Analysis on the Application of Optical Coherence Tomographic and Quantitative Flow Ratio in Intermediate In-stent Restenosis Lesions
-
摘要:
目的 观察光学相干断层成像( optical coherence tomography,OCT) 联合定量血流分数(quantitative flow ratio,QFR)对支架内再狭窄(in stent restenosis,ISR)临界病变中的指导作用。 方法 将云南省阜外心血管病医院2019年1月至2020年6月收治共48例患者,57处ISR临界病变通过OCT联合QFR指导治疗进行回顾性研究分析,讨论其在ISR临界病变中指导治疗方式的应用价值,对QFR≤0.80 或 QFR > 0.8但OCT为阳性结果的患者进行冠脉介入治疗,对QFR > 0.8且OCT为阴性结果的患者予以优化药物治疗。 结果 57处病变中29处目标血管QFR结果判断为阴性,OCT也判断阴性,继续药物保守治疗。16处目标血管QFR结果判断为阳性,OCT结果也判断阳性,分别接受了再次植入支架或药物球囊的处理。8处的目标血管QFR结果判断为阴性,而OCT结果判断阳性,分别予以药物球囊、单纯球囊扩张或支架处理。4处目标血管QFR结果判断为阳性,OCT结果为低危临界病变,均予以药物球囊的处理。随访1a的心血管主要终点事件。总体主要心血管事件(major adverse cardiac event,MACE)事件发生率较低(5.3%),各治疗组MACE事件发生率比较差异无统计学意义(P > 0.05)。 结论 OCT联合QFR治疗ISR临界病变具有重要指导意义,方便可行,能够减少不必要的手术,且能优化PCI治疗,改善临床预后。 Abstract:Objective To observe the effect of combined guidance of optical coherence tomographic (OCT) and quantitative flow ratio (QFR) in patients with In-stent restenosis (ISR) of intermediate severity. Methods Patients with intermediate ISR lesions were performed PCI or given OMT under the guidance combined OCT imaging and QFR. PCI was performed if QFR was ≤0.80 or QFR > 0.8 but OCT showed minimal luminal area < 2.0 mm2 and the in-stent plaque was unstable and more apt to rupture. Patients with QFR > 0.8 and negative OCT results were given optimal medical therapies, and major adverse cardiac events were assessed at the end of follow-up. The pre-defined primary endpoint was the composite of major adverse cardiac events or recurrent angina at one year. Results A total of 48 patients (with 57 intermediate ISR lesions ) were enrolled. There are 29 lesions of QFR (-)OCT (-); 16 lesions of QFR (+)OCT (+), 8 lesions of QFR (-)OCT (+) and 4 lesions of QFR (+)OCT (-). We found low occurrence (5.3%) of the primary endpoint of major adverse cardiac events or recurrent angina after one year follow-up.No significant difference was found in the incidence of major adverse cardiac events between the 4 groups. Conclusions In patients with intermediate ISR lesions, Combined OCT and QFR Guidance can provide useful prognostic information, reduce the number of unnecessary PCI Procedures and is associated with a lower occurrence of the composite of major adverse cardiac events -
密蒙花又名小锦花、黄饭花、鸡骨头花、染饭花等,为马钱科醉鱼草属植物密蒙花(Buddleja officinalis Maxim)的干燥花蕾和花序[1],在我国主要分布在陕西、甘肃以及西南、中南等地区,生长在海拔200~2800 m的向阳山坡、河边、灌木从中或林缘。该植物最早记载于《开宝本草》[2],具有清热泻火、养肝明目、退翳功效。本文对密蒙花乙酸乙酯层中的化学成分进行系统性研究,为该植物的开发利用奠定了理论基础。
1. 材料与方法
1.1 材料与仪器
1.1.1 实验原料
原料密蒙花采摘于云南昆明,摘掉叶和茎,留下花蕾和花序部分。
1.1.2 实验设备
设备仪器ZF-2型三用紫外分析仪,上海安亭电子仪器厂:VGAUTO Spec-3000型质谱仪,美国Thermo公司;Bruker AM-400,AVANCEⅢ 500 MHz,AVANCE Ⅲ 600 MHz型核磁共振仪,德国,Brucker公司。
1.2 实验方法
方法干燥密蒙花花蕾和花序7.8 kg,用75%乙醇浸提3次,每次72 h,过滤,合并提取液,回收乙醇得到总浸膏。总浸膏用蒸馏水溶解,用等体积乙酸乙酯和正丁醇依次萃取3次,分别得到乙酸乙酯层、正丁醇层和水层,分别浓缩得其浸膏。取乙酸乙酯层浸膏(150 g),经硅胶柱色谱和Spehadex LH-20凝胶柱色谱反复梯度洗脱得到单体化合物,通过MS、1H-NMR和13C-NMR鉴定其结构。
2. 结果
本实验从密蒙花乙酸乙酯层浸膏分离得到10个化合物,鉴定结果如下,结构如图1所示。
化合物Ⅰ:白色针状(氯仿),分子式C30H50O,ESI-MS m/z,426 [M + H]+。1H NMR(500 MHz,CDCl3)δ:5.13(1H,t,J = 3.6 Hz,H-12),3.22(1H,dd,J = 5.2,11.0 Hz,H-3),1.07(3H,s),1.01(3H,s),1.00(3H,s),1.00(3H,d,J = 7.0 Hz),0.95(3H,d, J = 7.0 Hz),0.91(3H,s),0.80(3H,s),0.79(3H,s)。13C NMR(126 MHz,CDCl3)δ:38.8(C-1),27.2(C-2),79.0(C-3),39.2(C-4),55.3(C-5),18.4(C-6),32.9(C-7),40.0(C-8),47.7(C-9),36.9(C-10),23.2(C-11),124.43(C-12),139.59(C-13),42.1(C-14),28.5(C-15),26.6(C-16),33.8(C-17),59.1(C-18),39.7(C-19),39.6(C-20),31.3(C-21),41.5(C-22),28.2(C-23),15.6(C-24),15.7(C-25),16.9(C-26),23.3(C-27),28.8(C-28),17.5(C-29),21.4(C-30)。
化合物Ⅱ:白色粉末状(氯仿),分子式C29H48O,ESI-MS m/z:412 [M + H]+。1H NMR(500 MHz,CDCl3)δ:5.35(1H,m,H-6),5.15(1H,dd,J = 15.0,8.5 Hz,Ha-22),5.02(1H,dd, J = 15.0,8.5 Hz,Ha-23),3.52(1H,m,H-3),1.03(3H,s,H-19),1.01(3H,d, J = 7.0 Hz,H-21),0.85(3H,t,J = 6.5 Hz,H-29),0.82(3H,d,J = 7.0 Hz,H-26),0.80(3H,d,J = 7.0 Hz,H-27),0.70(3H,s,H-18)。13C NMR(126 MHz,CDCl3)δ:37.3(C-1),31.7(C-2),71.8(C-3),42.3(C-4),140.8(C-5),121.7(C-6),31.9(C-7),32.0(C-8),50.2(C-9),36.5(C-10),21.1(C-11),39.7(C-12),42.2(C-13),56.9(C-14),24.4(C-15),28.9(C-16),56.0(C-17),12.0(C-18),19.4(C-19),40.5(C-20),21.2(C-21),138.3(C-22),129.3(C-23),51.2(C-24),32.0(C-25),19.0(C-26),21.1(C-27),25.4(C-28),12.2(C-29)。
化合物Ⅲ:白色无定型粉末(氯仿),分子式C30H50O,ESI-MS m/z:426[M + H]+。1H NMR(500 MHz,CDCl3)δ:3.17(1H,dd,H-3),2.36(1H,m,H-18),2.27(1H,m,H-7),1.66(3H,m,H-30),1.65(1H,m,H-1),1.50~1.70(2H,m,H-2),1.50(1H,m,H-6),1.36(1H,m,H-6),1.36(1H,m,H-7),1.38(1H,m,H-11),1.25(1H,s,H-9),1.23(1H,m,H-11),1.65(1H,s,H-12),1.01(1H,s,H-12),1.64(1H,s,H-13),0.96(1H,m,H-15),1.10(1H,m,H-15),1.47(1H,m,H-16),1.38(1H,m,H-22),1.36(1H,m,H-16),1.35(1H,m,H-19),1.24(1H,s,H-21),1.18(1H,m,H-22),1.02(3H,s,H-26),0.95(3H,s,H-23),0.93(3H,s,H-27),0.89(1H,m,H-1),0.81(3H,s,H-25),0.77(3H,s,H-28),0.74(3H,s,H-24),0.66(1H,d,J = 9.0 Hz,H-5)。13C NMR(126 MHz,CDCl3)δ:38.7(C-1),27.4(C-2),79.0(C-3),38.8(C-4),55.2(C-5),18.3(C-6),34.2(C-7),40.8(C-8),50.4(C-9),37.1(C-10),20.9(C-11),25.1(C-12),38.0(C-13),42.8(C-14),27.4(C-15),35.6(C-16),43.0(C-17),48.0(C-18),48.3(C-19),151.0(C-20),29.8(C-21),40.0(C-22),28.0(C-23),15.4(C-24),16.0(C-25),16.1(C-26),14.5(C-27),18.0(C-28),19.4(C-29),109.3(C-30)。
化合物Ⅳ:黄色粉末状(氯仿),分子式C30H48O,ESI-MS m/z:424[M + H]+。1H NMR(500 MHz,CDCl3)δ:4.72(1H,s,Ha-30),4.67(1H,s,30-Hb),1.02(18H,m,18,21,26,27,28,29-Me)。13C NMR(126 MHz,CDCl3)δ:32.8(C-1),41.4(C-2),213.5(C-3),50.8(C-4),46.2(C-5),25.3(C-6),28.2(C-7),47.8(C-8),24.4(C-9),29.1(C-10),25.9(C-11),35.1(C-12),45.3(C-13),48.8(C-14),32.7(C-15),27.6(C-16),53.2(C-17),18.0(C-18),27.3(C-19),36.2(C-20),18.8(C-21),34.9(C-22),31.3(C-23),56.4(C-24),33.0(C-25),21.1(C-26),22.5(C-27),19.2(C-28),10.7(C-29),105.9(C-30)。
化合物Ⅴ:无色结晶(氯仿),分子式C9H10O3,ESI-MS m/z:166[M + H]+。1H NMR(500 MHz,CDCl3)δ:7.47(1H,d,J = 8.6Hz),6.75(2H,d,J = 8.6Hz),4.78(1H,q,J = 7.1 Hz)。13C NMR(126MHz,CDCl3,)δ:166.9(-COOH),160.5(C-4),131.9(C-2,6),115.9(C-3,5),60.9(-OCH2),14.3(-CH3)。
化合物Ⅵ:白色粉末状(氯仿),分子式C32H52O2,ESI-MS m/z:468 [M + H]+。1H NMR(500 MHz,CDCl3)δ:0.79(3H,s,H-28),0.84(3H,s,H-24),0.85(3H,8,H-23),0.86(3H,s,H-25),0.94(3H,s,H-27),1.03(3H,s,H-26),1.68(3H,s,30-CH3),2.03(3H,8,O = CCH3),4.47(1H,m,H-3)。13C NMR(126 MHz,CDCl3)δ:14.5(C-27),16.0(C-26),16.1(C-25),16.4(C-24),18.0(C-28),18.2(C-6),19.3(C-29),20.9(C-11),21.2(C-31),23.7(C-2),25.1(C-12),27.4(C-15),27.9(C-23),29.8(C-21),34.2(C-7),35.5(C-16),37.1(C-10),37.8(C-4),38.4(C-1),40.0(C-22),40.8(C-8),42.8(C-14),43.0(C-17),48.3(C-18),48.0(C-19),50.3(C-9),55.4(C-5),80.99(C-3),109.3(C-30),150.9(C-20),171.9(C-32)。
化合物Ⅶ:黄色粉末状(甲醇),分子式C15H10O6,ESI-MS m/z:286 [M + H]+。1H NMR(500 MHz,MeOD)δ:6.68(1H,s,H-3),6.20(1H,d,J = 2.4 Hz,H-6),6.45(1H,d,J = 2.4 Hz,H-8),7.40(1H,d,J = 2.4 Hz,H-2′),6.90(1H,d,J = 8.4 Hz,H-5′),7.43(1H,dd,J = 8.4,2.4 Hz,H-6′)。13C NMR(126 MHz,MeOD)δ:166.3(C-2),104.1(C-3),183.1(C-4),163.9(C-5),100.2(C-6),166.5(C-7),94.3(C-8),159.7(C-9),103.3(C-10),120.4(C-1′),114.8(C-2′),147.2(C-3′),150.1(C-4′),116.4(C-5′),123.9(C-6′)。
化合物Ⅷ:白色粉末状(甲醇),分子式C30H48O3,ESI-MS m/z:456 [M + H]+。1H NMR(500 MHz,MeOD)δ:5.37(1H,brs,H-12),3.19(1H,m,H-3),2.78(1H,m,H-18),1.11(3H,s,H-27),0.89(3H,s,H-25),0.88(3H,s,H-26),0.75(3H,s,H-23),0.74(3H,s,H-24)。13C-NMR(126 MHz,MeOD)δ:38.8(C-1),27.4(C-2),79.5(C-3),38.8(C-4),55.2(C-5),18.3(C-6),32.2(C-7),39.8(C-8),47.4(C-9),37.1(C-10),22.9(C-11),126.6(C-12),139.3(C-13),41.8(C-14),27.7(C-15),23.6(C-16),46.2(C-17),41.0(C-18),45.3(C-19),30.2(C-20),33.8(C-21),32.9(C-22),28.3(C-23),15.4(C-24),15.3.(C-25),17.1(C-26),25.5(C-27),180.8(C-28),33.7(C-29),23.9(C-30)。
化合物Ⅸ:白色粉末状(氯仿),分子式C29H48O,ESI-MS m/z:412 [M + H]+。1H NMR(500 MHz,CDCl3)δ:5.17(3H,m,H-7,22,23),3.69(1H,m,3-OH),1.03(3H,d,J = 6.6 Hz,H-21),0.81(3H×4,H-19,26,27,29),0.56(3H,s,H-18)。13C NMR(126 MHz,CDCl3)δ:37.1(C-1),31.4(C-2),71.5(C-3),38.8(C-4),40.2(C-5),29.3(C-6),117.2(C-7),139.8(C-8),49.4(C-9),34.6(C-10),21.9(C-11),39.6(C-12),43.3(C-13),55.8(C-14),28.7(C-15),23.6(C-16),55.2(C-17),12.0(C-18),13.3(C-19),40.2(C-20),21.8(C-21),138.9(C-22),129.3(C-23),51.4(C-24),31.3.(C-25),21.1(C-26),19.5(C-27),25.8(C-28),12.7(C-29)。
化合物Ⅹ:淡黄色粉末(甲醇),分子式C28H32O14,ESI-MS m/z:591 [M + H]+。1H NMR(500 MHz,MeOD)δ:1.09(3H,d,J = 6.0 Hz,H-6),3.16(1H,dd,J = 9.0,9.0 Hz,H-4″),3.16(1H,dd,J = 9.0,9.0 Hz,H-4),3.28(1H,dd,J = 7.0,9.0 Hz,H-2″),3.32(1H,dd,J = 9.0,9.0 Hz,H-3″),3.41~3.43(1H,m,H-5),3.47(1H,dd, J = 4.5,12.0 Hz,H-6″),3.48(1H,dd,J = 3.0,9.0 Hz,H-3),3.61~3.63(1H,m,H-5″),3.68(1H,br d,J = 3.0 Hz,H-2),3.87(3H,s,4'-OCH3),3.88(1H,br d,J = 12.0 Hz,H-6″),4.56(1H,br s,H-1),5.07(1H,d,J = 7.0 Hz,H-1″),6.46(1H,br s,H-6),6.80(1H,br s,H-8),6.95(1H,s,H-3),7.15(2H,d,J = 8.5 Hz,H-3',5'),8.05(2H,d,J = 8.5 Hz,H-2',6'),12.92(1H,br s,5-OH)。13C NMR(126 MHz,MeOD)δ:183.9(C-4),166.9(C-2),166.0(C-7),163.4(C-4'),162.1(C-5),159.9(C-9),129.4(C-2',6'),123.6(C-1'),117.7(C-3',5'),105.4(C-10),103.8(C-3),100.5(Rha-C-1),99.9(Glc-C-1),99.6(C-6),94.8(C-8),76.2(Glc-C-3),75.7(GlcC-5),73.1(Glc-C-2),72.0(Rha-C-4),70.7(Glc-C-4),70.3(Rha-C-2),69.6(Rha-C-3),68.3(Rha-C-5),66.1(Glc-C-6),55.5(OCH3),17.7(Rha-C-6)。
3. 讨论
化合物Ⅰ的数据与文献报道[3]的α-香树脂醇基本一致;化合物Ⅱ与文献报道[4]的豆甾醇的数据基本一致;化合物Ⅲ与文献报道[5]的羽扇豆醇的数据基本一致;化合物Ⅳ与文献报道[6]的环桉烯酮的数据基本一致;化合物Ⅴ与文献报道[7]的对羟基苯甲酸乙酯数据基本一致;化合物Ⅵ与文献报道[8]的羽扇豆醇乙酸酯数据基本一致;化合物Ⅶ与文献报道[9]的木犀草素数据基本一致;化合物Ⅷ与文献[10]报道的熊果酸数据基本一致;化合物Ⅸ与文献报道[11]的α-菠甾醇数据基本一致;化合物Ⅹ与文献[12]报道的蒙花苷数据基本一致。
密蒙花乙醇提取物的乙酸乙酯层萃取部分经过硅胶柱层析和Spehadex LH-20凝胶柱色谱,再通过波普数据分析与文献数据对比,鉴定了10个单体化合物。它们分别为α-香树脂醇、豆甾醇、羽扇豆醇、环桉烯酮、对羟基苯甲酸乙酯、羽扇豆醇乙酸酯、木犀草素、熊果酸、α-菠甾醇、蒙花苷。其中α-香树脂醇、豆甾醇、羽扇豆醇、对羟基苯甲酸乙酯、熊果酸为该植物中首次分离。密蒙花单体化合物的分离,为以后的药理活性研究提供理论依据,为以后密蒙花的研究、开发和利用奠定基础。
-
表 1 4组患者临床基线情况比较[
$\bar x \pm s $ /n]Table 1. Baseline clinical characteristics of the patients [
$\bar x \pm s $ /n]临床资料 QFR(−)OCT(−) QFR(+)OCT(+ ) QFR(−)OCT(+) QFR(+)OCT(−) χ2 /t P 年龄(岁) 63.5 ± 7.4 61.2 ± 8.3 62.0 ± 9.5 60.8 ± 10.2 0.340 0.790 性别(男/女) 18/11 9/7 5/3 2/2 0.329 0.794 吸烟 13 5 2 1 1.733 0.682 BMI(kg/m2) 24.2 ± 3.5 23.7 ± 4.2 22.8 ± 4.5 23.5 ± 3.6 0.295 0.829 LDL-C(mmol/L) 1.74 ± 0.72 1.87 ± 0.84 2.21 ± 0.79 1.75 ± 1.15 0.756 0.524 高血压 20 13 5 2 1.961 0.509 靶血管
右冠
前降支
回旋支
12
9
8
6
7
3
2
5
1
2
2
04.064 0.836 支架植入年限(a) 1.1 ± 0.5 1.5 ± 0.7 0.9 ± 0.8 1.2 ± 0.7 2.128 0.108 表 2 不同检查组随访12月MACE事件统计(n)
Table 2. Adverse clinical events in the 3 groups at 1 year following the procedure(n)
分组 病变个数 复发心绞痛 心肌梗死 靶血管重建 心源性死亡 合计[n(%)] QFR(−)OCT(−) 29 2 0 0 0 2(6.9) QFR(+)OCT(+) 16 1 1 1 0 3(18.0) QFR(−)OCT(+) 8 0 0 1 0 1(12.5) QFR(+)OCT(−) 4 0 0 0 0 0(0.0) -
[1] Alraies M C,Darmoch F,Tummala R,et al. Diagnosis and management challenges of in-stent restenosis in coronary arteries[J]. World Journal of Cardiology,2017,9(8):640. doi: 10.4330/wjc.v9.i8.640 [2] Mcinerney A,Travieso Gonzalez A,Castro Mejia A,et al. Long‐term outcomes after deferral of revascularization of in‐stent restenosis using fractional flow reserve[J]. Catheterization and Cardiovascular Interventions,2022,99(3):723-729. doi: 10.1002/ccd.29823 [3] Vassilev D,Hazan M,Dean L. Aneurysm formation after drug‐eluting balloon treatment of drug‐eluting in‐stent restenosis: First case report[J]. Catheterization and Cardiovascular Interventions,2012,80(7):1223-1226. doi: 10.1002/ccd.23460 [4] Kang S,Mintz G S,Park D,et al. Mechanisms of in-stent restenosis after drug-eluting stent implantation: intravascular ultrasound analysis[J]. Circulation:Cardiovascular Interventions,2011,4(1):9-14. doi: 10.1161/CIRCINTERVENTIONS.110.940320 [5] Burzotta F,Leone A M,Aurigemma C,et al. Fractional flow reserve or optical coherence tomography to guide management of angiographically intermediate coronary stenosis: a single-center trial[J]. Cardiovascular Interventions,2020,13(1):49-58. doi: 10.1016/j.jcin.2019.09.034 [6] Krüger S,Koch K,Kaumanns I,et al. Clinical significance of fractional flow reserve for evaluation of functional lesion severity in stent restenosis and native coronary arteries[J]. Chest,2005,128(3):1645-1649. doi: 10.1378/chest.128.3.1645 [7] Andreini D,Mushtaq S,Pontone G,et al. CT perfusion versus coronary CT angiography in patients with suspected in-stent restenosis or CAD progression[J]. Cardiovascular Imaging,2020,13(3):732-742. [8] Cai X,Tian F,Jing J,et al. Prognostic value of quantitative flow ratio measured immediately after drug-coated balloon angioplasty for in-stent restenosis[J]. Catheterization and Cardiovascular Interventions,2021,97(S2):1048-1054. doi: 10.1002/ccd.29640 [9] Kołtowski Ł,Zaleska M,Maksym J,et al. Quantitative flow ratio derived from diagnostic coronary angiography in assessment of patients with intermediate coronary stenosis: a wire-free fractional flow reserve study[J]. Clinical Research in Cardiology,2018,107(9):858-867. doi: 10.1007/s00392-018-1258-7 [10] Lopez-Palop R,Pinar E,Lozano I,et al. Utility of the fractional flow reserve in the evaluation of angiographically moderate in-stent restenosis[J]. European Heart Journal,2004,25(22):2040-2047. doi: 10.1016/j.ehj.2004.07.016 [11] Wienemann H,Ameskamp C,Mejía-Rentería H,et al. Diagnostic performance of quantitative flow ratio versus fractional flow reserve and resting full-cycle ratio in intermediate coronary lesions[J]. International Journal of Cardiology,2022,362:59-67. [12] Kedhi E,Berta B,Roleder T,et al. TCT-416 Rationale and design of COMBINE (OCT–FFR) assessment of non-culprit lesions to better predict adverse event outcomes in diabetes mellitus patients.[J]. Journal of the American College of Cardiology,2017,70(18S):B171. [13] Batty J A,Subba S,Luke P,et al. Intracoronary imaging in the detection of vulnerable plaques[J]. Current Cardiology Reports,2016,18(3):28. doi: 10.1007/s11886-016-0705-1 [14] Sato T,Goto S,Kishi S,et al. Predictors and outcomes of ischemia-driven target lesion revascularization in deferred lesion based on fractional flow reserve: a multi-center retrospective cohort study[J]. Cardiovascular Diagnosis and Therapy,2022,12(4):485. doi: 10.21037/cdt-21-773 [15] Tomaniak M,Ochijewicz D,Kołtowski Ł,et al. OCT-derived plaque morphology and FFR-determined hemodynamic relevance in intermediate coronary stenoses[J]. Journal of Clinical Medicine,2021,10(11):2379. doi: 10.3390/jcm10112379 [16] Burzotta F,Leone A M,De Maria G L,et al. Fractional flow reserve or optical coherence tomography guidance to revascularize intermediate coronary stenosis using angioplasty (FORZA) trial: study protocol for a randomized controlled trial[J]. Trials,2014,15(1):1-9. doi: 10.1186/1745-6215-15-1 [17] Pawlowski T,Prati F,Kulawik T,et al. Optical coherence tomography criteria for defining functional severity of intermediate lesions: a comparative study with FFR[J]. The International Journal of Cardiovascular Imaging,2013,29(8):1685-1691. doi: 10.1007/s10554-013-0283-x [18] Shiono Y,Kitabata H,Kubo T,et al. Optical coherence tomography-derived anatomical criteria for functionally significant coronary stenosis assessed by fractional flow reserve[J]. Circulation Journal,2012,76(9):2218-2225. doi: 10.1253/circj.CJ-12-0195 [19] Ramasamy A,Chen Y,Zanchin T,et al. Optical coherence tomography enables more accurate detection of functionally significant intermediate non-left main coronary artery stenoses than intravascular ultrasound: a meta-analysis of 6919 patients and 7537 lesions[J]. International Journal of Cardiology,2020,301:226-234. doi: 10.1016/j.ijcard.2019.09.067 [20] Xu B,Tu S,Qiao S,et al. Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis[J]. Journal of the American College of Cardiology,2017,70(25):3077-3087. doi: 10.1016/j.jacc.2017.10.035 [21] Xu B,Tu S,Song L,et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre,randomised,sham-controlled trial[J]. The Lancet,2021,398(10317):2149-2159. doi: 10.1016/S0140-6736(21)02248-0 [22] Hoshino M,Yonetsu T,Kanaji Y,et al. Impact of baseline plaque characteristic on the development of neoatherosclerosis in the very late phase after stenting[J]. Journal of Cardiology,2019,74(1):67-73. doi: 10.1016/j.jjcc.2019.01.002 [23] Kedhi E,Roleder T,Hermanides R,et al. TCT CONNECT-281 clinical outcomes of optical coherence tomography detected high-risk versus low-risk coronary atherosclerotic lesions in medically treated fractional flow reserve negative lesions in diabetes mellitus patients:The COMBINE trial[J]. Journal of the American College of Cardiology,2020,76(17 Supplement S):B122. [24] Sumino Y,Yonetsu T,Ueno H,et al. Impact of neoatherosclerosis observed at very late phase after coronary stent implantation on subsequent adverse events[J]. European Heart Journal,2020,41(Supplement_2):a310-a946. [25] Matsuhiro Y,Nishino M,Nakamura H,et al. P2691 Excimer laser coronary angioplasty can achieve favorable clinical outocomes for in-stent restenosis lesion with neoatherosclerosis[J]. European Heart Journal,2019,40(Supplement_1):z748-z1009. doi: 10.1093/eurheartj/ehz748 [26] Depta J P,Patel J S,Novak E,et al. Outcomes of coronary stenoses deferred revascularization for borderline versus nonborderline fractional flow reserve values[J]. The American Journal of Cardiology,2014,113(11):1788-1793. doi: 10.1016/j.amjcard.2014.03.004 [27] Nam C,Rha S,Koo B,et al. Usefulness of coronary pressure measurement for functional evaluation of drug-eluting stent restenosis[J]. The American Journal of Cardiology,2011,107(12):1783-1786. doi: 10.1016/j.amjcard.2011.02.328 [28] Kuramitsu S,Matsuo H,Shinozaki T,et al. Two-year outcomes after deferral of revascularization based on fractional flow reserve: the J-CONFIRM Registry[J]. Circulation:Cardiovascular Interventions,2020,13(1):e8355. 期刊类型引用(1)
1. 李柳,李晓燕,高志超,郑庆厚,赵甫刚,王硕. 应用瑞加诺生负荷D-SPECT评价定量血流分数在经皮冠状动脉介入治疗中的作用. 西安交通大学学报(医学版). 2024(03): 443-448 . 百度学术
其他类型引用(0)
-