Clinical Significance of a Marker of Thrombin Activity-fibrin Monomer after Surgery
-
摘要:
目的 探讨凝血酶活化标记物-纤维蛋白单体(FM)在外科术后的影响因素和临床意义。 方法 回顾性分析2021年12月至2022年5月昆明医科大学第二附属医院重症医学科收治的93例Ⅲ~Ⅳ级手术术后患者,收集患者临床资料和围术期出血量。记录手术前(T0)纤维蛋白原(Fib)、术后当日(T1)纤维蛋白原(Fib)和术后24 h(T2)血浆纤维蛋白单体(FM)、抗凝血酶Ⅲ(AT-Ⅲ)、血管性血友病因子(vWF)及纤维蛋白降解产物(DD二聚体)等指标。根据FM检测值的正常参考范围,将患者分为正常组、低水平组、中水平组、高水平组。统计描述患者临床资料;等级Logistic回归分析影响FM的因素;双变量相关性分析FM与Fib及DD的关系;方差分析不同疾病组FM的差异。 结果 (1)共纳入Ⅲ~Ⅳ级手术术后患者93例,平均年龄(59±13)岁,男性49例,女性44例。其中61例是恶性肿瘤患者(66%),32例是非肿瘤患者(34%);(2)纤维蛋白单体(FM)正常水平组(≤5 µg/mL)9例(9.7%),FM(4.32±1.07) µg/mL;低水平组(6~54 µg/mL)39例(41.9%),FM(20.67±13.25) μg/mL;中水平组(55~103 µg/mL)11例(11.8%),FM(73.96±13.38) µg/mL;高水平组(≥104 µg/mL)34例(36.6%),FM(172.30±26.78)μg/L,方差分析(ANOVA)显示正常水平组和低水平组间差异有统计学意义(P < 0.05),其余各组间差异有统计学意义(P < 0.001)。等级Logistic回归分析显示:出血量达600~1000 mL和胃肠道手术会影响FM的浓度(P < 0.05)。vWF、AT-Ⅲ、肝脏恶性肿瘤、肾脏恶性肿瘤、其他非肿瘤性疾病、年龄、性别均对纤维蛋白单体(FM)浓度无明显影响(P > 0.05);(3)双变量相关分析显示FM与T0、T1时间Fib无相关性,但是与T2时间Fib呈负相关(r = -0.258,P < 0.05),T2时间DD与FM呈正相关(r = 0.536,P < 0.001);(4)肝脏恶性肿瘤患者术后血浆纤维蛋白单体(FM)(76.4 µg/mL)浓度明显高于胃肠道肿瘤术后患者(25.7 μgmL),DunnettT3检验显示两者间差异有统计学意义(P < 0.05)。 结论 纤维蛋白单体(FM)反应凝血酶的激活,与DD二聚体成正相关性,术后监测纤维蛋白单体(FM)有助于判断血栓事件。外科术后凝血酶大量活化(即FM升高)与纤维蛋白原(Fib)呈负相关性,即凝血酶大量活化会水解纤维蛋白原(Fib)导致纤维蛋白原降低,外科术后应关注纤维蛋白原浓度,以免发生出血。 Abstract:Objective To investigate the clinical significance and monitoring value of fibrin monomer (FM)after surgery. Methods A total of 93 patients after surgery admitted to the Department of Critical Care Medicine, the Second Affiliated Hospital of Kunming Medical University from December 2021 to May 2022 were retrospectively analyzed. Plasma fibrin monomer (FM), antithrombinⅢ (AT-Ⅲ), von willebrand factor (vWF) and fibrin degradation products (DD ) were collected before operation (T0), on the day after operation (T1) and 24 hours after operation (T2). According to the normal reference range of FM value, patients were divided into normal group, low level group, medium level group and high level group. The clinical data of patients were statistically analyzed, the influencing factors of FM were analyzed by ordinal logistic regression, the correlation between vWF, AT-Ⅲ, DD dimer and FM was analyzed by multivariate regression, and the correlation between Fib and FM was analyzed by univariate regression. Results (1) A total of 93 patients were enrolled, with an average age of 59±13 years, including 49 males and 44 females. Of these, 61 were malignant (66%) and 32 were non-tumor (34%). (2) The patients were divided into normal group (≤5 μg/mL, n = 9 (9.7%), FM (4.32±1.07) μg/mL. The low level group was 6-54 μg/mL, 39 cases (41.9%), FM (20.67±13.25) μg/mL; Medium level group (55~103 μg/mL, 11 cases (11.8%), FM (73.96±13.38) μg/mL; High level group ≥104 μg/mL, 34 cases (36.6%), FM (172.30±26.78) μg/mL.Analysis of variance (ANOVA) showed that the difference between the normal level group and the low level group was statistically significant (P < 0.05), and the difference between the other groups was significant (P < 0.0010.00). Ordinal logistic regression analysis showed that blood loss volume, vWF, primary disease, age and gender had no significant effect on fibrin monomer (FM) (P > 0.05). (3) Bivariate correlation analysis showed that FM was not correlated with Fib at T0 and T1, but was negatively correlated with Fib at T2 (r = -0.258, P < 0.05). DD at T2 was positively correlated with FM (r = 0.536, P = 0.000). (4) The plasma fibrin monomer (FM) concentration of patients with liver malignant tumor after surgery (76.4 μg/mL) was significantly higher than that of patients with gastrointestinal tumor after surgery (25.7 μg/mL). DunnettT3 test showed that the difference was statistically significant (P < 0.05). Conclusions Monitoring of thrombin activation marker fibrin monomer (FM) in patients after surgery has certain clinical significance, which is expected to be an early marker for predicting thrombosis or guiding anticoagulant therapy. A large amount of thrombin activation after surgery can consume fibrinogen (Fib), and attention should be paid to the concentration of fibrinogen to avoid postoperative bleeding. -
Key words:
- Fibrin monomer /
- Thrombin /
- Markers /
- Postoperative surgery
-
脑震荡(cerebral concussion,CC)是创伤性脑损伤(traumatic brain injuries,TBI)中的轻度损伤类型,死亡率和致残率高。美国脑震荡年发病率约为5/1000,并有逐年上升得趋势[1]。目前研究发现,反复轻型脑损伤(repetitive mild traumatic brain injury,rmTBI)即多次脑震荡(multiple cerebral concussion,MCC)易出现学习记忆功能与情感障碍问题等,最终可发展为慢性创伤性脑病(chronic traumatic encephalopathy,CTE)[2]。课题组前期研究发现:3次性多重脑震荡(3 MCC)大鼠较一次性脑震荡组(pure cerebral concussion,PCC组)大鼠出现了明显的抑郁样行为损害,且随着打击次数的增加,其抑郁样行为损害程度更加严重[3]。但有关MCC大鼠对比PCC大鼠伤后早期焦虑行为变化尚未见有报道,为深入了解一重和多重脑震荡大鼠伤后早期焦虑行为变化特点,为后续干预和治疗评价提供实验依据,特设计本实验研究。
1. 材料与方法
1.1 材料
实验动物及分组:雄性SD大鼠50只(购自湖南斯莱克景达实验动物有限公司),合格证编号:SCXK(湘)2016-0002,体重(280±20)g,大鼠于实验前1周运到实验室,在安静环境下(明/暗周期12 h)分笼饲养,自由取食饮水,饲养环境温度15 ℃-22 ℃,湿度50%~60%,模型复制时随机将实验大鼠分入正常对照组(N组)、PCC组和3 MCC组。
1.2 方法
1.2.1 模型复制
模型复制方法参照于建云等[4]的方法,将每次打击符合轻型脑损伤判别标准的大鼠纳入实验对象,多重脑震荡大鼠每次打击的间隔时间为24 h,排除模型复制过程中判断为重型颅脑损伤与死亡的大鼠。
1.2.2 旷场实验(OFT)
1.2.3 实验方法
模型复制成功后饲养14 d,于伤后第14天进行旷场实验(OFT)。旷场实验箱规格为100 cm×100 cm×50 cm,顶部敞开,箱底均分为25个方格,四周墙壁为黑色有机玻璃,沿四周墙壁的区域为外周区域(surround areas,SA),其余区域为中央区域(center areas,CA)。每次实验将大鼠放到正中格开始实验,实验者站到1.5 m外观测,同时打开视频记录系统,记录大鼠在旷场中的活动情况。每次测试结束后,需要用清水和酒精清除掉大鼠的排泄物跟气味。再进行下一只动物的实验。正常大鼠因好奇而自动到CA区域进行探索活动,而焦虑大鼠则更愿意在SA区域活动。
1.2.4 检测指标
每只大鼠需观测5 min并录像,记录大鼠在CA区穿格数与CA区停留时间,SA区穿格数与SA区停留时间,梳理毛发次数。
1.3 高架十字迷宫实验(HPM)
1.3.1 实验方法
HPM由2条相对开臂(open arms,OA)和2条相对闭臂(enclosed arms,EA)组成,互相垂直成十字交叉。将大鼠轻放在十字迷宫的中央部位、面向开臂(OA),实验者迅速离开装置,站到1.5 m以外观测,同时打开电脑实验记录系统,记录大鼠在高架十字迷宫中的活动情况,每次测试结束后,需要用清水和酒精清除掉大鼠的排泄物跟气味。再进行下一只动物的实验。上述实验过程全部录像保存,进行统计分析。大鼠在闭臂中的时间与其焦虑程度呈正相关。
1.3.2 检测指标
每次观测5 min,主要记录大鼠进入OA次数、在OA停留时间、在OA中向平台下探望次数;进入EA次数和停留在EA的时间。
1.4 统计学处理
用SPSS20.0统计软件对数据进行处理,结果采用均数±标准差(
$\bar{{x}} \pm s$ )及四分位数M(P25,75)表示,统计方法采用单因素方差分析和Kruskal-Wallis H检验,P < 0.05为差异具有统计学意义。2. 结果
2.1 旷场实验结果
(1)CA区行走格数与停留时间:损伤组在CA区行走格数与停留时间均少于N组,且打击次数越多,CA区走格数与停留时间均呈减少趋势,3 MCC组与N组、PCC组比较差异有统计学意义,P < 0.05(P = 0.024,P = 0.033);(2)SA区行走格数与停留时间:损伤组在SA区行走格数与停留时间均高于N组,且打击次数越多,SA区走格数与停留时间均呈增多趋势,SA区走格数3 MCC组与N组比较差异有统计学意义,P < 0.05(P = 0.015),SA区停留时间各组间差异无统计学意义,P > 0.05;(3)梳理毛发次数:损伤组梳理毛发次数均明显少于N组,且打击次数越多,梳理毛发次数越少,3 MCC组与N组、PCC组比较差异有统计学意义,P < 0.05(P = 0.013,P = 0.019);(4)OFT实验焦虑行为损伤组较正常组变化率:各损伤组大鼠在旷场实验中CA区行走格数、行走时间与理毛次数,均随着打击次数的增加呈现下降趋势,其中一次性脑震荡大鼠的探索行为分别下降为正常的95.00%、61.88%和80.8%,三次性脑震荡大鼠的探索行为分别下降为正常的50.00%、25.41%和46.90%。此外,随着打击次数的增加,损伤大鼠在SA区行走格数与行走时间则呈上升趋势,其中一次性脑震荡大鼠的焦虑行为分别上升了165.15%和103.30%,三次性脑震荡大鼠的焦虑行为分别上升了196.97%和116.08%,见表1,表2。
表 1 PCC与3 MCC大鼠伤后14 d OFT数据[($\bar x \pm s$ ),n = 12,M(P25,P75)]Table 1. OFT data of PCC and 3 MCC rats on the 14th day after injury [($\bar x \pm s$ ),n = 12,M(P25,P75)]分组 中央格数(格) 中央格时间(s) 周边格数(格) 周边格时间(s) 理毛频次(次) N 10.00(7.00,17.88) 90.50(65.25,286.50) 33.00(1.13,51.50) 227.00(13.50,251.75) 5.20 ± 1.62 PCC 9.500(6.50,16.75) 56.00(32.25,104.00) 54.50(26.88,62.25) 234.50(196.00,275.75) 4.20 ± 1.03 3 MCC 5.00(3.50,9.00)▲* 23.00(11.00,36.00)▲* 65.00(28.50,81.00)▲ 263.50(217.00,278.00) 2.44 ± 0.73▲* 与N组比较,▲P < 0.05;与PCC组比较,*P < 0.05。 表 2 伤后14 d OFT实验PCC与3 MCC大鼠焦虑行为较正常组变化率(%)Table 2. The changes of anxious behaviors of PCC and 3 MCC rats on the 14th day after injury by OFT test (%)分组 中央格数(格) 中央格时间(s) 周边格数(格) 周边格时间(s) 理毛频次(次) N 100 100 100 100 100 PCC 95.00 61.88 165.15 103.30 80.8 3 MCC 50.00 25.41 196.97 116.08 46.9 2.2 高架十字迷宫实验结果
(1)进入OA次数与时间:各损伤组进入OA的次数与进入OA的时间均少于N组,且打击次数越多,进入OA次数与时间越少,但各组间差异无统计学意义,P > 0.05;(2)在OA中向台下探望次数:损伤组进入OA后向台下探望次数均少于N组,其中3 MCC组较N差异具有统计学意义,P < 0.05(P = 0.032);(3)进入EA次数与时间:损伤组进入EA次数均低于N组,但在EA中的停留时间增加,且打击次数越多,这些变化更加明显,进入EA次数,3 MCC组与PCC组比较,差异具有统计学意义,P < 0.05(P = 0.015);进入EA时间,3 MCC组与N组、PCC组比较差异有统计学意义,P < 0.05(P = 0.042,P = 0.027);(4)HMP实验焦虑行为损伤组较正常组变化率:各损伤组大鼠在高架十字迷宫实验中,进入OA臂的次数、时间与向台下探望次数,均随着打击次数的增加呈现下降趋势,其中一次性脑震荡大鼠的探索行为分别下降为正常的100%、10.05%和53.44%,三次性脑震荡大鼠的探索行为分别下降为正常的50.00%、6.78%和32.66%。此外,随着打击次数的增加,损伤大鼠在EA臂中的停留时间则呈上升趋势,见表3,表4。
表 3 PCC与3 MCC大鼠伤后14 d HMP数据[($\bar x \pm s$ ),n = 12,M(P25,P75)]Table 3. HMP data of PCC and 3 MCC rats on the 14th day after injury [($\bar x \pm s$ ),n = 12、M(P25,P75)]分组 开臂 闭臂 开臂进入次数(次) 进入开臂时间(s) 向台下探究次数(次) 闭臂进入次数(次) 进入闭臂时间(s) N 1.00(0.00,2.00) 199.00(0.00,299.75) 8.42 ± 6.26 1.00(0.00,1.00) 0.00(0.00,201.25) PCC 1.00(0.00,1.00) 20.00(0.00,111.75) 4.50 ± 4.36 1.00(1.00,1.00) 241.50(4.25,289.25) 3 MCC 0.50(0.00,1.00) 13.50(0.00,109.25) 2.75 ± 3.77▲ 0.00(0.00,1.00)* 271.50(0.00,297.00)▲* 与N组比较,▲P < 0.05;与PCC组比较,*P < 0.05。 表 4 伤后14 d HMP实验PCC与3 MCC大鼠焦虑行为较正常组变化率(%)Table 4. The changes of anxious behaviors of PCC and 3 MCC rats on the 14th day after injury by HMP test (%)分组 开臂 闭臂 开臂进入次数(次) 进入开臂时间(s) 向台下探究次数(次) 闭臂进入次数(次) 进入闭臂时间(s) N 100 100 100 100 100 PCC 100 10.05 53.44 100 0.00 3 MCC 50.0 6.78 32.66 0.00 0.00 3. 讨论
焦虑症(Anxiety)又称焦虑性障碍,是一种处于应激状态时的正常情绪反应,表现为以焦虑情绪为主的神经症,临床上常伴有头晕、呼吸困难、心悸、汗出、胸闷、口干、尿急、尿频和运动不安等,属于防御性的心理反应[5-6]。焦虑症的神经生理学基础主要涉及扣带回、前额叶以及杏仁核等脑区功能与结构异常[7]。神经科学研究发现大脑加工“恐惧”情绪的神经通路发生异常是焦虑症的神经基础。LeDoux等研究者通过在实验动物大脑信息加工环路上制造一系列病灶,最终确立了杏仁核在恐惧加工中的关键地位,并在脑成像技术中得到证明。高度焦虑个体在看到恐惧表情的面孔后,其杏仁核外侧基底部的活动跟对照组不同[8]面孔表情使创伤后应激综合征患者杏仁核的活动增强,支持了杏仁核在焦虑症发病中的作用[9]。Kalisch等研究发现高度焦虑大鼠在应激时,其背内侧前额叶的活动较低焦虑大鼠低。也有研究提出:大鼠情绪、神经性行为等活动主要由海马CA1区调控。海马神经细胞丢失、神经树突萎缩与突触点减少,可通过影响海马在下丘脑—垂体—肾上腺(The hypothalamic-pituitary-adrenal axis,HPA)轴反馈抑制导致焦虑症[10-11]。
有关大鼠焦虑样情感行为,多采用旷场实验(OFT)和高架十字迷宫实验(HPM)进行检测。OFT实验是由Hall等于1934年设计发明的,主要用于检测实验动物焦虑、抑郁状态、自发活动及探索行为。其原理是基于动物存在畏惧空旷场地、对新鲜事物探索、趋壁性的天性而设置。该实验主要检测大鼠在CA区和SA区行走格数及活动时间指标,实验动物在CA区活动的距离与时间越长,说明其自主活动能力越高,焦虑程度越低。该实验操作简单,所得数据丰富,被研究者广泛应用[12-13]。HPM实验主要用于检测大鼠在复杂环境中的自主活动能力和焦虑程度,被广泛用于抑郁症、痴呆等疾病模型研究[14]。其原理是是基于动物对新异环境的探索性和对高悬敞开臂的恐惧性而设计。主要通过观测大鼠在OA和EA次数和时间,来判断大鼠的焦虑程度和自主活动能力。实验动物进入OA的次数和时间越长,说明实验动物的自主活动能力越高,焦虑程度越低。
本实验结果显示:一次与三次性脑震荡大鼠在伤后14 d,均表现出一定程度的焦虑行为增加,各损伤组大鼠伤后14 d对新奇环境的探索行为呈明显下降趋势。主要表现在损伤组大鼠在旷场实验中央(CA)区行走格数下降为正常的95.0%~50.0%,在CA区的停留时间减少为正常的61.88%~25.41%;同时在高架十字迷宫实验中,损伤大鼠进入开放臂(OA)次数下降为正常的100%~50.0%,停留在OA的时间下降为正常的10.05%~6.78%,向台下探望的次数下降为正常的53.44%~32.66%。上述结果提示,不论是一次还是三次脑震荡大鼠的探索行为在伤后14 d都有程度不等的受损下降。另一方面,一次与三次性脑震荡大鼠在伤后14天,其焦虑行为也一定程度出现增加,表现为损伤组大鼠在旷场实验周边(SA)区行走距离与停留时间较正常组大鼠分别增加了165.15%~196.97%,103.30%~116.08%,代表大鼠安宁自在的理毛行为频数较正常组大鼠减少了80.8%~46.9%。
本实验研究结果还显示,随着打击次数的增加,伤后14 d三重脑震荡大鼠的焦虑行为异常变化较正常组大鼠出现了显著的损伤性变化,且在各项观测指标中,三重脑震荡大鼠的焦虑行为变化较一次性脑震荡大鼠的改变更加突出,表现出了不同程度的损伤累加效应趋势,推测随着实验观测时间的延长,这些变化很可能会出现更显著性的差异。
一次性与多次性脑震荡大鼠于伤后14 d,开始出现了明显的焦虑行为增多趋势,并随打击次数的增加,表现出不同程度的损伤累加效应。一次与多次脑震荡大鼠焦虑行为改变的具体机制有待深入研究。
-
表 1 93例外科术后患者基础资料与凝血指标[n(%)/
$\bar x \pm s $ ]Table 1. Basic data and coagulation indexes of 93 patients postoperation [n(%)/
$\bar x \pm s $ ]变量 数值 性别 男性 49(52.7) 女性 44(47.3) 年龄(岁) 59.00 ± 8.62 原发疾病 肝脏恶性肿瘤 29(31.2) 胃肠道恶性肿瘤 23(24.7) 肾脏恶性肿瘤 9(9.7) 其他非肿瘤性疾病 32(34.4) 出血量 < 300 mL 56(60.2) 300~600 mL 21(22.6) 600~1000 mL 9(9.7) ≥1000 mL 7(7.5) FM 正常组(≤5 µg/mL) 9(9.7) 低水平组(6~54 µg/mL) 39(41.9) 中水平组(55~103 µg/mL) 11(11.8) 高水平组(≥104 µg/mL) 34(36.6) DD(µg/mL) 4.57 ± 4.15 术前Fib(g/L) 3.74 ± 1.34 术后Fib(g/L) 3.45 ± 7.57 vWF(µg/mL) 232.81 ± 70.96 AT-Ⅲ(%) 60.95 ± 15.91 表 2 影响FM浓度的多因素Ordinal Logistic回归分析
Table 2. Ordinal logistic regression analysis of multiple factors affecting FM
参数 单因素分析 Chi-Square Estimate P 95%CI 整体模型拟合 92.046 0.001* 拟合优度检验 Deviance 133.164 1.000 平行线检验 112.043 0.325 vWF −0.002 0.366 −0.08~0.03 AT-Ⅲ 0.18 0.844 −0.07~0.042 肝脏恶性肿瘤 0.776 0.020* −2,5~1.782 胃肠道恶性肿瘤 0.463 0.020* 1.80~4.46 肾脏恶性肿瘤 −0.336 0.180 −1.8~1.07 出血量 < 300 mL −0.724 0.578 −2.29~0.85 出血量300~600 mL −0.544 0.408 −2.21~1.12 出血量600~1000 mL 0.472 0.005* 1.27~4.68 年龄 −0.15 0.030* −0.05~0.15 性别 −0.009 0.998 −0.86~0.78 变量 多因素分析 参数估计 P 95%CI 胃肠道恶性肿瘤 −0.442 0.038* 1.50~6.21 出血量600~1000 mL 0.269 0.017* 0.89~1.68 注:*P < 0.05,代表该参数对因变量(FM)有影响。 表 3 FM与纤维蛋白原(Fib)、DD双变量相关性分析
Table 3. Bivariate correlation analysis of FM with fibrinogen (Fib) and DD
FM 样本量(N) 相关系数(R) Sig(P值) Fib(术前) 93 −0.100 0.371 Fib(术后24 h) 93 −0.258 0.012* DD(术后24 h) 93 0.536 < 0.001* 注:*P < 0.05,代表该参数与FM有相关性。 -
[1] Wada H,Sakuragawa N. Are fibrin-related markers useful for the diagnosis of thrombosis[J]. Semin Thromb Hemost,2008,34(1):33-38. doi: 10.1055/s-2008-1066021 [2] Toh J M,Ken-Dror G,Downey C,et al. The clinical utility of fibrin-related biomarkers in sepsis[J]. Blood Coagul Fibrinolysis,2013,24(8):839-43. doi: 10.1097/MBC.0b013e3283646659 [3] Singh N,Pati H P,Tyagi S,et al. Evaluation of the diagnostic performance of fibrin monomer in comparison to d-Dimer in patients with overt and nonovert disseminated intravascular coagulation[J]. Clin Appl Thromb Hemost,2017,23(5):460-465. doi: 10.1177/1076029615615959 [4] Refaai M A,Riley P,Mardovina T,et al. The clinical significance of fibrin monomers[J]. Thromb Haemost,2018,118(11):1856-1866. doi: 10.1055/s-0038-1673684 [5] 赵怀峰,梁立强,祁建伟,等. 制订手术准入标准 实行手术分级管理[J]. 中国医院,2003(2):41-45. doi: 10.3969/j.issn.1671-0592.2003.02.011 [6] Marshall R S. Progress in intravenous thrombolytic therapy for acute stroke[J]. JAMA Neurol,2015,72(8):928-934. doi: 10.1001/jamaneurol.2015.0835 [7] Korte W,Gabi K,Rohner M,et al. Preoperative fibrin monomer measurement allows risk stratification for high intraoperative blood loss in elective surgery[J]. Thromb Haemost,2005,94(1):211-215. [8] Kochi M,Shimomura M,Hinoi T,et al. Possible role of soluble fibrin monomer complex after gastroenterological surgery[J]. World J Gastroenterol,2017,23(12):2209-2216. doi: 10.3748/wjg.v23.i12.2209 [9] Hayashi H,Shimizu A,Kubota K,et al. Asymptomatic venous thromboembolism after hepatobiliary-pancreatic surgery: Early detection using D-dimer and soluble fibrin monomer complex levels[J]. Ann Gastroenterol Surg,2022,6(1):109-118. doi: 10.1002/ags3.12495 [10] Falvo M R,Gorkun O V,Lord S T. The molecular origins of the mechanical properties of fibrin[J]. Biophys Chem,2010,152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009 [11] Dopsaj V,Bogavac-Stanojevic N,Vasic D,et al. Excluding deep venous thrombosis in symptomatic outpatients: is fibrin monomer aid to D-dimer analysis[J]. Blood Coagul Fibrinolysis,2009,20(7):546-551. doi: 10.1097/MBC.0b013e32832e0605 -