Application of Bone Marrow Mesenchymal Stem Cells in Stomatology
-
摘要: 在颌面部,由肿瘤、创伤、先天或后天性的急性引起的组织缺损使患者的容貌、正常生理功能及心理健康受到严重伤害,使患者的整体生活质量下降。寻找适当的治疗方法来恢复这些缺损的组织是至关重要的。近年来,随着组织工程的飞速发展,人们对于口腔组织再生技术十分重视。骨髓来源的间充质干细胞( bone marrow mesenchymal stem cells ,BMSCs)由于其具有向其他细胞分化的潜力,最常被应用于再生医学。近年来,研究人员开发了许多基于BMSCs的生物支架材料,利用其卓越的性能以满足口腔颌面组织工程的需求。综述BMSCs在口腔医学的研究进展及应用,探讨其在口腔医学中的应用前景。Abstract: In the maxillofacial region, tissue defects caused by tumors, trauma, congenital or acquired acute can cause serious damage to the patient’s appearance, normal physiological function and mental health, and overall quality of life of the patient. It is very important to find an appropriate treatment method to restore these defective tissues. In recent years, with the rapid development of tissue engineering, people attach great importance to oral tissue regeneration technology. Bone marrow mesenchymal stem cells (BMSCs)are most often used in regenerative medicine because of their potential to differentiate into other cells. In recent years, researchers have developed many biological scaffolds based on BMSCs to meet the needs of oral and maxillofacial tissue engineering with their excellent performance. This review introduces the research progress and application of BMSCs in stomatology, and discusses its application prospect in stomatology.
-
Key words:
- Bone marrow mesenchymal stem cells /
- Tissue engineering /
- Cell therapy
-
随着生育政策及社会经济形态的转变,高龄产妇(年龄≥35岁)数量日益增多。在妊娠及分娩过程中易损伤到盆底结构及功能,患盆底功能障碍性疾病(pelvic fIoor dysfunction,PFD)风险较高。诸多研究发现[1-2],高龄产妇产后患盆底疾病风险远高于适龄产妇,且影响因素较多,一旦发生势必会对产妇生活质量造成严重影响,应给予高度重视。早期评估诊断盆底功能及结构变化对于预防及降低PFD疾病发生有着重要意义。盆底超声为评估PFD疾病的主要辅助检查技术之一,具有安全无创等优势。二维超声[3]、三维超声[4]为临床常用盆底超声技术,可量化评估观察盆底解剖结构形态学变化情况。但由于盆底结构较为复杂,误诊漏诊风险较高,仍需对超声技术诊断效能作进一步明确。基于此,本研究将对比盆底二维,三维超声评估适龄、高龄产妇产后早期盆底结构及功能的变化,旨在明确盆底超声诊断效能,为临床精准诊疗提供参考依据,现报道如下。
1. 资料与方法
1.1 一般资料
选择本院2021年7月至2022年12月就诊的产后早期(6~8周)高龄产妇86例作为观察组,选择同期就诊的产后早期适龄产妇50例作为对照组。观察组年龄35~43岁(38.67±4.35)岁;BMI(24.14±2.58)kg/m2;孕次0~3次(1.38±0.14)次,人工流产史6例;对照组年龄22~34岁(27.15±4.21)岁;BMI(23.97±2.64)kg/m2;孕次0~3次(1.29±0.18)次,人工流产史5例。两组除年龄资料以外各项资料进行匹配,差异无统计学意义(P > 0.05)。
纳入标准:(1)符合盆底超声诊断适应证[5];(2)高龄产妇年龄≥35岁;(3)单胎妊娠、足月、阴道自然分娩;(4)患者家属签署知情同意书。
排除标准:(1)妊娠前存在PFD疾病;(2)存在妊娠合并症、产后大出血、持续恶露、泌尿系统炎症者;(3)既往有盆腔手术史、占位性病变者;(4)产后接受盆底功能恢复治疗者。
1.2 方法
所有研究对象均接受盆底二维、三维超声诊断,所有操作均由同一位超声科医生完成。仪器选择:GE Voluson E10彩色多普勒超声诊断仪,并配备经阴道探头RM6C-D及编码对比成像软件。具体操作如下:叮嘱产妇排空大便,并保持膀胱适度充盈,选择截石体位,保持髋部微曲及轻度外展,充分暴露会阴部。检查者采用耦合剂均匀涂抹于探头表面上,并采用安全套包裹,将探头轻柔置入阴道,对其子宫双附件进行检查后,将其放置于受检者会阴部。首先进行二维超声扫描,选择盆底正中矢状切面(显示膀胱颈、膀胱、尿道、耻骨联合前下缘、后间隙等结构)进行扫描,观察盆底器官位置及运动情况,并于静息状态、Valsalva动作(深吸气后屏气向下用力,持续6 s)下测量膀胱颈位置(bladder neck position,BNP)、膀胱尿道后角(posterior urethravesical angel,PUA),并计算膀胱颈移动度(bladder neck descent,BND)、尿道旋转角(urethral rotation angel,URA)。接着开启三维超声扫描,进行盆底正中矢状切面、肛管横切面扫查(显示耻骨、直肠、尿道、阴道、肛门括约肌、肛提肌等结构),获取肛提肌裂孔图像,测量静息状态、Valsalva动作下肛提肌裂孔前后径 ( levator hiatal anteroposterior diameter,LHAP)、肛提肌裂孔左右径(levator hiatal lateral diameter,LHLP)、肛提肌裂孔面积(levator hiatal area,LHA)。
1.3 观察指标
(1)对比2组产妇盆底二维超声评估参数;(2)对比2组产妇盆底三维超声评估参数;(3)对比盆底二维、三维超声对适龄、高龄产妇产后PFD的诊断效能:以PFD疾病相关权威指南诊断标准(盆腔脏器脱垂[6]、压力性尿失禁等)为金标准,患PFD为阳性,未患为阴性,计算两种技术诊断灵敏度(真阳性/(真阳性+假阴性))、特异度(真阴性/(真阴性+假阳性))及准确性((真阳性+真阴性)/总样本数);(4)盆底二维、三维超声诊断图像。
1.4 统计学处理
将数据纳入SPSS23.0软件中分析,计量资料(盆底二维、三维超声评估参数)比较采用t检验,并以(
$\bar x \pm s$ )表示,计数资料(诊断效能)采用χ2检验,并以率(%)表示,(P < 0.05)为差异有统计学意义。2. 结果
2.1 2组产妇盆底二维超声评估参数比较
观察组静息状态BNP、PUA、Valsalva动作BNP水平、BND水平明显高于对照组(P < 0.05);而Valsalva动作PUA及URA水平对比差异无统计学意义(P > 0.05),见表1。
表 1 盆底二维、三维超声对适龄产妇产后PFD的诊断效能比较(n)Table 1. Comparison of the diagnostic efficacy of two-dimensional and three-dimensional ultrasound (n)诊断技术 金标准 灵敏度(%) 特异度(%) 准确性(%) 阳性 阴性 合计 二维超声 阳性 7 3 10 77.78(7/9) 92.68(38/41) 90.00(45/50) 阴性 2 38 40 合计 9 41 50 三维超声 阳性 8 1 9 88.89(8/9) 97.56(40/41) 96.00(48/50) 阴性 1 40 41 合计 9 41 50 χ2 − − − − 0.400 1.051 1.383 P − − − − 0.527 0.305 0.240 2.2 2组产妇盆底三维超声评估参数比较
观察组Valsalva动作LHAP、LHLP、LHA水平均明显高于对照组(P < 0.05);而静息状态LHAP、LHLP、LHA水平对比差异无统计学意义(P > 0.05),见表2。
表 2 2组产妇盆底二维超声评估参数比较($ \bar x \pm s $ )Table 2. Comparison of the two groups of puerpera pelvic floor two-dimensional ultrasound evaluation parameter between the two groups ($ \bar x \pm s $ )组别 n 静息状态 Valsalva动作 BND(cm) URA(°) BNP(cm) PUA(°) BNP(cm) PUA(°) 观察组 86 −2.34 ± 0.47* 120.47 ± 25.34* −0.59 ± 0.23* 137.45 ± 24.32 1.75 ± 0.35* 30.78 ± 6.53 对照组 50 −3.11 ± 0.56 104.68 ± 20.15 −1.74 ± 0.39 139.54 ± 25.47 1.37 ± 0.44 29.45 ± 5.84 t − 8.577 3.766 21.654 0.475 5.545 1.190 P − <0.001 <0.001 <0.001 0.636 <0.001 0.236 与对照组比较,*P < 0.05。 2.3 盆底二维、三维超声对高龄产妇产后PFD的诊断效能比较
50例适龄产妇中PFD患者9例,膀胱脱垂5例,压力性尿失禁4例,及阴道、直肠脱垂。盆底二维、三维对比无差异(P > 0.05)。86例高龄产妇中PFD患者27例,其中盆底脱垂15例,压力性尿失禁12例。盆底三维超声诊断灵敏度(92.59%)、准确性(91.53%)明显高于二维超声(70.37%、77.91%),P < 0.05,见表3、表4。
表 3 2组产妇盆底三维超声评估参数比较($ \bar x \pm s $ )Table 3. Comparison of pelvic floor three-dimensional ultrasound evaluation parameters between the two groups ($ \bar x \pm s $ )组别 n 静息状态 Valsalva动作 LHAP(cm) LHLP(cm) LHA(cm2) LHAP(cm) LHLP(cm) LHA(cm2) 观察组 86 5.45 ± 1.26 3.01 ± 0.84 16.41 ± 2.54 6.07 ± 1.34* 4.16 ± 1.22* 25.25 ± 2.76* 对照组 50 5.12 ± 1.23 3.07 ± 0.58 15.72 ± 2.36 5.54 ± 1.25 3.73 ± 0.85 20.66 ± 2.52 t − 1.486 0.447 1.567 2.279 2.200 9.649 P − 0.140 0.656 0.119 0.024 0.030 <0.001 与对照组比较,*P < 0.05。 表 4 盆底二维、三维超声对高龄产妇产后PFD的诊断效能比较(n)Table 4. Comparison of the diagnostic effcacy of two-dimensional and three-dimensional ultrasound of pelvic floor for PFD in older women (n)诊断技术 金标准 灵敏度(%) 特异度(%) 准确性(%) 阳性 阴性 合计 二维超声 阳性 19 11 30 70.37(19/27) 70.37(48/59) 77.91(67/86) 阴性 8 48 56 合计 27 59 86 三维超声 阳性 25 5 30 92.59(25/27) 91.53(54/59) 91.86(79/86) 阴性 2 54 56 合计 27 59 86 χ2 − − − − 4.418 2.603 6.525 P − − − − 0.036 0.107 0.011 2.4 盆底二维、三维超声诊断图像
适龄、高龄产妇患者盆底二维、三维超声诊断图像分别见图1、图2,其中A为静息状态下盆底正中矢状切面;B为Valsalva动作下盆底正中矢状切面;C为断层成像模式观察肛提肌连续性,层间距2.5 mm(中间3幅图依次显示耻骨联合开放、正在关闭、已关闭状态;D为肛提肌裂孔;E为断层成像模式观察肛门括约肌连续性,其中左侧为肛门内括约肌下缘,右侧为外括约肌上缘。
3. 讨论
妊娠及分娩为引起女性盆底结构及功能损伤的主要因素,妊娠期间由于子宫体积增长,机体为适应妊娠会出现支持盆腔器官组织过度延伸,达到一定程度时将肌肉将可能丧失收缩恢复能力;分娩过程中阴道周围支持组织受到牵拉、扩张,甚或肌肉纤维断裂,继而导致盆底肌损伤。而进行产后盆底功能检测对于PFD早期诊断及预防有着重要意义。盆底超声为临床产后检查评估盆底结构主要技术,可观察盆底解剖结构形态学变化,继而评估其组织功能状态,为临床诊治及疗效评估提供客观依据。二维经阴道超声是评估的主要筛查工具,具有简单、可重复性、成像清晰等特征,可用于评估膀胱、膀胱颈、尿道等组织形态变化,辅助盆底功能及结构评估[7-9]。三维超声具有较高空间分辨率,可通过多平面成像及图像重建后处理,为临床评估盆底结构及功能提供可靠数据[10-12]。
本研究显示,观察组静息状态BNP、PUA、Valsalva动作BNP水平、BND水平明显高于对照组(P < 0.05);而Valsalva动作PUA及URA水平对比差异无统计学意义(P > 0.05)。观察组Valsalva动作LHAP、LHLP、LHA水平均明显高于对照组(P < 0.05);而静息状态LHAP、LHLP、LHA水平对比差异无统计学意义(P > 0.05)。说明相较于适龄产妇,高龄产妇产后早期更易出现肛提肌、膀胱等盆底组织功能及结构变化,适龄产妇变化不大。李宁等[13]研究报道,高龄产妇的Valsalva动作LHA水平高于适龄产妇,该结果与本研究结果一致。其原因在于相较于适龄产妇,高龄产妇的生理功能出现逐步下降,尤其是盆底肌群收缩反应时间延长,速度减慢,盆底肌肉、神经长时间处于压迫状态,出现盆底组织损伤概率较高;此外盆底肌肉组织中胶原、弹性蛋白含量降低,无法维持正常收缩功能,出现超声异常征象。盆底三维超声诊断灵敏度、准确性明显高于二维超声。此处已删减研究报道,孕妇的盆底肌肉不仅受到与分娩相关的机械损伤的影响,还受到怀孕期间生理变化的影响,继而使得提肌裂孔增大[14]。其原因在于虽然二维超声可以全面评估显示盆底结构,但该技术无法显示示肛提肌、盆膈裂孔等结构,而三维超声可通过多平面成像及图像重建后处理,更加准确、立体显示盆底结构组织及结构变化,该技术对于测量肛提肌裂孔各参数有着较高精确度,其中肛提肌裂孔可进一步反映肛提肌顺应性,继而提高临床诊断效能[15]。
综上所述,高龄产妇产后早期更易出现盆底功能及结构变化,相较于二维超声,盆底三维超声更有助于提高PFD诊断效能。
-
[1] Fiedler T,Rabe M,Mundkowski R G,et al. Adipose-derived mesenchymal stem cells release microvesicles with procoagulant activity[J]. Int J Biochem Cell Biol,2018,100(1):49-53. [2] Kishimoto N,Honda Y,Momota Y,et al. Dedifferentiated Fat (DFAT) cells: a cell source for oral and maxillofacial tissue engineering[J]. Oral Dis,2018,24(7):1161-1167. doi: 10.1111/odi.12832 [3] Buduru Smaranda Dana,Gulei Diana,Zimta Alina-Andreea,et al. The potential of different origin stem cells in modulating oral bone regeneration processes[J]. Cells,2019,8(1):29. doi: 10.3390/cells8010029 [4] Ansari Sahar,Seagroves Jackson T,Chen Chider,et al. Dental and orofacial mesenchymal stem cells in craniofacial regeneration: The prosthodontist’s point of view[J]. Journal of Prosthetic Dentistry,2017,118(4):455-461. doi: 10.1016/j.prosdent.2016.11.021 [5] Hu Lifang,Yin Chong,Zhao Fan,et al. Mesenchymal stem cells:Cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment[J]. International Journal of Molecular Sciences,2018,19(2):360. [6] Nemeth K,Mezey E. Bone marrow stromal cells as immunomodulators. A primer for dermatologists[J]. J Dermatol Sci,2015,77(1):11-20. doi: 10.1016/j.jdermsci.2014.10.004 [7] Deak E,Seifried E,Henschler R. Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications[J]. International Reviews of Immunology,2010,29(5):514-529. doi: 10.3109/08830185.2010.498931 [8] Blanc K L,Rasmusson I,Sundberg B,et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells[J]. Lancet,2004,363(9419):1439-1441. doi: 10.1016/S0140-6736(04)16104-7 [9] Ciccocioppo Rachele,Bernardo Maria Ester,Sgarella Adele,et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease[J]. GUT,2011,60(6):788-798. doi: 10.1136/gut.2010.214841 [10] Tan Jianming,Wu Weizhen,Xu Xiumin,et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants:A randomized controlled trial[J]. Jama-Journal of The American Medical Association,2012,307(11):1169-1177. doi: 10.1001/jama.2012.316 [11] Oh Eun Jung,Lee Ho Won,Kalimuthu Senthilkumar,et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model[J]. Journal of Controlled Releaser,2018,279(1):79-88. [12] Kakabadze Mariam Z,Paresishvili Teona,Mardaleishvili Konstantine,et al. Local drug delivery system for the treatment of tongue squamous cell carcinoma in rats[J]. Oncology Letters.,2022,23(1):13. [13] Xiao Quan,Zhao Zhe,Teng Yun,et al. BMSC-derived exosomes alleviate intervertebral disc degeneration by modulating AKT/mTOR-mediated autophagy of nucleus pulposus cells[J]. Stem Cells International,2022,7(9):9896444. [14] Zhou Yan,Wen Lulu,Li Yanfei,et al. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis[J]. Neural Regeneration Research,2022,17(1):194-202. doi: 10.4103/1673-5374.314323 [15] Kinane D F,Stathopoulou P G,Papapanou P N. Periodontal diseases[J]. Nat Rev Dis Primers.,2017,3(2):17038. [16] Xu Xinyue,Li Xuan,Wang Jia,et al. Concise review:Periodontal tissue regeneration using stem cells:Strategies and translational considerations[J]. Stem Cells Translational Medicine,2019,8(4):392-403. doi: 10.1002/sctm.18-0181 [17] Sanz A R,Carrión F S,Chaparro A P. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering[J]. Periodontol,2015,67(1):251-267. doi: 10.1111/prd.12070 [18] Baba Shunsuke,Yamada Yoichi,Komuro Akira,et al. Phase I/II trial of autologous bone marrow stem cell transplantation with a three-dimensional woven-fabric scaffold for periodontitis[J]. Stem Cells International.,2016,10(17):6205910. [19] Xu Mengting,Wei Xing,Fang Jie,et al. Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration[J]. Bioscience Reports,2019,39(12):BSR20190785. doi: 10.1042/BSR20190785 [20] Liu Li,Guo Shujuan,Shi Weiwei,et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J]. Tissue Engineering Part A,2021,27(13-14):962-976. doi: 10.1089/ten.tea.2020.0141 [21] Kaku Masaru,Akiba Yosuke,Akiyama Kentaro,et al. Cell-based bone regeneration for alveolar ridge augmentation-cell source,endogenous cell recruitment and immunomodulatory function[J]. Journal of Prosthodontic Research,2015,59(2):96-112. doi: 10.1016/j.jpor.2015.02.001 [22] Grassi Felice Roberto,Grassi Roberta,Rapone Biagio,et al. Dimensional changes of buccal bone plate in immediate implants inserted through open flap,open flap and bone grafting and flapless techniques: A cone-beam computed tomography randomized controlled clinical trial[J]. Clinical Oral Implants Research,2019,30(12):1155-1164. doi: 10.1111/clr.13528 [23] Su Peihong,Tian Ye,Yang Chaofei,et al. Mesenchymal stem cell migration during bone formation and bone diseases therapy[J]. International Journal of Molecular Sciences,2018,19(8):2343. doi: 10.3390/ijms19082343 [24] Jiang Yinhua,Shang Yu,Zou Duohong,et al. Effect of rat allogeneic BMSCs-Bio-Oss-bFGF compound on tooth extraction healing: a micro-CT study[J]. Shanghai Journal of Stomatology,2022,31(1):38-43. [25] Niu Qiannan,He Jiaojiao,Wu Minke,et al. Transplantation of bone marrow mesenchymal stem cells and fibrin glue into extraction socket in maxilla promoted bone regeneration in osteoporosis rat[J]. Life Sciencess,2022,290:119480. doi: 10.1016/j.lfs.2021.119480 [26] Ma Dong,Wang Yuanyin,Chen Yongxiang,et al. Promoting osseointegration of dental implants in dog maxillary sinus floor augmentation using dentin matrix protein 1-transduced bone marrow stem cells[J]. Tissue Engineering and Regenerative Medicine,2020,17(5):705-715. doi: 10.1007/s13770-020-00277-1 [27] Xu Ling,Zhang Wenjie,Lv Kaige,et al. Peri-implant bone regeneration using rhPDGF-BB,BMSCs,and β-TCP in a canine model[J]. Clinical Implant Dentistry and Related Research,2016,18(2):241-252. doi: 10.1111/cid.12259 [28] El-Zekrid Mona H,Mahmoud Salah H,Ali Fawzy A,et al. Healing capacity of autologous bone marrow- derived mesenchymal stem cells on partially pulpotomized dogs’ teeth[J]. Journal of Endodontics,2019,45(3):287-294. doi: 10.1016/j.joen.2018.11.013 [29] Zhang Lixia,Shen Lili,Ge Shaohua,et al. Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing[J]. International Journal of Clinical and Experimental Pathology,2015,8(9):10261-10271. [30] Davies O G,Cooper P R,Shelton R M,et al. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue,bone marrow and dental pulp[J]. Journal of Bone And Mineral Metabolism,2015,33(4):371-382. doi: 10.1007/s00774-014-0601-y [31] Wang Sainan,Huang Guibin,Dong Yanmei. Directional migration and odontogenic differentiation of bone marrow stem cells induced by dentin coated with nanobioactive glass[J]. Journal of Endodontics,2020,46(2):216-223. doi: 10.1016/j.joen.2019.11.004 期刊类型引用(11)
1. 满国栋,王健力,王军,王娟. 基于UPLC-Q-TOFMS的甲状腺乳头癌及癌旁组织中代谢物差异分析. 甘肃医药. 2024(07): 617-621 . 百度学术
2. 闫媛媛,吴燕,王晓娜. 彩色超声联合二维超声对甲状腺乳头状癌颈部中央区淋巴结转移的诊断价值. 世界复合医学(中英文). 2024(05): 179-182 . 百度学术
3. 陈瑞珠,张欢,郑立春,刘丽云,欧阳向柳. 超声联合细针穿刺洗脱液甲状腺球蛋白测定在甲状腺乳头状癌颈部淋巴结转移诊断中的应用. 中国医科大学学报. 2024(11): 999-1004+1011 . 百度学术
4. 付吉鹤,李晓琴,赵彤,壮健,朱韦文,张超. PTC患者发生LNM的危险因素分析. 中国超声医学杂志. 2023(02): 129-133 . 百度学术
5. 唐艳,高阿维,白玲娇,栗玉姣. 超声造影联合细针穿刺细胞学检查对甲状腺乳头状癌患者颈淋巴结转移的诊断价值. 海南医学. 2023(07): 998-1002 . 百度学术
6. 郭为衡,郭为钧,朴雪梅. 甲状腺微小乳头状癌的超声特征与颈部淋巴结转移的相关性分析. 医学影像学杂志. 2023(04): 685-687 . 百度学术
7. 王亚楠,张欢,欧阳向柳,韩云霞,刘丽云,郑立春. 细针穿刺洗脱液甲状腺球蛋白检测对甲状腺乳头状癌颈部淋巴结转移的诊断价值. 中国普通外科杂志. 2023(05): 690-697 . 百度学术
8. 王昊,颜树宏,郑雷,郑笑娟. 超声引导下细针抽吸活检对甲状腺癌诊断及颈部淋巴结转移评估的价值分析. 中国基层医药. 2023(06): 829-834 . 百度学术
9. 姚晶晶,郑兰兰,杨爽灵,王飞亚. 超声引导下细针穿刺活检联合鼠类肉瘤病毒癌基因同源物B基因检测对甲状腺乳头状癌患者颈部淋巴结转移的诊断价值. 癌症进展. 2023(12): 1373-1376 . 百度学术
10. 陈振东. FNAC-Tg检查诊断甲状腺癌颈侧区淋巴结转移的价值. 中外医学研究. 2022(31): 78-81 . 百度学术
11. 陈则金,郑登滋,徐丛荣,江华,魏建威. 细针抽吸洗脱液甲状腺球蛋白诊断甲状腺癌中颈部淋巴结转移的应用价值. 实用医技杂志. 2022(11): 1151-1154 . 百度学术
其他类型引用(1)
-

计量
- 文章访问数: 3464
- HTML全文浏览量: 2030
- PDF下载量: 18
- 被引次数: 12