留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HPLC-MS/MS法研究普萘洛尔对映体在不同种属肝微粒体中的代谢差异

杨璨瑜 孙孔春 王娟 普惠萍 沈报春

朱成振, 张醒, 郭皓. 补体因子H与心血管疾病的研究进展[J]. 昆明医科大学学报, 2021, 42(8): 158-163. doi: 10.12259/j.issn.2095-610X.S20210828
引用本文: 杨璨瑜, 孙孔春, 王娟, 普惠萍, 沈报春. HPLC-MS/MS法研究普萘洛尔对映体在不同种属肝微粒体中的代谢差异[J]. 昆明医科大学学报, 2023, 44(3): 15-21. doi: 10.12259/j.issn.2095-610X.S20230321
Cheng-zhen ZHU, Xing ZHANG, Hao GUO. Advances on Complement Factor H and Cardiovascular Disease[J]. Journal of Kunming Medical University, 2021, 42(8): 158-163. doi: 10.12259/j.issn.2095-610X.S20210828
Citation: Canyu YANG, Kongchun SUN, Juan WANG, Huiping PU, Baochun SHEN. Metabolic Differences of Propranolol Enantiomers in Different Species of Liver Microsomes by HPLC-MS/MS[J]. Journal of Kunming Medical University, 2023, 44(3): 15-21. doi: 10.12259/j.issn.2095-610X.S20230321

HPLC-MS/MS法研究普萘洛尔对映体在不同种属肝微粒体中的代谢差异

doi: 10.12259/j.issn.2095-610X.S20230321
基金项目: 云南省科技厅科技计划项目(202101AS070048);云南省教育厅科学研究基金资助项目(2019J1190);昆明医科大学科技创新团队(CXTD202003)
详细信息
    作者简介:

    杨璨瑜 (1990~),云南施甸人,理学硕士,实验师,主要从事手性药物对映体分离分析工作

    通讯作者:

    沈报春,E-mail:shen_baochun@126.com

  • 中图分类号: R917

Metabolic Differences of Propranolol Enantiomers in Different Species of Liver Microsomes by HPLC-MS/MS

  • 摘要:   目的  采用高效液相色谱-串联质谱法(HPLC-MS/MS)建立R-(+)-普萘洛尔和S-(-)-普萘洛尔在肝微粒体孵育体系中的含量测定方法,并分别比较普萘洛尔不同对映体在大鼠、犬、猴以及人4种肝微粒体中的代谢特征。  方法  分别将R-(+)-普萘洛尔和S-(-)-普萘洛尔溶解在由烟酰胺腺嘌呤二核苷酸磷酸(NADPH)启动孵育的不同种属的肝微粒体中,在孵育不同的时间后加入乙腈终止反应。使用电喷雾离子源(ESI),以卡维地洛为内标,在多反应监测模式(MRM)下进行正离子扫描,分别测定各孵育体系中R-(+)-普萘洛尔和S-(-)-普萘洛尔的浓度。以孵育0 min时不同构型的普萘洛尔的质量浓度为参照,分别计算R-(+)-普萘洛尔和S-(-)-普萘洛尔在不同肝微粒体样品中的药物剩余百分比和体外代谢半衰期和固有清除率。  结果  普萘洛尔的线性范围为0.05~10.00 μg/mL,定量下限为0.05 μg/mL;日内、日间精密度的RSD%均小于13%。在4个种属的肝微粒体孵育体系中,R-(+)-普萘洛尔在大鼠肝微粒体中代谢快,在猴肝微粒体中次之,在犬和人肝微粒体中代谢慢,体外消除半衰期依次为大鼠 < 猴 < 犬 < 人;而S-(-)-普萘洛尔则是在大鼠和犬肝微粒体中代谢快,在猴和人肝微粒体中代谢慢,体外消除半衰期依次为大鼠 < 犬 < 猴 < 人。在大鼠、犬和猴肝微粒体中,R构型普萘洛尔的t1/2均大于S构型,CLint小于S构型,但在人肝微粒体中却刚好相反。采用单因素方差分析,R-(+)-普萘洛尔和S-(-)-普萘洛尔在4种肝微粒体中的体外代谢半衰期t1/2和固有清除率CLint均具有显著性差异(P < 0.05)。  结论  建立的HPLC-MS/MS法具有简单、快速、准确的特点,可用于肝微粒体中普萘洛尔对映体质量浓度的测定。不同构型的普萘洛尔在大鼠、犬、猴和人4种肝微粒体中的代谢稳定性有显著差异。
  • 听力损失影响着全球约15亿人,而在中国所有年龄段中就有约2亿多人,这些病例中有大约一半被认为是遗传性的[1-2]。在遗传性耳聋的基因变异中,SLC26A4是除GJB2外最常见的耳聋致病基因,是导致大前庭导水管综合征(large vestibular aquduct syndrome,LVAS)的致病基因,在聋人中占19.4%,正常人群中的携带率为2%,典型表现为儿童时期的听力损失,90%的患者为双侧性,听力损失程度不一,病程一般为进行性或波动性听力下降,在跌倒、撞击等行为时易致明显的不可逆的听力下降[3]。在此种情况下,找到能对SLC26A4基因进行调控的方法就显得尤为重要。目前对于听力损失的治疗方案仍然局限于声音放大和人工耳蜗植入,但是听力恢复远非完美,特别是对嘈杂环境中的声音的感知[4-5]。这就迫切需要找到针对人类听力损失的生物治疗方法,去寻找并开发针对于各种类型听力损失的基因、细胞和药物疗法,从而为广大听力损失患者提供新的治疗手段和决策。miRNAs已被证实广泛存在于不同的细胞和组织中,在细胞周期、细胞凋亡、肿瘤发生和神经发生等生物学过程中发挥重要作用,有许多研究表明miRNA的异常导致了耳聋的发生,而关于miR-26a-5p与耳聋的机制研究非常少,因此,本文拟对miR-26a-5p 调控SLC26A4表达在听力减退中的作用做一研究,以期能为SLC26A4基因突变导致的耳聋的治疗提供一定参考依据。

    1.1.1   动物及分组

    本实验所使用的SPF级别雄性C57小鼠(标准体重)均购自于昆明医科大学实验动物学部,本研究的实验方法和操作方法均已得到昆明医科大学实验动物福利委员会的批准。所有小鼠都饲养于实验动物学部,饲养环境均符合相关标准。18只C57小鼠被分为3组,为假手术组、听力损伤组和耳聋组。假手术组是注射生理盐水,而不注射致聋药物D-半乳糖。

    1.1.2   实验试剂

    D-半乳糖购自于山东萍聚生物科技有限公司,氯化钠注射液(Nacl)购自于云南南诏药业有限公司,无水乙醇、三氯甲烷、异丙醇均购自于天津市瑞明威化工有限公司,反转录试剂盒(PerfectStartUniRTKIT)和qPCR扩增试剂盒(PerfectStartUnigPCRKIT)均购自于昆明云科生物技术有限公司,异氟烷购自于深圳瑞沃德生命科技有限公司,miR-26a-5p和SLC26A4引物均购自于安徽九德科技有限公司,miR-26a-5p和SLC26A4的干扰和过表达载体均购自于广州锐博生物有限公司。

    1.1.3   实验设备

    高速低温离心机购自于湖南赫西仪器装备有限公司,荧光定量PCR仪和酶标仪购自于美国伯乐公司,TDT听觉诱发电位工作站购自于北京爱生科贸有限公司。

    1.2.1   模型构建

    参照郝帅的D-半乳糖造模方法[6]进行一定改良,观测指标为:小鼠活动是否迟缓,小鼠双侧耳廓反应是否灵敏。对听力损伤模型制造组给予100 mg/kg的量进行腹腔注射给D-半乳糖,耳聋模型制造组给D-半乳糖150 mg/kg的量,假手术组根据小鼠的体重比例,腹腔注射同等量的Nacl注射液。以上注射时间均为每天2次,持续1个月。

    1.2.2   听性脑干反应测试(ABR)

    本实验在隔声屏蔽室内进行测试,通过不同频率的刺激信号在8 kHz、16 kHz、24 kHz和32 kHz时诱导小鼠在麻醉状态下的电生理反应,仪器通过平均技术进行相关信号处理,通过解析听性脑干反应测试频谱中8个谐波的相位和幅度,采用序贯检验的方法来消除持续的EEG噪声和诊断听力的其他干扰。刺激声音强度以5 dB依次递减,如果能分辨出最低刺激强度的即为ABR阈值,重复3次。

    1.2.3   注射治疗

    对听力损伤和耳聋模型小鼠进行尾静脉注射miR-26a-5p和SLC26A4的干扰和过表达载体,每天1次,持续10 d。

    1.2.4   小鼠耳蜗取材

    在实验达到终止阶段,对所有小鼠进行异氟烷吸入过度麻醉处死,然后取出小鼠两侧听泡,放入液氮中保存用于后续qPCR实验。

    1.2.5   qPCR实验

    在Pubmed官网上下载miR-26a-5p及内参U6和SLC26A4及内参β-actin的核酸序列,通过PrimerPremier 6软件对它们的引物序列进行设计,将引物序列发九德科技有限公司进行合成,具体序列见表1。使用电动研磨液对小鼠的耳蜗进行研磨处理,使用Trizol法对耳蜗组织进行总RNA的提取。得到总RNA后,使用酶标仪测定RNA的浓度及纯度,并根据反转录试剂盒PerfectStartUniRTKIT说明书进行逆转录反应,再根据荧光定量试剂盒PerfectStartUnigPCRKIT说明书进行PCR扩增反应,得到PCR扩增的CT值后根据2-△△CT公式来计算miR-26a-5p和SLC26A4的相对表达量。

    表  1  引物序列
    Table  1.  Primer sequence
    基因名称上游引物序列(5′- 3′)下游引物序列(5′- 3′)
    β-actin GTGGGGCGCCCCAGGCACCA CTCCTTAATGTCACGCACGATTT
    SLC26A4 GCATCCTCTCCATTATCTACA TCCTTAACAGCCATACAGAC
    miR-26a-5p 通用引物 AGCCAGCGTTCAAGTAATCCAG
    U6 通用引物 ATGGACTATCATATGCTTACCGTA
    下载: 导出CSV 
    | 显示表格

    所有的实验数据都使用SPSS 21.0软件进行统计分析,通过独立样本t检验统计2组之间(antagomir和agomir注射后小鼠miR-26a-5p和SLC26A4的相对表达量)的数据,通过单因素方差分析统计3组及3组以上(18只小鼠听性脑干测试及小鼠miR-26a-5p和SLC26A4的相对表达量)的数据,而后根据方差齐性检验比较组内差异,P < 0.05即表示差异具有统计学意义。

    使用听性脑干反应测试来检测各组C57小鼠的右耳听力情况,结果显示,无论是8 kHz、16 kHz、24 kHz还是32 kHz,同组之间的小鼠之间的听力阈值无明显差异,但是相对于假手术组来说,听力损伤和耳聋小鼠听力阈值明显提高,耳聋小鼠阈值有显著的翻倍,见图1,结果表明模型构建成功。

    图  1  听力损伤和耳聋小鼠模型的鉴定
    ABR检测听力损伤和耳聋小鼠的听力阈值(n = 6),*P < 0.05,**P < 0.01,***P < 0.001。
    Figure  1.  Identification of mouse model of hearing loss and deafness

    在使用qPCR实验检测小鼠听力损伤和耳聋后耳蜗中miR-26a-5p和SLC26A4的表达情况后发现,与假手术组相比,miR-26a-5p在小鼠听力损伤和耳聋后表达异常,出现明显降低,见图2A;相反的是SLC26A4的表达却明显升高,见图2B

    图  2  miR-26a-5p和SLC26A4在听力损伤和耳聋小鼠耳蜗中的表达
    A:miR-26a-5p在听力损伤和耳聋小鼠耳蜗中的相对表达量(n = 6);B:SLC26A4在听力损伤和耳聋小鼠耳蜗中的相对表达量(n = 6)。*P < 0.05,**P < 0.01。
    Figure  2.  Expression of miR-26a-5p and SLC26A4 in the cochlea of mice with hearing impairment and deafness

    使用TargetScan网站(https://www.targetscan.org/vert_72/)对miR-26a-5p和SLC26A4的靶向结合位点进行生信预测,结果显示miR-26a-5p和SLC26A4可以靶向结合,结合位点共有7对碱基,见图3A。通过荧光素酶报告基因实验来检测miR-26a-5p和SLC26A4两者之间是否靶向结合,可以看到野生型SLC26A4组荧光素酶活性与对照组相比明显降低,而突变型SLC26A4无明显差异,见图3B。对C57小鼠分别注射miR-26a-5p的antagomir和agomir,而后对小鼠的耳蜗使用qPCR实验检测miR-26a-5p和SLC26A4的表达量,结果显示,miR-26a-5p的antagomir 可以显著降低miR-26a-5p的表达,而SLC26A4正好相反;此外agomir明显提高了miR-26a-5p的表达,同时也抑制了SLC26A4的表达,见图3C图3D

    图  3  miR-26a-5p可靶向SLC26A4调控其表达
    A:miR-26a-5p和SLC26A4的结合位点预测;B:荧光素酶报告基因实验;C:miR-26a-5p的antagomir和agomir注射小鼠后miR-26a-5p的相对表达量(n = 6);D:miR-26a-5p的antagomir和agomir注射小鼠后SLC26A4的相对表达量(n = 6)。*P < 0.05,**P < 0.01,***P < 0.001。
    Figure  3.  miR-26a-5p targets SLC26A4 and regulates its expression

    通过分别给听力损伤小鼠注射miR-26a-5p的干扰和过表达载体以及SLC26A4的干扰和过表达载体,继而使用ABR监测小鼠的听力阈值情况,结果显示,si-SLC26A4和miR-26a-5p agomir可以显著降低小鼠的听力阈值,见图4A图4B,这表明miR-26a-5p可以通过调控SLC26A4达到改善小鼠听力减退的功能。

    图  4  miR-26a-5p调控SLC26A4达到改善小鼠听力减退
    A: SLC26A4干扰和过表达载体注射听力损失小鼠后的听力阈值(n = 6);B:miR-26a-5p干扰和过表达载体注射听力损失小鼠后的听力阈值(n = 6)。*P < 0.05,**P < 0.01。
    Figure  4.  miR-26a-5p regulates SLC26A4 to improve hearing loss in mice

    遗传性耳聋在出生缺陷中已经是一种非常常见的临床现状,许多与耳聋(听力损伤)相关的基因已经被陆续确定[7],这就表明致病基因的检测在未来先天性耳聋患者中进行医学检查是不可或缺的[8]。第一个miRNA在1993年被发现, miRNA可以结合到mRNA上,导致靶mRNA完全降解,从而使得靶mRNA的翻译受到抑制[9-10]。miRNAs已被证实广泛存在于不同的细胞和组织中,在细胞周期、细胞凋亡、肿瘤发生和神经发生等生物学过程中发挥重要作用[11],同样在遗传性耳聋中也担任重要的角色[12]。有许多研究表明miRNA的异常导致了耳聋的发生,如Mohammad-Reza发现miR-183的异常会导致毛细胞逐渐失去顶端结构,听力阈值增加,而通过提高miR-183家族在听细胞中的水平,可以恢复耳尖结构和听力[13]。而关于miR-26a-5p与耳聋的机制研究非常少,这就值得笔者去探究miR-26a-5p在耳聋中是什么样的作用。本研究发现miR-26a-5p在小鼠听力损伤后尤其是耳聋后表达异常的降低,在小鼠体内增加其表达后发现小鼠听力阈值变得更高,听力损伤加重,这些结果都说明miR-26a-5p是耳聋的潜在保护基因。

    SLC26A4是溶质载体家族的一员,是一种pendrin蛋白编码基因,主要在甲状腺、内耳和肾脏中表达[14]。已有许多研究表明该基因的致病性变异可导致耳聋伴前庭导尿管增大(EVA),包括感音神经性听力损失[15-16]。本次研究发现了SLC26A4在小鼠听力损伤后表达异常高,且miR-26a-5p可以靶向调节SLC26A4的相关表达。在小鼠体内提高miR-26a-5p的表达后,SLC26A4表达明显受到抑制,此外笔者发现小鼠的听力减退得到了改善。同时笔者在小鼠体内抑制掉SLC26A4表达,结果与上面一致,这表明SLC26A4是耳聋的致病基因,会引起一系列的听力损伤。

    综上所述,miR-26a-5p 可以通过调控SLC26A4从而挽救听力减退,SLC26A4是耳聋中导致听力减退的罪魁祸首之一,而通过miR-26a-5p吸附SLC26A4靶向抑制其表达后在小鼠动物实验中可以有效改善听力损伤。本次研究从miRNA调控靶mRNA表达机制研究,揭示了miR-26a-5p 调控SLC26A4的作用机制,为miR-26a-5p 和SLC26A4在遗传性耳聋的基因治疗中提供一定的科学依据。

  • 图  1  典型MRM图

    A. 空白孵育样品;B:普萘洛尔 + 内标样品;C:肝微粒体孵育样品。

    Figure  1.  Typical MRM chromatograms

    图  2  普萘洛尔不同对映体在不同种属肝微粒体中的孵育曲线

    A:大鼠肝微粒体;B:犬肝微粒体;C:猴肝微粒体;D:人肝微粒体。

    Figure  2.  Incubation curves of different enantiomers of propranolol in liver microsomes of different species

    表  1  精密度与准确度结果($\bar x \pm s $/%)

    Table  1.   Precision and accuracy results ($\bar x \pm s $/%)

    理论浓度(μg/mL)目标物日内精密度(n = 5)日间精密度(n = 15)准确度(n = 5)
    实测浓度RSD实测浓度RSD
    0.05 R-(+)-普萘洛尔 0.055 ± 0.003 5.88 0.055 ± 0.003 5.90 108.85 ± 6.41
    S-(-)-普萘洛尔 0.043 ± 0.002 3.80 0.047 ± 0.006 12.09 86.59 ± 2.95
    0.1 R-(+)-普萘洛尔 0.106 ± 0.005 4.87 0.099 ± 0.009 8.72 106.20 ± 5.21
    S-(-)-普萘洛尔 0.095 ± 0.005 5.80 0.097 ± 0.008 7.76 94.94 ± 0.12
    2 R-(+)-普萘洛尔 1.987 ± 0.140 7.06 1.833 ± 0.140 7.75 99.34 ± 7.02
    S-(-)-普萘洛尔 1.842 ± 0.060 3.10 1.889 ± 0.130 6.72 92.08 ± 2.87
    8 R-(+)-普萘洛尔 7.600 ± 0.310 4.14 7.179 ± 0.360 5.07 94.99 ± 3.93
    S-(-)-普萘洛尔 7.913 ± 0.270 3.36 7.700 ± 0.270 3.53 98.91 ± 3.33
    下载: 导出CSV

    表  2  提取回收率与基质效应结果(%)

    Table  2.   Extraction recovery and matrix effect results(%)

    理论浓度(μg/mL)目标物提取回收率 (n = 5)基质效应 (n = 5)
    $ (\overline{x}\pm s) $RSD$ (\overline{x}\pm s) $RSD
    0.1 R-(+)-普萘洛尔 104.45 ± 7.01 6.71 102.66 ± 3.70 3.60
    S-(-)-普萘洛尔 105.60 ± 4.45 4.22 106.02 ± 3.75 3.54
    2 R-(+)-普萘洛尔 100.91 ± 5.62 5.57 107.92 ± 3.86 3.57
    S-(-)-普萘洛尔 98.31 ± 4.79 4.87 106.52 ± 4.12 3.87
    8 R-(+)-普萘洛尔 92.18 ± 5.32 5.77 112.51 ± 1.74 1.54
    S-(-)-普萘洛尔 102.92 ± 2.14 2.08 100.30 ± 2.50 2.49
    下载: 导出CSV

    表  3  稳定性试验结果($\bar x \pm s $/%)

    Table  3.   Stability test results ($ \bar x \pm s $/%)

    理论浓度(μg/mL)目标物进样器放置24 h室温放置12 h
    实测质量浓度(n = 5)RSD实测质量浓度 (n = 5)RSD
    0.1 R-(+)-普萘洛尔 0.110 ± 0.003 3.18 0.111 ± 0.003 3.08
    S-(-)-普萘洛尔 0.111 ± 0.002 1.63 0.113 ± 0.002 1.72
    2 R-(+)-普萘洛尔 2.071 ± 0.160 7.76 1.890 ± 0.150 8.04
    S-(-)-普萘洛尔 2.271 ± 0.010 0.58 2.250 ± 0.037 1.63
    8 R-(+)-普萘洛尔 7.882 ± 0.200 2.49 7.436 ± 0.282 3.80
    S-(-)-普萘洛尔 8.846 ± 0.120 1.31 8.907 ± 0.210 2.33
    下载: 导出CSV

    表  4  R-(+)-普萘洛尔和S-(-)-普萘洛尔在不同肝微粒体中的回归方程、t1/2和CLint

    Table  4.   Regression equation,t1/2 and CLint of R-(+)- propranolol and S-(-)- propranolol in different liver microsomes

    肝微粒体目标物回归方程R2t1/2/minCLint/mL·min−1·mg−1
    大鼠 R-(+)-普萘洛尔 y = −0.0117x−0.08 0.9777 59.23* 0.023*
    S-(-)-普萘洛尔 y = −0.0153x−0.0006 0.9359 45.00# 0.031#
    R-(+)-普萘洛尔 y = −0.0063x−0.141 0.8946 111.77* 0.012*
    S-(-)-普萘洛尔 y = −0.014x +0.0021 0.9885 49.50# 0.028#
    R-(+)-普萘洛尔 y = −0.0086x−0.0537 0.9559 80.58* 0.017*
    S-(-)-普萘洛尔 y = −0.0089x + 0.0066 0.9648 77.87# 0.018#
    R-(+)-普萘洛尔 y = −0.0037x−0.076 0.9117 187.30 0.007
    S-(-)-普萘洛尔 y = −0.0026x−0.0677 0.9072 266.54 0.005
      注:R-(+)-普萘洛尔:与人肝微粒体比较,*P < 0.05;S-(-)-普萘洛尔:与人肝微粒体比较,#P < 0.05。
    下载: 导出CSV
  • [1] 崔素梅,崔兆强. β受体阻滞剂与高血压治疗[J]. 中国临床药理学与治疗学,2022,27(4):423-427. doi: 10.12092/j.issn.1009-2501.2022.04.011
    [2] Barrett A M,Cullum V A. The biological properties of the optical isomers of propranolo l and their effects on cardiac arrhythmias[J]. Br J Pharmacol,1968,34(1):43-55. doi: 10.1111/j.1476-5381.1968.tb07949.x
    [3] 张娟红,徐丽婷,王荣,等. 普萘洛尔构象研究与临床应用进展[J]. 中国药房,2014,25(28):2680-2682. doi: 10.6039/j.issn.1001-0408.2014.28.31
    [4] Peterson R N,Freund M. Effects of (H+),(Na+),(K+) and certain membrane-active drugs on glycolysis,motility and ATP synthesis by human spermatozoa[J]. Biol Reprod,1973,8(3):350. doi: 10.1093/biolreprod/8.3.350
    [5] 郑维思. 普萘洛尔对映体在经不同诱导剂诱导的人肝细胞中的代谢特征[D]. 广州: 广东药学院, 2007.
    [6] 李新,曾苏. 普萘洛尔光学异构体在经不同诱导剂诱导的大鼠肝微粒体P450系统中的代谢特征[J]. 中国药理学与毒理学杂志,1999,13(1):53-56. doi: 10.3321/j.issn:1000-3002.1999.01.014
    [7] 刘利利,张继瑜. 药物体外肝代谢模型的研究进展[J]. 中国兽医学报,2018,38(10):2015-2019.
    [8] 邓星,罗莉娅,苟立平,等. 采用UPLC-MS/MS法研究辣薄荷基厚朴酚在不同种属肝微粒体中的代谢特征[J]. 中国药房,2019,30(2):170-175.
    [9] 吴桐,阳海鹰,原梅,等. 雷公藤甲素在人和大鼠肝微粒体代谢消除和酶动力学的比较研究[J]. 中国药理学通报,2018,34(10):1414-1419. doi: 10.3969/j.issn.1001-1978.2018.10.017
    [10] 鲁艳柳,刘浩,曾瑶,等. 石斛碱在体外肝微粒体代谢的种属差异研究[J]. 天然产物研究与开发,2018,30(9):1538-1542.
    [11] Cohen L H,Remley M J,Raunig D,et. al. In vitro drug interactions of cytochrome P450: an evaluation of fluorogenic to conventional substrates[J]. Drug Metab Dispos,2003,31(8):1005-1015. doi: 10.1124/dmd.31.8.1005
    [12] 张丽,蔡进,班玉娟,等. 采用UPLC-MS/MS法研究树豆酮酸A在不同种属肝微粒体中的代谢差异[J]. 中国药房,2019,30(18):2497-2502.
    [13] 杨洋,李静,肖涛,等. 阿德福韦混膦酯衍生物体外代谢及稳定性研究[J]. 中国药科大学学报,2018,49(6):699-705.
    [14] 国家药典委员会. 中华人民共和国药典: 四部[S]. 2020年版. 北京: 中国医药科技出版社, 2020: 466-471.
  • [1] 徐冉, 冯恩富, 熊宇宇, 朱加德, 何功浩.  法莫替丁对酒石酸美托洛尔在人肝微粒体中代谢的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20250203
    [2] 王亚敏, 李媛媛, 薛艳云.  基于脑血流动力学、炎性因子探究银杏叶注射液联合多奈哌齐治疗阿尔茨海默病的临床疗效, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240524
    [3] 吕煜, 胡义波, 王嘉鑫, 苏有橦, 代佑果.  蛋白质S-亚硝基化与消化系统肿瘤关系的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220911
    [4] 陈希, 许智星, 刘旭杰, 田锦涛, 牛小群, 蒲军.  洛哌丁胺体外对胶质瘤干细胞的杀伤作用, 昆明医科大学学报.
    [5] 林涛, 代月娥, 宋俊梅, 张寒.  口服普瑞巴林联合氨酚曲马多用于骨质疏松性椎体压缩性骨折的临床观察, 昆明医科大学学报.
    [6] 冯国华, 林华, 普菁莹, 高丽辉, 李玲, 牛艳芬.  3,5,2’,4’-四羟基查尔酮对大鼠尿酸及PC12细胞嘌呤代谢酶的影响, 昆明医科大学学报.
    [7] 陈珊珊, 陶四明, 韩明华.  足量美托洛尔缓释片治疗冠心病的临床观察, 昆明医科大学学报.
    [8] 曾慧娟.  首诊尿毒症患者用串联质谱法分析血氨基酸和酰基肉碱, 昆明医科大学学报.
    [9] 宁琳.  佩普洛人际关系理论对慢性乙型肝炎患者的护理效果, 昆明医科大学学报.
    [10] 唐玲玲.  不同剂量艾司洛尔复合舒芬太尼对脊柱侧弯矫形术患者唤醒试验期间应激反应的影响, 昆明医科大学学报.
    [11] 李继印.  液相色谱-质谱法测定云南草乌中双酯型生物碱的含量, 昆明医科大学学报.
    [12] 李继印.  液相色谱-质谱法测定大鼠全血中3种CYP450探针药物, 昆明医科大学学报.
    [13] 韩迪.  超高效液相色谱串联质谱法检测鸡肉中5种雌激素残留, 昆明医科大学学报.
    [14] 牛玲.  不同糖代谢人群血清SAA、CRP的变化研究, 昆明医科大学学报.
    [15] 闫俊岭.  利胆止痛片对α-萘异硫氰酸致急性肝损伤的保护作用, 昆明医科大学学报.
    [16] 蔡瑛.  艾司洛尔对全麻拔管期心血管反应的临床观察, 昆明医科大学学报.
    [17] 孙剑.  泊洛沙姆温敏凝胶共混环糊精缓释蜂胶的体外实验, 昆明医科大学学报.
    [18] 美托洛尔治疗围术期心动过速80例临床观察, 昆明医科大学学报.
    [19] 邓立强.  美托洛尔治疗围术期心动过速80例临床观察, 昆明医科大学学报.
    [20] 王慧明.  艾司洛尔预防气管插管心血管反应的临床观察, 昆明医科大学学报.
  • 期刊类型引用(9)

    1. 廖云姗,王双双,尹丽娟,郑玉婷. 云南地区院外应急救援护士心理健康状况的调查分析. 昆明医科大学学报. 2023(08): 177-184 . 本站查看
    2. 韩秋凤,林霄,陈海城,张馨遥,刘豫瑞. 心理弹性及社会支持对医务人员负性情绪的影响. 福建医科大学学报(社会科学版). 2021(02): 34-39 . 百度学术
    3. 巩平平,许静,翟金国,高燕. 医学专业教师心理健康状况调查分析. 中国校医. 2021(08): 576-578+636 . 百度学术
    4. 黄桂梅,廖灵敏,陈智平. 广西某高校一家附属医院医护人员心理健康状况及其影响因素分析. 应用预防医学. 2020(06): 482-485 . 百度学术
    5. 万园园,唐维兵,潘键. 江苏某儿童医院医务人员饮食行为与健康状况分析. 江苏卫生事业管理. 2020(12): 1677-1680 . 百度学术
    6. 施丕华,王贵义,徐卫琼,唐宝春. 医学院校学生不同时期心理健康状况比较. 昆明医科大学学报. 2019(09): 46-50 . 本站查看
    7. 张耐思,卢金婧,崔乐乐,裴冬梅. 沈阳市综合医院青年医师的心理体检及心理健康状况分析. 广东医学. 2019(22): 3221-3224 . 百度学术
    8. 万园园,胡旭俊,王小红. 江苏某儿童医院职工餐厅满意度与消费情况分析. 江苏卫生事业管理. 2019(12): 1574-1576 . 百度学术
    9. 胡娟,吴林雄,陈江容,李四乐,向思,张蕴,周梅. 昆明市社区居民身心健康现状调查. 昆明医科大学学报. 2018(07): 33-36 . 本站查看

    其他类型引用(1)

  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  3486
  • HTML全文浏览量:  2061
  • PDF下载量:  42
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-07-01
  • 网络出版日期:  2023-03-01
  • 刊出日期:  2023-03-25

目录

/

返回文章
返回