃取部分浓缩得到浸膏 (172.20 g),样品用丙酮溶解,以80~100目硅胶拌样,上柱,经混合溶剂石油醚/ AcOEt (9∶1、8∶2、7∶3、6∶4、1∶1、0∶1) 洗脱,薄层检测合并为7个部分 (Fr.1-7)。
Fr.5 (11.30 g) 经RP-18柱色谱 (CH3OH/H2O 7∶3~9∶1),TLC检测合并为3个部分 (Fr.5.1~Fr.5.3),Fr.5.1 (0.37 g) 经半制备HPLC (CH3OH/H2O 70∶30),Sephadex LH-20 (CH3OH/CHCl3,10∶1),得到化合物3 (16.5 mg)和4 (30.5 mg)。 Fr.5.2 (1.3 g)经Sephadex LH-20 (CH3OH/CHCl3,10∶1),得到化合物5 (51.2 mg),6 (61.1 mg) 和7 (11.2 mg)。Fr.5.3 (3.50 g) 经RP-18柱色谱 (CH3OH/H2O 90∶10),经Sephadex LH-20 (CH3OH/CHCl3,9∶1)纯化得到化合物9 (38.5 mg)。
Fr.6 (38.10 g) 经RP-18柱色谱 (CH3OH/H2O 6.5∶3.5~10∶0),TLC检测合并为4个部分 (Fr.6.1~ Fr.6.4)。Fr.6.2 (15.4 g) 经半制备HPLC (CH3OH/H2O 70∶30),得到化合物1 (12.7 mg) 和2 (25.5 mg)。Fr.6.3 (2.20 g) 经硅胶柱色谱(CHCl3/Acetone 15∶1)洗脱,得到化合物8 (8.9 mg)。Fr.6.4 (5.6 g) 经RP-18柱色谱 (CH3OH/H2O 80∶20),经Sephadex LH-20 (CH3OH/ H2O 10∶1)纯化得到化合物10 (19.2 mg)。
1.3.2 抗肿瘤活性筛选方法
用MTT法检测化合物对A549、MCF-7/S、SKOV-3细胞增殖的抑制作用。A549、MCF-7/S细胞接种于含10%FBS的RPMI-1640培养液中,SKOV-3细胞接种于含10%FBS的McCoy’s 5A 培养液中,均在37 ℃,95%湿度,5% CO2培养箱中培养,1~2 d传代1次,调整细胞浓度不超过6×104/mL,取指数生长期细胞进行实验。取对数生长期的A549、MCF-7/S、SKOV-3细胞,调整细胞浓度为6×104/mL,加入96孔培养板(使其终浓度为6×103/100 μL),接种细胞之后静置1 h再放入细胞培养箱。24 h细胞贴壁之后再加化合物使其终浓度为200,100,50,25,12.5,6.25 μM,每个浓度设5个平行孔,并设阳性、阴性、空白及DMSO对照孔,在37 ℃,95%湿度,5% CO2培养箱中孵育48 h后加入MTT 20 μL,继续孵育4 h后,以570 nm、630 nm双波长检测OD值。计算不同浓度的OD值均数及标准差,再计算细胞增殖抑制率。
2. 结果
2.1 化合物波谱数据
化合物1 1,7-dihydroxy-2,5-dimethoxyphenanthrene
白色固体,C16H14O4,MW:270;ESI-M: m/z 271[M+H]+,1HNMR [(CD3)2CO,600 MHz]:δ 9.27 (1H,d,J = 9.3,H-4),7.94 (1H,d,J = 9.1,H-9),7.53 (1H,d,J = 9.1,H-10),7.17 (1H,d,J = 9.3,H-3),7.10 (1H,d,J = 2.6,H-8),6.85 (1H,d,J = 2.4,H-8),6.76 (1H,d,J = 2.4,H-6),4.05 (3H,s,2-OCH3) ,3.93 (3H,s,5-OCH3);13CNMR [(CD3)2CO,125MHz]:δ 141.1 (s,C-1),145.4 (s,C-2),116.5 (d,C-3),125.0 (s,C-4),126.8 (s,C-4a),114.8 (s,C-4b),159.4 (d,C-5),99.2 (d,C-6),155.1 (s,C-7),104.4 (d,C-8),134.4 (s,C-8a),126.6 (d,C-9),120.2 (d,C-10),125.0 (s,C-10a),60.1 (q,2-OCH3),54.6 (q,5-OCH3),其波谱数据与文献报道基本一致[3]。
化合物2 2,7-dihydroxy-1,5-dimethoxyphenanthrene
白色晶体,C16H14O4,MW:270;ESI-MS:m/z 269[M-H]+,1HNMR [(CD3)2CO,600 MHz]:δ 9.04 (1H,d,J = 9.3,H-4),7.83 (1H,d,J = 9.0,H-9),7.42 (1H,d,J = 9.0,H-10),7.04 (1H,d,J = 9.3,H-3),6.73 (1H,d,J = 2.1,H-8),6.65 (1H,d,J = 2.1,H-6),3.95 (3H,s,1-OCH3) ,3.81 (3H,s,5-OCH3);13CNMR [(CD3)2CO,125 MHz]:δ 141.1 (s,C-1),145.4 (s,C-2),116.5 (d,C-3),125.0 (s,C-4),126.8 (s,C-4a),114.8 (s,C-4b),159.4 (d,C-5),99.2 (d,C-6),155.1 (s,C-7),104.4 (d,C-8),134.4 (s,C-8a),126.6 (d,C-9),120.2 (d,C-10),125.0 (s,C-10a),60.1 (q,1-OCH3),54.6 (q,5-OCH3),其波谱数据与文献报道基本一致[3]。
化合物3 confusarin
化合物 4 4,7-dihydroxy-2-dimethoxy-9,10-dihydrophenanthrene
红色油状物,MF:C15H14O3,MW:242;ESI-MS:m/z 243 [M+H]+;1HNMR [(CD3)2CO,600 MHz]:δ 6.39 (1H,d,J = 1.9,H-1),6.47 (1H,d,J = 1.9,H-3),8.07 (1H,d,J = 8.1,H-5),6.95 (1H,d,J = 8.1,H-6),6.68 (1H,s,H-8),3.82 (3H,s,2-OCH3),2.64 (4H,s,H-9,H-10);13CNMR [(CD3)2CO,150 MHz]:δ 157.9 (s,C-7),158.7 (s,C-2),156.4 (s,C-4),140.5 (s,C-10a),139.2 (s,C-8a),129.7 (d,C-5),124.9 (s,C-4b),115.5 (s,C-4a),114.9 (d,C-8),113.1 (d,C-6),107.4 (d,C-1),98.3 (d,C-3),29.9 (t,C-9),29.5 (t,C-10),54.9 (q,2-OCH3),其波谱数据与文献报道基本一致[7-8]。
化合物5 pleionesin B
黄色粉末,MF:C28H28O8,MW:492;1HNMR [(CD3)2CO,500 MHz]:δ 7.94 (1H,d, J = 8.2 Hz,H-9),6.62 (1H,d,J = 8.2 Hz,H-8),6.61 (1H,s,H-11),6.56 (1H,d,J = 2.0 Hz,H-6),6.63 (2H,s,H-2′,6′),3.58 (1H,m,H-3),5.46 (1H,d,J = 2.7 Hz,H-2),3.62 (1H,m,H-3),4.37 (1H,dd,J = 10.0,4.0 Hz,H-1′′a),4.07 (1H,J = 10.0,4.1 Hz,H-1′′b),2.63 (4H,s,2CH2),3.90 (3H,s,10-OCH3),3.84 (6H,s,3′,5′-OCH3),1.98 (3H,s,-CH3);13CNMR [(CD3)2CO,125 MHz]:δ 170.2 (s,CO),87.6 (d,C-2),50.3 (d,C-3),114.9 (s,C-3a),27.6 (t,C-4),30.1 (t,C-5),136.5 (s,C-4a),139.4 (s,C-5a),114.8 (d,C-6),157.0 (s,C-7),114.6 (d,C-8),129.5 (d,C-9),126.5 (s,C-9a),159.4 (s,C-10),118.0 (s,C-10a),98.2 (d,C-11),159.3 (s,C-11a),133.7 (s,C-1′),107.8 (d,C-2′),147.5 (s,C-3′),136.5 (s,C-4′),147.5 (s,C-5′),107.8 (d,C-6′),65.6 (s,C-1′′),55.1 (q,3′ -OCH3),55.1 (q,5′-OCH3),54.8 (q,10-OCH3),19.9 (q,-CH3),其波谱数据与文献报道基本一致[9]。
化合物6 pleionesin C
黄色油状物,MF:C27H26O7,MW:462;1HNMR [(CD3)2CO,500 MHz]:δ 7.92 (1H,d, J = 9.2 Hz,H-9),6.59 (1H,d,J = 9.2 Hz,H-8),6.45 (1H,s,H-11),6.57 (1H,d,J = 2.0 Hz,H-6),6.92 (1H,s,H-2′),6.68 (1H,s,H-4′),6.69 (1H,s,H-6′),3.70 (1H,m,H-3),5.45 (1H,d,J = 3.2 Hz,H-2),3.62 (1H,m,H-3),4.28 (1H,m,H-1′′a),4.06 (1H,dd,J = 10.0,3.8 Hz,H-1′′b),2.62 (4H,s,2CH2),3.97 (3H,s,10-OCH3),3.74 (6H,s,3′ -OCH3),2.00 (3H,s,-CH3);13CNMR [(CD3)2CO,125 MHz]:δ 172.3 (s,CO),87.2 (d,C-2),51.9 (d,C-3),114.9 (s,C-3a),27.7 (t,C-4),30.5 (t,C-5),138.0 (s,C-4a),141.4 (s,C-5a),115.0 (d,C-6),155.2 (s,C-7),114.9 (d,C-8),131.0 (d,C-9),128.7 (s,C-9a),158.0 (s,C-10),119.1 (s,C-10a),97.2 (d,C-11),160.0 (s,C-11a),132.8 (s,C-1′),112.3 (d,C-2′),147.2 (s,C-3′),116.0 (d,C-4′),149.0 (s,C-5′),119.3 (d,C-6′),67.5 (s,C-1′′),54.9 (q,3′ -OCH3),52.0 (q,10-OCH3),19.0 (q,-CH3),其波谱数据与文献报道基本一致[9]。
化合物7 flavanthrin
白色粉末,MF:C30H26O6,MW:482;EI-MS m/z (%):482 (M+,100),241 (42),197 (17),181 (15),157 (13);1HNMR [(CD3)2CO,500 MHz]:δ 8.07 (2H,d,J = 8.0,H-5,5′),6.66 (2H,dd,J = 8.0,2.2,H-6,6′),6.60 (2H,d,J = 2.2,H-8,8′),6.44 (2H,s,H-3,3′),3.87 (6H,s,4,4′-OCH3),2.69 (4H,m,10,10′-2CH2),2.38 (4H,m,9,9′-2CH2);13CNMR [(CD3)2CO,125 MHz]:δ 155.1 (s,C-4,4′),156.5 (s,C-7,7′),157.3 (s,C-2,2′),139.9 (s,C-10a,10a′),140.2 (s,C-8a,8a′),129.2 (d,C-5,5′),116.5 (s,C-4a,4a′),125.2 (s,C-4b,4b′),114.7 (d,C-8,8′),113.5 (d,C-6,6′),116.1 (s,C-1,1′),98.2 (d,C-3,3′),55.99 (q,4,4′-OCH3),30.5 (t,C-9,9′),28.6 (t,C-10,10′),其波谱数据与文献报道基本一致[10]。
化合物8
2,2′-dihydroxy-5,5′,7,7′-tetramethoxy-9,9′,10,10′-tetrahydro-3,3′-biphenanthrene
红色油状物,MF:C32H30O6,MW:510;ESI-MS,511 [M+H]+;1HNMR [CDCl3,500 MHz]:δ 8.20 (2H,s,H-4,4′),6.97 (2H,s,H-1,1′),6.44 (4H,s,H-6,6′,8,8′),3.85 (6H,s,7,7′-OCH3),3.83 (6H,s,5,5′-OCH3),2.80 (8H,s,4CH2);13CNMR [CDCl3,125 MHz]:δ 115.9 (d,C-1,1′),151.9 (s,C-2,2′),121.1 (s,C-3,3′),130.0 (d,C-4,4′),158.1 (s,C-5,5′),98.0 (d,C-6,6′),159.4 (s,C-7,7′),105.4 (d,C-8,8′),30.1 (t,C-9,9′),31.1 (t,C-10,10′),126.5 (s,C-4a,4a′),116.4 (s,C-4b,4b′),141.2 (s,C-8a,8a′),140.5 (s,C-10a,10a′),56.7 (q,5,5′-OCH3),56.0 (q,7,7′-OCH3),其波谱数据与文献报道基本一致[11]。
化合物9
6,6′,7,7′-tetrahydroxy-2,2′,4,4′-tetramethoxy -8,8′-biphenanthrene
红色粉末,MF:C32H26O8,MW:538. ESI-MS:m/z 539[M+H]+;1HNMR [(CD3)2CO,600 MHz]:δ 6.97 (1H,d,J = 2.4,H-1,1′),6.78 (1H,d,J = 2.4,H-3,3′),7.29 (1H,s,H-5,5′),7.57 (1H,d,J = 8.7,H-9,9′),7.49 (1H,d,J = 8.7,H-10,10′),4.17 (3H,s,2,2′-OCH3),3.92 (3H,s,4,4′-OCH3);13CNMR [(CD3)2CO,125 MHz]:δ 101.2 (d,C-1,1′),157.6 (s,C-2,2′),98.9 (d,C-3,3′),159.5 (s,C-4,4′),115.4 (s,C-4a,4a′),125.3 (s,C-4b,4b′),124.1 (d,C-5,5′),143.1 (s,C-6,6′),145.4 (s,C-7,7′),127.3 (s,C-8,8′),127.1 (s,C-8a,8a′),124.9 (d,C-9,9′),125.5 (d,C-10,10′),134.7 (s,C-10a,10a′),55.1 (q,2,2′-OCH3) ,54.7 (q,4,4′-OCH3),其波谱数据与文献报道基本一致[12]。
化合物10
1,3′,5′,7-tetrahydroxy-4,7′-dimethoxy-9,9′,10,10′-tetrahydro-2,2′- biphenanthrene
红色油状物,MF:C30H26O6,MW:482;EIMS m/z (%):482 (M+,33),242 (100),241 (45),227 (31);1HNMR [(CD3)2CO,600 MHz]:δ 8.18 (1H,d,J = 9.0,H-5),6.78 (1H,d,J = 9.0,H-6),6.63 (1H,s,H-8),6.14 (1H,s,H-2),3.60 (3H,s,4-OCH3),2.65 (4H,m,H-9,10);δ 6.77 (1H,s,H-1′),8.17 (1H,s,H-4′),6.36 (1H,s,H-6′),6.12 (1H,s,H-8′),3.62 (3H,s,7′-OCH3),2.60 (4H,m,9,10-H);13CNMR [(CD3)2CO,150 MHz]:δ 152.7 (s,C-1),120.0 (s,C-2),97.6 (d,C-3),155.9 (s,C-4),115.6 (s,C-4a),125.8 (s,C-4b),130.3 (d,C-5),110.9 (d,C-6),153.4 (s,C-7),112.9 (d,C-8),138.7 (s,C-8a),26.2 (t,C-9),25.6 (t,C-10),139.7 (s,C-10a),53.4 (q,4-OCH3);113.0 (d,C-1′),114.9 (s,C-2′),151.2 (d,C-3′),127.9 (s,C-4′),123.8 (s,C-4a′),112.9 (s,C-4b′),153.3 (s,C-5′),96.8 (d,C-6′),157.6 (s,C-7′),105.8 (d,C-8′),139.3 (s,C-8a′),29.14 (t,C-9′),28.3 (t,C-10′),138.2 (s,C-10a′),53.3 (q,7′-OCH3),其波谱数据与文献报道基本一致[13]。
2.2 化合物3,7~10抗肿瘤活性筛选结果
对化合物3,7~10进行人体肺癌细胞株 (A549)、人体乳腺癌药物敏感细胞株 (MCF-7/S)、人体卵巢癌细胞株 (SKOV-3) 抑制活性测试。研究结果表明10对肿瘤细胞株A549、MCF-7/S和SKOV-3具有很好的抑制活性,其IC50分别为2.45,6.83,4.23 μM,以上作用强于阳性对照品DDP,见表1。
表 1 化合物3,7~10对3种细胞株的细胞毒活性IC50 (μM)Table 1. Cytotoxic activities of compounds 3,7~10 on three cell lines IC50 (μM)化合物 A549 MCF-7/S SKOV-3 3 163.6 33.42 98.49 7 106.8 112.2 76.08 8 91.2 41.5 22.4 9 38.91 102.2 56.92 10 2.45 6.83 4.23 DDP 22.02 10.02 14.15 3. 讨论
Shao等[14]从独蒜兰 (Pleione bulbocodioides) 得到8种新的菲醌(四对对映异构体),命名为bulcocoodioidins A-D,其结构通过NMR 分析结合实验和计算 ECD数据分析确定。这些化合物具有独特的9(10)H-phenanthren-10(9) -one结构,这是很少报道的天然来源化合物,评估了分离的四个菲醌表现出显著的细胞毒活性。Shao等[15]还从独蒜兰 (Pleione bulbocodioides) 得到另外2种新的菲醌,研究发现化合物bulcocodioidins J对 (MCF-7) 表现出细胞毒活性,体外IC50值为2.1 μM。从药用植物秋花独蒜兰分离鉴定化合物结构类型为:化合物1-4为菲类化合物,化合物5,6为菲并呋喃环类化合物,化合物7-10为二聚菲类化合物;名称分别为1,7-dihydroxy-2,5-dimethoxyphenanthrene (1),2,7-dihydroxy-1,5-dimethoxyphenan--threne (2),confusarin (3),4,7-dihydroxy-2-dimethoxy-9,10-dihydrophenanthrene (4),pleionesin B (5),pleionesin C (6),flavanthrin (7),2,2′-dihydroxy-5,5′,7,7′-tetramethoxy-9,9′,10,10′-tetrahydro-3,3′-biphenanthrene (8),6,6′,7,7′-tetrahy--droxy-2,2′,4,4′-tetramethoxy -8,8′-biphenanthrene (9),1,3′,5′,7-tetrahydroxy-4,7′-dimethoxy-9,9′,10,10′-tetrahydro-2,2′- biphenanthrene (10); 抗肿瘤活性测试结果表明化合物10对3种肿瘤细胞株显示了很好的抑制活性,该研究为秋花独蒜兰的开发和利用提供了基础研究。近年来,国内学者[16-17]对云南特色药用植物云南独蒜兰进行化学成分研究,项目组对疣鞘独蒜兰[18]和秋花独蒜兰[18]进行研究,同时,有关该属植物的培育也有文献报道[19-23],为独蒜兰属植物的研究提供了物质基础和技术支持。
-
表 1 化合物7~12对3种细胞株的细胞毒活性IC50 (μmol/L)
Table 1. Cytotoxic activities of compounds 7~12 on three cell lines IC50 (μmol/L)
化合物 A549 MCF-7/S SKOV-3 7 41.33 43.30 41.57 8 87.08 92.87 40.59 9 51.69 2.16 56.05 10 23.33 5.09 23.08 11 44.34 40.47 20.11 12 15.73 12.30 22.95 DDP 22.02 10.02 14.15 -
[1] 中国科学院中国植物志编辑委员会. 中国植物志(第18卷)[M]. 北京: 科学出版社, 1999: 164-167. [2] 董海玲,郭顺星,王春兰,等. 山慈菇的化学成分和药理作用研究进展[J]. 中草药,2007,38(11):1734-1738. doi: 10.3321/j.issn:0253-2670.2007.11.048 [3] Saleem R,Faizi S,Deeba F,et al. A New Bisbenzopyran from Aloe barbadensis Roots[J]. Planta Medica,1997,63(5):454-456. doi: 10.1055/s-2006-957732 [4] Rivera A,Benavides OL,Rios-Motta J. (22E)-Ergosta-6,22-diene-3β,5α,8α-triol: A new polyhydroxysterol isolated from Lentinus edodes (Shiitake)[J]. Natural Product Research,2009,23(3):293-300. doi: 10.1080/14786410802038671 [5] 刘涛,李占林,王宇,等. 海洋来源真菌Hypocrea virens的次级代谢产物研究[J]. 沈阳药科大学学报,2012,29(2):93-97. [6] 张海龙,田黎,付红伟,等. 海洋真菌Alternalia sp. 发酵液中化学成分的研究[J]. 中国中药杂志,2005,30(5):351. doi: 10.3321/j.issn:1001-5302.2005.05.008 [7] Wang Z,Xu F,An S. Chemical constituents from the root bark of Dictamnus dasycarpus Turcz[J]. China journal of Chinese materia medica,1992,17(9):551-552,576. [8] Li S R,Yang H,Tan C,et al. Chemical constituents of ethyl acetate fraction from the stems of Saprosma merrillii Lo[J]. Chinese Pharmaceutical Journal,2015,50(12):1017-1020. [9] Hassan A E,Sayed M E,Hamed A I,et al. Bioactive constituents of Leptadenia arborea[J]. Fitoterapia,2003,74(1-2):184-187. doi: 10.1016/S0367-326X(02)00314-3 [10] Ahmad I,Janbaz C K H. Cinerasenone,a new flavonoid from Vernonia cinerascens[J]. Journal Chemical Society of Pakistan,2010,32(1):101-103. [11] Leong Y W,Harrison L J,Powell A D. Phenanthrene and other aromatic constituents of Bulbophyllum vaginatum[J]. Phytochemistry,1999,50(7):1237-1241. doi: 10.1016/S0031-9422(98)00687-6 [12] Leong Y W,Kang C C,Harrison L J,et al. Phenanthrenes,dihydrophenanthrenes and bibenzyls from the orchid Bulbophyllum vaginatum[J]. Phytochemistry,1997,44(1):157-165. doi: 10.1016/S0031-9422(96)00387-1 [13] Xue Z,Li S,Wang S J,et al. Mono-,Bi-,and Triphenanthrenes from the Tubers of Cremastra appendiculata[J]. Journal of Natural Products,2006,69(6):907-913. doi: 10.1021/np060087n [14] Yamaki M,Bai L,Inoue K,et al. Biphenanthrenes from Bletilla striata[J]. Phytochemistry,1989,28(12):3503-3505. doi: 10.1016/0031-9422(89)80373-5 [15] Wang C,Shao S Y,Han S W,et al. Atropisomeric bi (9,10-dihydro) phenanthrene and phenanthrene/bibenzyl dimers with cytotoxic activity from the pseudobulbs of Pleione bulbocodioides[J]. Fitoterapia,2019,138:1-7. [16] Trinh P T N,Hao N C,Thao P T,et al. Chemical components of the rhizomes of Drynaria fortunei (KUNZE) J. Sm. (polypodiaceae) in Vietnam[J]. Collection of Czechoslovak Chemical Communications,2011,76(9):1133-1139. doi: 10.1135/cccc2010098 [17] Xu Q X,Ying,Li G Y,Xu W,et al. Multi-Target Anti-Alzheimer Activities of Four Prenylated Compounds from Psoralea Fructus[J]. Molecules,2018,23(614):1-12. [18] Wang Y,Guan S H,Meng Y H,et al. Phenanthrenes,9,10-dihydrophenanthrenes,bibenzyls with their derivatives,and malate or tartrate benzyl ester glucosides from tubers of Cremastra appendiculata[J]. Phytochemistry,2013,94:268-276. doi: 10.1016/j.phytochem.2013.06.001 [19] Liu L,Li J,Zeng K W,et al. Five New Biphenanthrenes from Cremastra appendiculata[J]. Molecules,2016,21(8):1-10. [20] 陈诗,赵玥,王振,等. 山慈菇药理作用及临床应用研究进展[J]. 中华中医药学刊,2022,29(12):1-14. [21] 司函瑞,司雨,焦玉凤,等. 山慈菇化学成分及其药理作用研究进展[J]. 辽宁中医药大学学报,2020,22(5):151-155. [22] 王宏伟,田欣圆,于蕾. 山慈菇的化学成分及其抗肿瘤作用机制研究进展[J]. 内蒙古医科大学学报,2022,44(3):305-309. -