Clinical Significance of a Marker of Thrombin Activity-fibrin Monomer after Surgery
-
摘要:
目的 探讨凝血酶活化标记物-纤维蛋白单体(FM)在外科术后的影响因素和临床意义。 方法 回顾性分析2021年12月至2022年5月昆明医科大学第二附属医院重症医学科收治的93例Ⅲ~Ⅳ级手术术后患者,收集患者临床资料和围术期出血量。记录手术前(T0)纤维蛋白原(Fib)、术后当日(T1)纤维蛋白原(Fib)和术后24 h(T2)血浆纤维蛋白单体(FM)、抗凝血酶Ⅲ(AT-Ⅲ)、血管性血友病因子(vWF)及纤维蛋白降解产物(DD二聚体)等指标。根据FM检测值的正常参考范围,将患者分为正常组、低水平组、中水平组、高水平组。统计描述患者临床资料;等级Logistic回归分析影响FM的因素;双变量相关性分析FM与Fib及DD的关系;方差分析不同疾病组FM的差异。 结果 (1)共纳入Ⅲ~Ⅳ级手术术后患者93例,平均年龄(59±13)岁,男性49例,女性44例。其中61例是恶性肿瘤患者(66%),32例是非肿瘤患者(34%);(2)纤维蛋白单体(FM)正常水平组(≤5 µg/mL)9例(9.7%),FM(4.32±1.07) µg/mL;低水平组(6~54 µg/mL)39例(41.9%),FM(20.67±13.25) μg/mL;中水平组(55~103 µg/mL)11例(11.8%),FM(73.96±13.38) µg/mL;高水平组(≥104 µg/mL)34例(36.6%),FM(172.30±26.78)μg/L,方差分析(ANOVA)显示正常水平组和低水平组间差异有统计学意义(P < 0.05),其余各组间差异有统计学意义(P < 0.001)。等级Logistic回归分析显示:出血量达600~1000 mL和胃肠道手术会影响FM的浓度(P < 0.05)。vWF、AT-Ⅲ、肝脏恶性肿瘤、肾脏恶性肿瘤、其他非肿瘤性疾病、年龄、性别均对纤维蛋白单体(FM)浓度无明显影响(P > 0.05);(3)双变量相关分析显示FM与T0、T1时间Fib无相关性,但是与T2时间Fib呈负相关(r = -0.258,P < 0.05),T2时间DD与FM呈正相关(r = 0.536,P < 0.001);(4)肝脏恶性肿瘤患者术后血浆纤维蛋白单体(FM)(76.4 µg/mL)浓度明显高于胃肠道肿瘤术后患者(25.7 μgmL),DunnettT3检验显示两者间差异有统计学意义(P < 0.05)。 结论 纤维蛋白单体(FM)反应凝血酶的激活,与DD二聚体成正相关性,术后监测纤维蛋白单体(FM)有助于判断血栓事件。外科术后凝血酶大量活化(即FM升高)与纤维蛋白原(Fib)呈负相关性,即凝血酶大量活化会水解纤维蛋白原(Fib)导致纤维蛋白原降低,外科术后应关注纤维蛋白原浓度,以免发生出血。 Abstract:Objective To investigate the clinical significance and monitoring value of fibrin monomer (FM)after surgery. Methods A total of 93 patients after surgery admitted to the Department of Critical Care Medicine, the Second Affiliated Hospital of Kunming Medical University from December 2021 to May 2022 were retrospectively analyzed. Plasma fibrin monomer (FM), antithrombinⅢ (AT-Ⅲ), von willebrand factor (vWF) and fibrin degradation products (DD ) were collected before operation (T0), on the day after operation (T1) and 24 hours after operation (T2). According to the normal reference range of FM value, patients were divided into normal group, low level group, medium level group and high level group. The clinical data of patients were statistically analyzed, the influencing factors of FM were analyzed by ordinal logistic regression, the correlation between vWF, AT-Ⅲ, DD dimer and FM was analyzed by multivariate regression, and the correlation between Fib and FM was analyzed by univariate regression. Results (1) A total of 93 patients were enrolled, with an average age of 59±13 years, including 49 males and 44 females. Of these, 61 were malignant (66%) and 32 were non-tumor (34%). (2) The patients were divided into normal group (≤5 μg/mL, n = 9 (9.7%), FM (4.32±1.07) μg/mL. The low level group was 6-54 μg/mL, 39 cases (41.9%), FM (20.67±13.25) μg/mL; Medium level group (55~103 μg/mL, 11 cases (11.8%), FM (73.96±13.38) μg/mL; High level group ≥104 μg/mL, 34 cases (36.6%), FM (172.30±26.78) μg/mL.Analysis of variance (ANOVA) showed that the difference between the normal level group and the low level group was statistically significant (P < 0.05), and the difference between the other groups was significant (P < 0.0010.00). Ordinal logistic regression analysis showed that blood loss volume, vWF, primary disease, age and gender had no significant effect on fibrin monomer (FM) (P > 0.05). (3) Bivariate correlation analysis showed that FM was not correlated with Fib at T0 and T1, but was negatively correlated with Fib at T2 (r = -0.258, P < 0.05). DD at T2 was positively correlated with FM (r = 0.536, P = 0.000). (4) The plasma fibrin monomer (FM) concentration of patients with liver malignant tumor after surgery (76.4 μg/mL) was significantly higher than that of patients with gastrointestinal tumor after surgery (25.7 μg/mL). DunnettT3 test showed that the difference was statistically significant (P < 0.05). Conclusions Monitoring of thrombin activation marker fibrin monomer (FM) in patients after surgery has certain clinical significance, which is expected to be an early marker for predicting thrombosis or guiding anticoagulant therapy. A large amount of thrombin activation after surgery can consume fibrinogen (Fib), and attention should be paid to the concentration of fibrinogen to avoid postoperative bleeding. -
Key words:
- Fibrin monomer /
- Thrombin /
- Markers /
- Postoperative surgery
-
缺血性脑卒中(ischemic stoke,IS)是人类致残的第3大原因,占脑卒中病例的80%以上,严重危害人们的健康[1]。已有研究表明缺血后大脑突触可塑性发生改变[2]。目前关于NO诱导的蛋白质S-亚硝基化修饰的研究主要集中在植物或生理条件下。蛋白质S-亚硝基化修饰可影响发育期神经元轴突生长和小脑突触可塑性[3]。但对于脑缺血、缺氧等病理条件下,NMDA受体的大量激活导致NOS活性增强,内源性大量释放的NO能否诱导神经细胞蛋白质S-亚硝基化修饰及其对AMPAR结构和功能影响如何,目前尚不清楚。且Stargazin亚硝基化修饰在脑缺血再灌注后突触可塑性中的作用及机制还有待于研究。本研究拟通过NMDAR抑制剂MK801、氧化还原剂DTT干预NMDA和NOS的活性后,检测内源性NO和Stargazin-亚硝基化修饰的变化,进而探讨此过程对大鼠MCAO/R模型神经损伤保护及突触可塑性的影响。为针对S-亚硝基化修饰蛋白与AMPAR亚基GluR2等作用位点开发和研制防治神经损伤新药提供理论依据。
1. 材料与方法
1.1 动物模型建立和实验分组
健康雄性清洁级Sprague- Dawley(SD)大鼠24只,体重 220 g 左右,由昆明医科大学动物实验中心提供,动物合格证号为:SYXK(滇)K2020-0006。实验分为4组:假手术组(Sham)、脑缺血再灌注模型组(MCAO/R)、MK801处理组、DTT处理组,每组6只大鼠。MCAO/R建立方法:大鼠术前禁食12 h ,自由饮水,腹腔内注射10%水合氯醛(0.3 mL/100 g)麻醉后,置于恒温大鼠手术台上,固定四肢及头部。剔除动物颈部皮毛,碘伏消毒后在无菌条件下颈正中切口,暴露并分离右侧颈总动脉(CCA),颈外动脉(ECA)、颈内动脉(ICA)。用眼科剪在ECA结扎线近端剪一斜口,硅胶尼龙线栓[头端直径 (0.38±0.02) mm]涂布肝素后,经ECA切口插入,穿过交叉处进入ICA直达大脑中动脉(MCA)入口处,插线深度距离交叉部约为10~20 mm。结扎ECA近心端,60 min后从ECA轻轻抽出线栓只颈动脉交叉处,再灌注24 h,完成缺血再灌注。实验大鼠术中均用保温垫使其肛温维持在(37±0.5) ℃,术后放置于保温垫中直至复苏。模型成功判断标准:大鼠麻醉清醒后出现站立不稳,倾倒,左侧肢体瘫痪,左爪不能伸展,醒后追尾,向右侧行走,提尾时向一侧转圈。假手术组:暴露颈动脉,不做栓塞处理;MCAO/R模型组:腹腔注射同等体积的生理盐水;MK801处理组:制作模型后30 min内,腹腔注射30 mg/kg NMDAR抑制剂MK801;DTT处理组:制作模型后30 min内,腹腔注射30 mg/kg氧化还原剂DTT。
1.2 神经功能评分
缺血再灌注24 h后进行神经功能评分。由一位不知晓实验分组的研究者,以神经损伤程度评分(modified neurological severity score,mNSS)量表进行评估[4],评分内容包括运动功能测试、感觉功能测试、平衡能力、反射缺失和异常运动4个部分,每部分又分为若干小项,最高18分。总分1~6分为轻度损伤,7~12分为中度损伤,13~18分为重度损伤。
1.3 TTC染色
缺血再灌注后24 h,神经功能评分后,10%水合氯醛(400 mg/kg)深度麻醉大鼠后,生理盐水灌注快速取新鲜全脑,保证脑组织完整性,-20 ℃速冻20 min,便于切片,切成2 mm厚的脑片,5~6片,第1刀在脑前极与视交叉连线中点处;第2刀在视交叉部位;第3刀在漏斗柄部位;第4刀在漏斗柄与后叶尾极之间。将切片转移至装有新鲜配制的浓度为1%的2,3,5-氯化三苯四唑(TTC)溶液中,避光环境下。37℃水浴箱中染色15 min,每5 min摇晃1次以使其均匀染色。吸水纸吸干表面水渍,放入扫描仪中扫描存取图片。用Image J分析图片计算脑梗死及正常组织面积,并用下列公式计算脑梗死体积百分比:
$${\text{半球容积}} = \left[ {\left( {{\text{正面面积}} + {\text{反面面积}}} \right)/2} \right] \times {\text{切片厚度}}$$ $$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\begin{split}& {\text{总梗死容积百分比}} =\\& \frac{{\displaystyle\sum {\left( {{\text{对侧正常组织容积}} - {\text{同侧正常组织容积}}} \right)} }}{{\displaystyle\sum {{\text{对侧正常组织容积}} \times 2} }} \times 100\% \end{split}$$ 1.4 TUNEL染色检测细胞凋亡
缺血再灌注后24 h,4%多聚甲醛灌注取全脑组织,分离缺血侧脑组织,进行石蜡包埋,石蜡切片,按照TUNEL试剂盒操作步骤进行染色,正置显微镜下白光拍照,观察缺血侧海马CA1区神经细胞的凋亡情况。
1.5 Griess法检测NO含量
处死动物后,迅速取缺血侧脑组织,分离新鲜海马组织,称重后置于冰浸的生理盐水中冲洗2次后,用玻璃匀浆器制备组织匀浆,用生理盐水配制成10%匀浆,4000 r/min,离心5 min,取50 μL上清溶液转移至96孔板中,加入50 μL试剂Griess A溶液,摇床上避光摇晃10 min后,在加入50 μL的Griess B溶液,摇晃10 min后,混合溶液呈玫红色,置于多功能酶标仪上585 nm波长下检测吸光值(OD)。
1.6 亚硝基化蛋白提取
新鲜分离大鼠海马组织,将组织样本按10 μL/mg加入蛋白裂解液,提取组织总蛋白。根据亚硝基化蛋白提取试剂盒说明书操作方法进行还原-SNO,同时标记Biotin。加入预冷的丙酮进行沉淀蛋白。取一小部分进行蛋白定量,实验时取30 μL用做Input组。其他样本加入链霉亲和素珠子,4 ℃孵育过夜。1400 r/min,离心20 s收集珠子,洗涤,加入Loadding buffer,煮沸蛋白变性,-20 ℃保存。以上全过程在光线较暗的环境中进行。
1.7 Western Blot实验检测蛋白表达水平
取大鼠海马组织100 mg,使用全蛋白提取试剂盒提取蛋白。BCA蛋白质定量法测定蛋白浓度后,确定蛋白质上样总量110 μg,取蛋白样品加入Loadding buffer使总体积为20 μL,煮沸变性5~10 min,进行SDS-PAGE电泳分离2~3 h,300 mA恒流1h湿转至PVDF膜上,用含5%脱脂奶粉溶液封闭3h,TBST溶液洗3次。分别与兔单克隆Cleaved Caspase-3抗体(1∶500),兔单克隆Bax抗体(1∶2 000),兔单克隆Bcl-2抗体(1∶1000),兔抗大鼠GLUR1抗体(1∶2 000)、兔抗大鼠GLUR2抗体(1∶2 000)、兔抗大鼠p-GLUR1抗体(1∶1000)、兔抗大鼠p-GLUR2抗体(1∶1000)溶液3 mL溶液混合,4 ℃摇床孵育过夜TBST溶液洗3次。与辣根过氧化物酶(HRP)标记的二抗(1∶1000)5 mL室温孵育2 h,TBST洗膜3次。ECL化学发光试剂反应,应用UVP凝胶成像系统观察并拍摄图片。采用Image J图像分析软件读取目的蛋白和GAPDH内参蛋白条带灰度值,其以目的条带IOD值与GAPDH条带IOD值的比值表示目的蛋白的相对表达水平。
1.8 统计学处理
计量资料服从正态分布,并通过GraphPad Prism 9.0 软件(graphpad software,san diego,CA)进行统计分析。数据表达均以平均数±标准差(
$\bar x \pm s$ )表示,组间比较采用单因素方差分析,如有差异进一步用Tukey’ s Multiple Comparison Test进行两两比较。在图中以连线表示比较的组别,P < 0.05为差异有统计学意义。2. 结果
2.1 抑制内源性NO对MCAO/R大鼠神经损伤的影响
与假手术组比较,模型组mNSS神经功能评分升高,缺血海马组织中NO的含量升高(P < 0.01)。与模型组相比,在MCAO/R大鼠模型中分别给予NMDAR抑制剂MK801或氧化还原剂DTT进行干预后,mNSS评分神经功能评分降低,见图1A;NO的含量下降(P < 0.01),见图1B。根据结果可推断,在MCAO/R中,神经功能损伤程度与大量内源性NO产生有关,即神经功能损伤程度越大,内源性NO的含量越高。
2.2 抑制内源性NO对MCAO/R大鼠脑组织损伤和凋亡的影响
与假手术组相比,模型组脑梗死面积占整个脑组织的(56±4.3)%,而MK801或DTT处理组,脑梗死面积与模型组相比减少,梗死面积分别为(31±2.8)%、(34±2.1)%,(P < 0.01),见图2A、图2B。取全脑组织进行TUNEL染色检测海马神经元凋亡情况,从图中可以看出,在MCAO/R模型组中海马CA1区大量细胞凋亡,MK801与DTT干预后抑制细胞凋亡,见图2C。WB结果显示,与假手术组相比,模型组Cleaved-Caspase-3、Bax(P < 0.0001)表达升高,Bcl-2表达下调(P < 0.0001),而MK801与DTT干预后,凋亡相关蛋白Cleaved-Caspase-3(P < 0.001)、Bax表达降低(P < 0.001,P < 0.0001),Bcl-2表达在DTT干预后上调(P < 0.01),MK801干预后无显著性差异,见图3A至图3D。
2.3 抑制内源性NO对 Stargazin-亚硝基化的影响
Western Blot检测结果表明,与假手术组相比,模型组海马组织中Stargazin蛋白发生亚硝基化修饰程度较高(P < 0.0001)。MK801或DTT作用MCAO/R模型抑制缺血海马组织中Stargazin-亚硝基化水平(P < 0.0001),见图4A、图4B。
2.4 抑制内源性NO对AMPAR表达和活化的影响
与假手术比较,脑缺血再灌注后GluR2表达下调,然而其磷酸化水平升高,差别具有统计学意义(P < 0.0001)。MK801和DTT干预MCAO/R模型后,GluR2磷酸化水平被抑制,见图5A、图5B)。两种抑制剂对GluR1的磷酸化水平没有显著的作用,见图5A、图5C。检测结果显示,MK801或DTT作用MCAO/R模型抑制缺血海马组织中GluR2磷酸化水平(P < 0.0001)。
3. 讨论
脑缺血是由脑内动脉局灶性闭塞或狭窄引起的,导致脑缺血、缺氧,并对大脑产生一些列的病理损害,表现为兴奋毒性、氧化应激、细胞内钙超载、炎症反应等最终导致细胞凋亡或坏死。缺血后大脑突触可塑性发生改变[2],课题组前期的研究已证实,在脑缺血缺氧等病理条件下,机体过量释放NO介导了神经元损伤与修复,其作用机制较为复杂[5]。在本研究中采用NMDAR抑制剂MK801与氧化还原剂DTT干预内源性NO产生后,改善MCAO/R后的神经功能。
神经内源性NO主要依赖于神经性一氧化合酶氮(nNOS)的活性,而NMDA受体的大量激活能够促进NOS的活性,导致大量的内源性NO产生。NO作用于半胱氨酸巯基生成低分子量亚硝基硫醇或亚硝基化蛋白质,进而改变蛋白质构象及蛋白质功能。S-亚硝基化是一种依赖NO或其衍生物的巯基氧化修饰,可直接或通过引起谷胱甘肽化,二硫键形成与NO相关的巯基氧化修饰方式调节翻译后蛋白质功能[6-7]。Zhang等[3]研究提示,蛋白质S-亚硝基化修饰可影响发育期神经元轴突生长和小脑突触可塑性。
AMPAR是一种离子通道型谷氨酸特异性受体,在突出可塑性形成机制中具有重要作用。AMPAR大多是由GluR2二聚体和GluR1、GluR3或GluR4组成的四聚复合体,其中GluR2 是决定AMPAR功能的重要亚基。在脑海马区域,绝大部分神经元突触膜表面的AMPAR含有GluR2亚基,且各构成亚基呈高度动态表达(胞吐和内化),调控着“沉默突触”的活化和突触的可塑性;含有GluR2和缺乏GluR2的AMPAR比例结构的变化,使AMPAR在调节神经毒性和突触传递中起着较为重要的作用,也由此成为防治缺血性神经损伤和突触可塑性研究的重要靶点[5]。缺血、缺氧可导致脑内AMPAR各亚基表达与分布发生变化,海马CA1区GluR2表达减少,并认为这是中枢神经短时性缺血引起易损部位神经丢失和突触功能受损的主要原因[8]。本研究结果显示在缺血再灌注模型中GluR2的表达下降,而不是GluR1。缺乏GluR2亚基的AMPAR对Ca2+具有较高通透性,而含有GluR2亚基的AMPAR则对Ca2+不通透[9]。Stargazin是一种主要在小脑颗粒神经元表达的电压依赖钙离子通道的γ-2亚基,调节谷氨酸受体质膜运输和突触定位,作为辅助蛋白调节AMPAR的功能。Stargazin的S-亚硝基化作用增加了与AMPAR亚基GluR1的结合,AMPAR是一种离子通道型谷氨酸受体,调控着“沉默突触”的活化和突触的可塑性[10]。Selvakumar B等[5]研究证实,NO在生理情况下可诱导离体培养HEK293细胞stargazin亚硝基化,促进GluR1与stargazin辅助蛋白间的相互作用和在突触膜上表达的增加,这个过程受到NMDAR激活及nNOS活性的调节。本研究发现在脑缺血再灌注引起神经损伤过程中NO生成量增加,且Stargazin亚硝基化修饰水平升高,给予NMDAR抑制剂MK801与氧化还原剂DTT干预后,Stargazin亚硝基化修饰水平降低。同时TTC染色,TUNEL染色结果和WB结果显示,干预组脑梗死面积减少,海马CA1神经元凋亡数量也减少。这一结果提示,在MCAO/R模型中,大量释放的NO可能参与Stargazin亚硝基化修饰,进而影响神经功能的损伤修复。
Tigaret CM等[11]研究发现,NMDAR激活通过增加细胞内Ca2+浓度可调节海马神经细胞GluR2短暂内吞;Liu DT等[12]进一步证实,生理条件下或缺氧等刺激诱导机体谷氨酸释放,可通过激活NMDAR而诱导PKC的活化,GluR2的C端S880位点磷酸化,失去与锚定蛋白结合能力进而与蛋白激酶C相互作用蛋白1(PICK1)结合,完成胞吞过程。AMPA受体的内吞是由亚基磷酸化水平介导的,磷酸化促进内吞的发生,含有GluR2与GluR1/3亚单位的AMPA受体被内吞到细胞内,而不含GluR2却含有GluR1/3亚单位的AMPA受体被排到细胞外面[13-14]。本研究结果显示,在脑缺血再灌注模型中,GluR2磷酸化水平要远远大于GluR1,而NMDAR抑制剂MK801与氧化还原剂DTT干预组磷酸化水平被抑制。这一结果提示,脑缺血再灌注神经损伤GluR2介导的突触重塑可能受Stargazin亚硝基化修饰调控。
综上所述,在MCAO/R模型中,机体会释放大量的NO,NO可能通过促进Stargazin发生亚硝基化修饰,降低了Stargazin辅助蛋白与AMPAR亚基GluR2亲和力和表达,进而导致突触功能重塑失败。调控Stargazin-亚硝基化修饰能够逆转AMPAR功能恢复正常,增加含GluR2亚基AMPAR在膜上比例而调节突触兴奋性与可塑性,该途径可能作为调控脑缺血后神经元损伤和突触功能重建新机制。
-
表 1 93例外科术后患者基础资料与凝血指标[n(%)/
$\bar x \pm s $ ]Table 1. Basic data and coagulation indexes of 93 patients postoperation [n(%)/
$\bar x \pm s $ ]变量 数值 性别 男性 49(52.7) 女性 44(47.3) 年龄(岁) 59.00 ± 8.62 原发疾病 肝脏恶性肿瘤 29(31.2) 胃肠道恶性肿瘤 23(24.7) 肾脏恶性肿瘤 9(9.7) 其他非肿瘤性疾病 32(34.4) 出血量 < 300 mL 56(60.2) 300~600 mL 21(22.6) 600~1000 mL 9(9.7) ≥1000 mL 7(7.5) FM 正常组(≤5 µg/mL) 9(9.7) 低水平组(6~54 µg/mL) 39(41.9) 中水平组(55~103 µg/mL) 11(11.8) 高水平组(≥104 µg/mL) 34(36.6) DD(µg/mL) 4.57 ± 4.15 术前Fib(g/L) 3.74 ± 1.34 术后Fib(g/L) 3.45 ± 7.57 vWF(µg/mL) 232.81 ± 70.96 AT-Ⅲ(%) 60.95 ± 15.91 表 2 影响FM浓度的多因素Ordinal Logistic回归分析
Table 2. Ordinal logistic regression analysis of multiple factors affecting FM
参数 单因素分析 Chi-Square Estimate P 95%CI 整体模型拟合 92.046 0.001* 拟合优度检验 Deviance 133.164 1.000 平行线检验 112.043 0.325 vWF −0.002 0.366 −0.08~0.03 AT-Ⅲ 0.18 0.844 −0.07~0.042 肝脏恶性肿瘤 0.776 0.020* −2,5~1.782 胃肠道恶性肿瘤 0.463 0.020* 1.80~4.46 肾脏恶性肿瘤 −0.336 0.180 −1.8~1.07 出血量 < 300 mL −0.724 0.578 −2.29~0.85 出血量300~600 mL −0.544 0.408 −2.21~1.12 出血量600~1000 mL 0.472 0.005* 1.27~4.68 年龄 −0.15 0.030* −0.05~0.15 性别 −0.009 0.998 −0.86~0.78 变量 多因素分析 参数估计 P 95%CI 胃肠道恶性肿瘤 −0.442 0.038* 1.50~6.21 出血量600~1000 mL 0.269 0.017* 0.89~1.68 注:*P < 0.05,代表该参数对因变量(FM)有影响。 表 3 FM与纤维蛋白原(Fib)、DD双变量相关性分析
Table 3. Bivariate correlation analysis of FM with fibrinogen (Fib) and DD
FM 样本量(N) 相关系数(R) Sig(P值) Fib(术前) 93 −0.100 0.371 Fib(术后24 h) 93 −0.258 0.012* DD(术后24 h) 93 0.536 < 0.001* 注:*P < 0.05,代表该参数与FM有相关性。 -
[1] Wada H,Sakuragawa N. Are fibrin-related markers useful for the diagnosis of thrombosis[J]. Semin Thromb Hemost,2008,34(1):33-38. doi: 10.1055/s-2008-1066021 [2] Toh J M,Ken-Dror G,Downey C,et al. The clinical utility of fibrin-related biomarkers in sepsis[J]. Blood Coagul Fibrinolysis,2013,24(8):839-43. doi: 10.1097/MBC.0b013e3283646659 [3] Singh N,Pati H P,Tyagi S,et al. Evaluation of the diagnostic performance of fibrin monomer in comparison to d-Dimer in patients with overt and nonovert disseminated intravascular coagulation[J]. Clin Appl Thromb Hemost,2017,23(5):460-465. doi: 10.1177/1076029615615959 [4] Refaai M A,Riley P,Mardovina T,et al. The clinical significance of fibrin monomers[J]. Thromb Haemost,2018,118(11):1856-1866. doi: 10.1055/s-0038-1673684 [5] 赵怀峰,梁立强,祁建伟,等. 制订手术准入标准 实行手术分级管理[J]. 中国医院,2003(2):41-45. doi: 10.3969/j.issn.1671-0592.2003.02.011 [6] Marshall R S. Progress in intravenous thrombolytic therapy for acute stroke[J]. JAMA Neurol,2015,72(8):928-934. doi: 10.1001/jamaneurol.2015.0835 [7] Korte W,Gabi K,Rohner M,et al. Preoperative fibrin monomer measurement allows risk stratification for high intraoperative blood loss in elective surgery[J]. Thromb Haemost,2005,94(1):211-215. [8] Kochi M,Shimomura M,Hinoi T,et al. Possible role of soluble fibrin monomer complex after gastroenterological surgery[J]. World J Gastroenterol,2017,23(12):2209-2216. doi: 10.3748/wjg.v23.i12.2209 [9] Hayashi H,Shimizu A,Kubota K,et al. Asymptomatic venous thromboembolism after hepatobiliary-pancreatic surgery: Early detection using D-dimer and soluble fibrin monomer complex levels[J]. Ann Gastroenterol Surg,2022,6(1):109-118. doi: 10.1002/ags3.12495 [10] Falvo M R,Gorkun O V,Lord S T. The molecular origins of the mechanical properties of fibrin[J]. Biophys Chem,2010,152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009 [11] Dopsaj V,Bogavac-Stanojevic N,Vasic D,et al. Excluding deep venous thrombosis in symptomatic outpatients: is fibrin monomer aid to D-dimer analysis[J]. Blood Coagul Fibrinolysis,2009,20(7):546-551. doi: 10.1097/MBC.0b013e32832e0605 -