Correlation between KRAS Gene Polymorphism and Non-small Cell Lung Cancer in Yunnan Han Population
-
摘要:
目的 探讨KRAS基因多态性与云南汉族人群非小细胞肺癌发生发展及病理类型的相关性。 方法 选取455例非小细胞肺癌患者,391例健康对照作为研究对象。采用Taqman探针基因分型法对KRAS基因3’UTR区域3个单核苷酸多态性(single nucleotide polymorphism,SNP)位点rs12587(G > T) 、rs12245(A > C)、 rs1137282(A > G)进行基因分型。根据分型结果,分析等位基因、基因型及单倍型与非小细胞肺癌发生、病理类型(鳞癌、腺癌)和临床分期(I+II期、III+IV期)的相关性。 结果 rs12587(G > T)位点等位基因G在非小细胞肺癌组的分布频率显著高于对照组(P = 0.008,OR = 1.365,95%CI 1.086~1.716);在显性模式下携带T等位基因的个体(G/T+T/T)患非小细胞肺癌的风险显著降低(P = 0.011,OR = 0.70 ,95%CI 0.53~0.92)。病例分层分析发现,鳞癌组与对照组的rs12587(G > T)位点等位基因和基因型频率,差异有统计学意义(P < 0.001、P = 0.001);在显性模式下携带T等位基因的个体(G/T+T/T)患肺鳞癌的风险显著降低(P < 0.001,OR = 0.45 ,95%CI 0.30~0.68)。非小细胞肺癌病例组与对照组rs12245(A > C)位点等位基因分布频率及基因型,差异无统计学意义(P > 0.05);在显性模式下携带A等位基因的个体(A/T+A/A)患非小细胞肺癌的风险显著降低(P = 0.028,OR = 0.73 ,95%CI 0.55~0.97)。病例分层分析发现鳞癌组与对照组的rs12245(A > C)位点等位基因和基因型频率,差异有统计学意义(P = 0.003、P = 0.001);在超显性模式下,基因型为A/T的个体患肺鳞癌的风险显著降低(P<0.001,OR = 0.43 ,95%CI 0.28~0.67)。 结论 KRAS基因3’UTR区域SNP位点rs12587(G > T)等位基因G可能是云南汉族人群非小细胞肺癌及鳞癌发生的风险因素。SNP位点rs12245(A > C)等位基因A可能是云南汉族人群非小细胞肺癌发生的保护性因素。 Abstract:Objective To investigate the correlation between KRAS gene polymorphism and the occurrence and development of non-small cell lung cancer in Yunnan Han population. Methods In this study, 455 patients with non-small cell lung cancer and 391 healthy controls were selected as the research objects. Three single nucleotide polymorphism (SNP) sites rs12587 (G > T), rs12245 (A > C), rs1137282 (A > G) in the 3′UTR region of KRAS gene were identified by Taqman probe genotyping. According to the typing results, the correlations of alleles, genotypes and haplotypes with the occurrence, pathological types (squamous cell carcinoma, adenocarcinoma) and clinical stages (I+II, III+IV) of non-small cell lung cancer were analyzed. Results The distribution frequency of rs12587 (G > T) allele G in the non-small cell lung cancer group was significantly higher than that in the control group (P = 0.008, OR = 1.365, 95%CI 1.086~1.716). It was carried in the dominant mode Individuals with the T allele (G/T+T/T) had a significantly lower risk of developing non-small cell lung cancer (P = 0.011, OR = 0.70, 95%CI 0.53~0.92). Case stratification analysis found that the allele and genotype frequencies of the rs12587 (G > T) locus were significantly different between the squamous cell carcinoma group and the control group (P < 0.001, P = 0.001); Individuals with the T allele (G/T+T/T) had a significantly lower risk of lung squamous cell carcinoma (P < 0.001, OR = 0.45, 95%CI 0.30~0.68). There was no significant difference in the distribution frequency of the rs12245 (A > C) locus allele and genotype between the non-small cell lung cancer case group and the control group (P > 0.05); Individuals (A/T+A/A) had a significantly lower risk of developing non-small cell lung cancer (P = 0.028, OR = 0.73, 95%CI 0.55~0.97). Case stratification analysis found that the allele and genotype frequencies of the rs12245 (A > C) locus were significantly different between the squamous cell carcinoma group and the control group (P = 0.003, P = 0.001); Individuals with genotype A/T had a significantly lower risk of lung squamous cell carcinoma (P < 0.001, OR = 0.43, 95%CI 0.28~0.67). Conclusions The G allele of the SNP site rs12587 (G > T) in the 3′UTR region of KRAS gene may be a risk factor for the occurrence of non-small cell lung cancer and squamous cell carcinoma in Yunnan Han population. SNP rs12245 (A > C) allele A may be a protective factor for the occurrence of non-small cell lung cancer in Yunnan Han population. -
Key words:
- Non-small cell lung cancer /
- KRAS /
- SNPs /
- Correlation /
- Yunnan Han population
-
表 1 病例的临床特征(n)
Table 1. The clinical characteristics of the subjects enrolled in this study (n)
人数/病理分型/
临床分期非小细胞肺癌 对照 t/χ2 P 人数 455 391 − − 年龄(岁) 55.84 ± 10.53 54.58 ± 9.92 −1.781 0.075 性别(男/女) 314/141 245/146 3.784 0.052 病理分型 鳞癌(SCC) 164 − − − 腺癌(AC) 265 − − − 鳞癌合并腺癌 8 − − − 其他类型 18 − − − 临床分期 I 期+ II期 148 − − − III期 + IV期 307 − − − 表 2 KRAS基因SNP位点等位基因和基因型在NSCLC和对照组的分布频率[n(%)]
Table 2. The allelic and genotypic frequencies of SNPs in KRAS gene between NSCLC case and control groups [n(%)]
SNPs 等位基因/ 基因型 对照组 非小细胞癌组 OR(95%CI) P rs12587 G 583(74.6) 728(80.0) 1.37(1.09~1.72) 0.008* T 199(25.4) 182(20.0) G/G 223(57.0) 298(65.6) 0.035* G/T 137(35.0) 132(29.0) T/T 31(7.9) 25(5.5) rs12245 T 595(76.1) 727(79.9) 0.80 (0.64~1.01) 0.059 A 187(23.9) 183(20.1) T/T 227(58.1) 297(65.3) 0.088 T/A 141(36.1) 133(29.2) A/A 23(5.9) 25(5.5) rs1137282 A 712(91.0) 838(92.1) 1.14 (0.81~1.61) 0.442 G 70(9.0) 72(7.9) A/A 323(82.6) 387(85.1) 0.442 A/G 66(16.9) 64(14.1) G/G 2(0.5) 4(0.9) *P < 0.05。 表 3 KRAS基因3个SNP位点与NSCLC相关性的遗传模式分析[n(%)]
Table 3. The inheritance analysis of three SNPs between NSCLC and control groups [n(%)]
SNPs 遗传模式 基因型 对照组 NSCLC OR (95%CI) P AIC BIC rs12587 共显性模式 G/G 223 (57.0) 298 (65.5) 1 0.034* 1165.1 1188.8 G/T 137 (35.0) 132 (29.0) 0.71 (0.53~0.96) T/T 31 (7.9.0) 25 (5.5) 0.61 (0.35~1.07) 显性模式 G/G 223 (57.0) 298 (65.5) 1 0.011* 1163.4 1182.3 G/T-T/T 168 (43.0) 157 (34.5) 0.70 (0.53~0.92) 隐性模式 G/G-G/T 360 (92.1) 430 (94.5) 1 0.180 1168 1187 T/T 31 (7.9) 25 (5.5%) 0.69 (0.40~1.19) 超显性模式 G/G-T/T 254 (65.0) 323 (71.0) 1 0.052 1166.1 1185 G/T 137 (35.0) 132 (29.0) 0.75 (0.56~1.00) 逻辑累加模式 --- --- --- 0.75 (0.60~0.94) 0.011* 1163.3 1182.3 rs12245 共显性模式 T/T 227 (58.1) 297 (65.3) 1 0.080 1166.8 1190.5 A/T 141 (36.1) 133 (29.2) 0.72 (0.53~0.96) A/A 23 (5.9) 25 (5.5) 0.82 (0.45~1.49) 显性模式 T/T 227 (58.1) 297 (65.3) 1 0.028* 1165 1184 A/T-A/A 164 (41.9) 158 (34.7) 0.73 (0.55~0.97) 隐性模式 T/T-A/T 368 (94.1) 430 (94.5) 1 0.790 1169.8 1188.7 A/A 23 (5.9) 25 (5.5) 0.92 (0.51~1.66) 超显性模式 T/T-A/A 250 (63.9) 322 (70.8) 1 0.031* 1165.2 1184.2 A/T 141 (36.1) 133 (29.2) 0.73 (0.54~0.97) 逻辑累加模式 --- --- --- 0.80 (0.64~1.01) 0.059 1166.3 1185.3 rs1137282 共显性模式 A/A 323 (82.6) 387 (85) 1 0.460 1170.3 1194 A/G 66 (16.9) 64 (14.1) 0.81 (0.55~1.17) G/G 2 (0.5) 4 (0.9) 1.53 (0.28~8.45) 显性模式 A/A 323 (82.6) 387 (85.0) 1 0.320 1168.9 1187.8 A/G-G/G 68 (17.4) 68 (14.9) 0.83 (0.57~1.20) 隐性模式 A/A-A/G 389 (99.5) 451 (99.1) 1 0.590 1169.6 1188.5 G/G 2 (0.5) 4 (0.9) 1.58 (0.29~8.73) 超显性模式 A/A-G/G 325 (83.1) 391 (85.9) 1 0.250 1168.6 1187.5 A/G 66 (16.9) 64 (14.1) 0.80 (0.55~1.17) 逻辑累加模式 --- --- --- 0.87 (0.61~1.22) 0.410 1169.2 1188.1 *P < 0.05。 表 4 NSCLC组和对照组的单倍型分布差异[n(%)]
Table 4. The haplotype analysis between CC and control group [n(%)]
单倍型 对照组 NSCLC OR(95%CI) P G-T-A 578.48(74.0) 720.12(79.1) 1.272(1.009~1.604) 0.041* T-A-A 119.49(15.3) 116.88(12.8) 0.803(0.610~1.058) 0.119 T-A-G 66.49(8.5) 65.12(7.2) 0.817(0.572~1.166) 0.265 *P < 0.05。 表 5 KRAS基因中SNP位点的等位基因和基因型在鳞癌病例组、腺癌病例组和对照组的分布频率[n(%)]
Table 5. The allelic and genotypic frequencies of SNPs in KRAS gene between SCC,AC and control groups [n(%)]
SNPs 等位基因/
基因型对照组 鳞癌组 腺癌组 鳞癌组vs对照组 腺癌组vs对照组 OR(95%CI) P OR(95%CI) P rs12587 G 583(74.6) 276(84.1) 410(77.4) 0.55(0.39-0.77) <0.001* 1.17 (0.90~1.51) 0.245 T 199(25.4) 52(15.9) 120(22.6) G/G 223(57.0) 121(73.8) 160(60.4) 0.001* 0.865 G/T 137(35.0) 34(20.7) 90(34.0) T/T 31(7.9) 9(5.5) 15(5.7) rs12245 T 595(76.1) 276(84.1) 409(77.2) 0.60 (0.43~0.84) 0.003* 1.06 (0.82~1.38) 0.650 A 187(23.9) 52(15.9) 121(22.8) T/T 227(58.1) 121(73.8) 159(60.0) 0.001* 0.884 T/A 141(36.1) 34(20.7) 91(34.3) A/A 23(5.9) 9(5.5) 15(5.7) rs1137282 A 712(91.0) 304(92.7) 484(91.3) 0.80 [0.50-130] 0.372 1.03(0.70~1.53) 0.865 G 70(9.0) 24(7.3) 46(8.7) A/A 323(82.6) 142(86.6) 221(83.4) 0.265 0.875 A/G 66(16.9) 20 (12.2) 42 (15.8) G/G 2(0.5) 2 (1.2) 2 (0.8) *P < 0.05。 表 6 SNP位点在NSCLC不同病理类型与对照组的遗传模式分析[n(%)]
Table 6. The inheritance analysis of the SNP sites between SCC,AC group and control group [n(%)]
SNPs 遗传模式 基因型 对照组[n(%)] 鳞癌组[n(%)] 腺癌组[n(%)] 鳞癌组vs对照组 腺癌组vs对照组 OR (95%CI) P AIC BIC OR (95%CI) P AIC BIC rs12587 共显性
模式G/G 223 (57.0) 121 (73.8) 160 (60.4) 1 < 0.001* 631.9 653.5 1 0.4 891.6 914 G/T 137 (35.0) 34 (20.7) 90 (34.0) 0.42 (0.27~0.66) 0.91 (0.65~1.28) T/T 31 (7.9) 9 (5.5) 15 (5.7) 0.59 (0.26~1.31) 0.65 (0.34~1.25) 显性模式 G/G 223 (57.0) 121 (73.8) 160 (60.4) 1 < 0.001* 630.5 647.8 1 0.36 890.6 908.5 G/T-T/T 168 (43.0) 43 (26.2) 105 (39.6) 0.45 (0.30~0.68) 0.86 (0.63~1.19) 隐性模式 G/G-G/T 360 (92.1) 155 (94.5) 250 (94.3) 1 0.49 645.5 662.7 1 0.22 889.9 907.8 T/T 31 (7.9) 9 (5.5) 15 (5.7) 0.76 (0.35~1.68) 0.67 (0.35~1.28) 超显性
模式G/G-T/T 254 (65.0) 130 (79.3) 175 (66.0) 1 < 0.001* 631.7 649 1 0.78 891.3 909.3 G/T 137 (35.0) 34 (20.7) 90 (34.0) 0.44 (0.28~0.68) 0.95 (0.69~1.33) 逻辑累加
模式--- --- --- --- 0.57 (0.41~0.80) < 0.001* 634.3 651.6 0.85 (0.66~1.10) 0.22 889.9 907.9 rs12245 共显性
模式T/T 227 (58.1) 121 (73.8) 159 (60.0) 1 < 0.001* 632.3 653.9 1 0.86 893.1 915.6 A/T 141 (36.1) 34 (20.7) 91 (34.3) 0.42 (0.27~0.66) 0.92 (0.66~1.28) A/A 23 (5.9) 9 (5.5) 15 (5.7) 0.71 (0.31~1.62) 0.91 (0.46~1.80) 显性模式 T/T 227 (58.1) 121 (73.8) 159 (60.0) 1 < 0.001* 631.6 648.9 1 0.59 891.1 909.1 A/T-A/A 164 (41.9) 43 (26.2) 106 (40.0) 0.46 (0.30~0.69) 0.92 (0.67~1.26) 隐性模式 T/T-A/T 368 (94.1) 155 (94.5) 250 (94.3) 1 0.84 645.9 663.2 1 0.85 891.4 909.3 A/A 23 (5.9) 9 (5.5) 15 (5.7) 0.92 (0.41~2.08) 0.94 (0.48~1.84) 超显性
模式T/T-A/A 250 (63.9) 130 (79.3) 174 (65.7) 1 < 0.001* 631 648.3 1 0.64 891.2 909.2 A/T 141 (36.1) 34 (20.7) 91 (34.3) 0.43 (0.28~0.67) 0.93 (0.67~1.28) 逻辑累加
模式--- --- --- --- 0.59 (0.42~0.83) 0.0016 636 653.2 0.93 (0.72~1.21) 0.61 891.2 909.1 rs1137282 共显性
模式A/A 323 (82.6) 142 (86.6) 221 (83.4) 1 0.24 645 666.6 1 0.86 893.1 915.5 A/G 66 (16.9) 20 (12.2) 42 (15.8) 0.65 (0.37~1.13) 0.93 (0.61~1.42) G/G 2 (0.5) 2 (1.2) 2 (0.8) 1.78 (0.25~12.88) 1.54 (0.21~11.11) 显性模式 A/A 323 (82.6) 142 (86.6) 221 (83.4) 1 0.16 644 661.2 1 0.8 891.4 909.3 A/G-G/G 68 (17.4) 22 (13.4) 44 (16.6) 0.69 (0.40~1.17) 0.95 (0.62~1.44) 隐性模式 A/A-A/G 389 (99.5) 162 (98.8) 263 (99.2) 1 0.53 645.5 662.8 1 0.66 891.2 909.2 G/G 2 (0.5) 2 (1.2) 2 (0.8) 1.91 (0.26~13.78) 1.56 (0.22~11.23) 超显性模式 A/A-G/G 325 (83.1) 144 (87.8) 223 (84.2) 1 0.11 643.4 660.6 1 0.72 891.3 909.2 A/G 66 (16.9) 20 (12.2) 42 (15.8) 0.64 (0.37~1.12) 0.93 (0.61~1.42) 逻辑累加
模式--- --- --- --- 0.75 (0.46~1.23) 0.25 644.6 661.9 0.97 (0.65~1.44) 0.88 891.4 909.3 *P < 0.05。 -
[1] Sung H,Ferlay J,Siegel R L,et al. Global Cancer Statistics 2020:Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin,2021,71(3):209-249. doi: 10.3322/caac.21660 [2] Oudkerk M,Liu S,Heuvelmans M A,et al. Lung cancer LDCT screening and mortality reduction evidence,pitfalls and future perspectives[J]. Nat Rev Clin Oncol,2021,18(3):135-151. doi: 10.1038/s41571-020-00432-6 [3] Nam A S,Chaligne R,Landau D A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics[J]. Nat Rev Genet,2021,22(1):3-18. [4] Tsuchida N,Ryder T,Ohtsubo E. Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus[J]. Science,1982,217(4563):937-939. doi: 10.1126/science.6287573 [5] Merz V,Gaule M,Zecchetto C,et al. Targeting KRAS: The Elephant in the Room of Epithelia Cancers[J]. Front Oncol,2021,11:638360. doi: 10.3389/fonc.2021.638360 [6] Tomasini P,Walia P,Labbe C,et al. Targeting the KRAS Pathway in Non-Small Cell Lung Cancer[J]. Oncologist,2016,21(12):1450-1460. doi: 10.1634/theoncologist.2015-0084 [7] Abd El-Fattah A A,Sadik N A H,Shaker O G,et al. Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk[J]. Mediators Inflamm,2018,2018:9853192. [8] Melaiu O,Macauda A,Sainz J,et al. Common gene variants within 3'-untranslated regions as modulators of multiple myeloma risk and survival[J]. Int J Cancer,2021,148(8):1887-1894. doi: 10.1002/ijc.33377 [9] Schneiderova M,Naccarati A,Pardini B,et al. MicroRNA-binding site polymorphisms in genes involved in colorectal cancer etiopathogenesis and their impact on disease prognosis[J]. Mutagenesis,2017,32(5):533-542. doi: 10.1093/mutage/gex026 [10] 李传印,李盈甫,史荔,等. 云南汉族人群 CD80 基因多态性位点与肺癌的相关性[J]. 贵州医科大学学报,2016,41(9):1015-1020. [11] Yang J,Wang Y Y,Zhang S,et al. The Association of TNF-α Promoter Polymorphisms with Genetic Susceptibility to Cervical Cancer in a Chinese Han Population[J]. Int J Gen Med,2022,15:417-427. doi: 10.2147/IJGM.S350263 [12] Pylayeva-Gupta Y,Grabocka E,Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web[J]. Nat Rev Cancer,2011,11(11):761-774. doi: 10.1038/nrc3106 [13] Eser S,Schnieke A,Schneider G,et al. Oncogenic KRAS signalling in pancreatic cancer[J]. Br J Cancer,2014,111:817-822. doi: 10.1038/bjc.2014.215 [14] Chen K,Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data[J]. Nat Genet,2006,38(12):1452-1456. doi: 10.1038/ng1910 [15] Saunders M A, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites[J]. Proc Natl Acad Sci U S A, 2007, 104(9): 3300-3305. [16] Nelson H H,Christensen B C,Plaza S L,et al. KRAS mutation,KRAS-LCS6 polymorphism,and non-small cell lung cancer[J]. Lung Cancer,2010,69(1):51-53. doi: 10.1016/j.lungcan.2009.09.008 [17] Yu Z,Li Z,Jolicoeur N,et al. Aberrant allele frequencies of the SNPs located in microRNA target sites are potentially associated with human cancers[J]. Nucleic Acids Res,2007,35(13):4535-4541. doi: 10.1093/nar/gkm480 [18] Dai Q,Wei HL,Huang J,et al. KRAS polymorphisms are associated with survival of CRC in Chinese population[J]. Tumour Biol,2016,37(4):4727-4734. doi: 10.1007/s13277-015-4314-1 [19] Lin A,Hua R X,Tang J,et al. KRAS rs7973450 A>G increases neuroblastoma risk in Chinese children: a four-center case-control study[J]. Onco Targets Ther,2019,12:7289-7295. doi: 10.2147/OTT.S223220 [20] Fu W,Zhuo Z,Hua R X,et al. Association of KRAS and NRAS gene polymorphisms with Wilms tumor risk: a four-center case-control study[J]. Aging (Albany NY),2019,11(5):1551-1563. doi: 10.18632/aging.101855 [21] Cipollini M,Landi S,Gemignani F. MicroRNA binding site polymorphisms as biomarkers in cancer management and research[J]. Pharmgenomics Pers Med,2014,7:173-191. [22] Liu Q H,Li X D,Song M Y,et al. Association between C-myc and K-ras gene polymorphisms and non-Hodgkin lymphoma[J]. Eur Rev Med Pharmacol Sci,2020,24(8):4396-4403. [23] Sullivan I,Salazar J,Arqueros C,et al. KRAS genetic variant as a prognostic factor for recurrence In resectable non-small cell lung cancer[J]. Clin Transl Oncol,2017,19(7):884-890. [24] Riera P,Virgili A C,Salazar J,et al. Genetic variants in the VEGF pathway as prognostic factors in stages II and III colon cancer[J]. Pharmacogenomics J,2018,18(4):556-564. [25] Shen C T,Zhang G Q,Qiu Z L,et al. Targeted next-generation sequencing in papillary thyroid carcinoma patients looking for germline variants predisposing to the disease[J]. Endocrine,2019,64(3):622-631. doi: 10.1007/s12020-019-01878-0