留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自噬在膀胱癌发展和治疗中的研究进展

陈诗 付什 谭智勇 王剑松 王海峰

陈诗, 付什, 谭智勇, 王剑松, 王海峰. 自噬在膀胱癌发展和治疗中的研究进展[J]. 昆明医科大学学报, 2023, 44(5): 168-174. doi: 10.12259/j.issn.2095-610X.S20230503
引用本文: 陈诗, 付什, 谭智勇, 王剑松, 王海峰. 自噬在膀胱癌发展和治疗中的研究进展[J]. 昆明医科大学学报, 2023, 44(5): 168-174. doi: 10.12259/j.issn.2095-610X.S20230503
Shi CHEN, Shi FU, Zhiyong TAN, Jiansong WANG, Haifeng WANG. Research Progress of Autophagy in the Development and Treatment of Bladder Cancer[J]. Journal of Kunming Medical University, 2023, 44(5): 168-174. doi: 10.12259/j.issn.2095-610X.S20230503
Citation: Shi CHEN, Shi FU, Zhiyong TAN, Jiansong WANG, Haifeng WANG. Research Progress of Autophagy in the Development and Treatment of Bladder Cancer[J]. Journal of Kunming Medical University, 2023, 44(5): 168-174. doi: 10.12259/j.issn.2095-610X.S20230503

自噬在膀胱癌发展和治疗中的研究进展

doi: 10.12259/j.issn.2095-610X.S20230503
基金项目: 国家自然科学基金资助项目(81660422,81860452)
详细信息
    作者简介:

    陈诗(1992~),男,湖北宜昌人,在读硕士研究生,住院医师,主要从事膀胱癌基础研究工作

    通讯作者:

    王海峰,E-mail:wanghaifeng@kmmu.edu.cn

  • 中图分类号: R737.14

Research Progress of Autophagy in the Development and Treatment of Bladder Cancer

  • 摘要: 自噬是细胞通过溶酶体降解细胞内物质的一种自我消化过程,被认为是肿瘤在应激条件下维持生存的重要保护机制。大量证据表明,自噬是一把双刃剑,通过不同的信号通路,既可抑制肿瘤的发生,又可促进肿瘤的存活与生长。因此,越来越多的学者认为自噬有望成为肿瘤治疗的新策略。通过总结自噬调控膀胱癌侵袭、转移等生物学行为,以及在膀胱癌治疗的最新进展,以期为靶向自噬抗肿瘤药物的研发和治疗提供新的思路。
  • 表  1  自噬与膀胱癌发展

    Table  1.   Autophagy and the development of bladder cancer

    靶标信号通路自噬状态肿瘤调控
    不确定 自噬缺陷 肿瘤发生
    Rab14 MAPK/ERK 抑制 肿瘤发生
    MIR-516A PHLPP2/BECN1 抑制 肿瘤发生
    低营养 TGF-β1/Smad3 激活 上皮间质转化
    MIR-21 不确定 抑制 上皮间质转化
    缺氧 不确定 激活 血管生成
    肿瘤微环境 PI3K/AKT 激活 血管生成
    顺铂 BECN1 激活 化疗耐药
    吡柔比星 p70S6K/4E-BP1 激活 化疗耐药
    IFN-γ JAK2/STAT3 激活 干性维持
    ATG7 USP28/CD44 激活 干性维持
    NBR1 Not determined 激活 免疫逃逸
    ATG7 FOXO3a/miR-145/PD-L1 激活 免疫逃逸
    下载: 导出CSV

    表  2  膀胱癌中的靶向自噬治疗

    Table  2.   Targeted autophagy therapy in bladder cancer

    类型治疗物质自噬状态调控作用测试细胞系
    天然活性物质 没食子酸酯 激活 凋亡 T24.5637
    桦木酸 激活 凋亡 T24.EJ
    灵菌红素 抑制 化疗敏感 RT-112
    小分子化合药 罗帕洛酸 激活 凋亡 T24.J82
    甲磺酸 抑制 化疗敏感 5637.HT1197
    厄达替尼 激活 凋亡 T24.UMUC-3
    非编码RNA MIR-24-3p 激活 肿瘤发展 T24.BIU-87
    MIR-222 抑制 化疗敏感 T24.5637
    ADAMTS9-AS2 激活 凋亡 5637.UM-UC-3
    其他 重组腺病毒 激活 凋亡 T24.5637.EJ
    重组精氨酸酶 激活 凋亡 T24.5637.J82
    下载: 导出CSV
  • [1] Siegel R L,Miller K D,Jemal A. Cancer statistics,2020[J]. CA:A Cancer Journal for Clinicians,2020,70(1):7-30. doi: 10.3322/caac.21590
    [2] Sung H,Ferlay J,Siegel R L,et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians,2021,71(3):209-249. doi: 10.3322/caac.21660
    [3] Birgisdottir A B,Johansen T. Autophagy and endocytosis - interconnections and interdependencies[J]. Journal of Cell Science,2020,133(10):1-16.
    [4] Rakesh R,Priyadharshini L C,Sakthivel K M,et al. Role and regulation of autophagy in cancer[J]. Biochimica Et Biophysica Acta Molecular Basis of Disease,2022,1868(7):1-22.
    [5] Li W,He P,Huang Y,et al. Selective autophagy of intracellular organelles: Recent research advances[J]. Theranostics,2021,11(1):222-256. doi: 10.7150/thno.49860
    [6] Kim J,Kundu M,Viollet B,et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nature Cell Biology,2011,13(2):132-141. doi: 10.1038/ncb2152
    [7] MizushimaI N,Komatsu M. Autophagy: Renovation of cells and tissues[J]. Cell,2011,147(4):728-741. doi: 10.1016/j.cell.2011.10.026
    [8] Li X,He S,Ma B. Autophagy and autophagy-related proteins in cancer[J]. Molecular Cancer,2020,19(1):1-16. doi: 10.1186/s12943-019-1085-0
    [9] Towers C G,Wodetzki D,Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations[J]. The Journal of Cell Biology,2020,219(1):1-15.
    [10] Ishaq M,Ojha R,Sharma A P,et al. Autophagy in cancer: Recent advances and future directions[J]. Seminars In Cancer Biology,2020,66(11):171-181.
    [11] Lee C H,Yu H S. Role of mitochondria,ROS,and DNA damage in arsenic induced carcinogenesis[J]. Frontiers in Bioscience,2016,8(2):312-320. doi: 10.2741/s465
    [12] Denisenko T V,Gogvadze V,Zhivotovsky B. Mitophagy in carcinogenesis and cancer treatment[J]. Discover Oncology,2021,12(1):1-11. doi: 10.1007/s12672-021-00395-9
    [13] Chao H,Deng L,Xu F,et al. RAB14 activates MAPK signaling to promote bladder tumorigenesis[J]. Carcinogenesis,2019,40(11):1341-1351. doi: 10.1093/carcin/bgz039
    [14] Jin H,Ma J,Xu J,et al. Oncogenic role of MIR516A in human bladder cancer was mediated by its attenuating PHLPP2 expression and BECN1-dependent autophagy[J]. Autophagy,2021,17(4):840-854. doi: 10.1080/15548627.2020.1733262
    [15] Tong H,Yin H,Hossain M A,et al. Starvation-induced autophagy promotes the invasion and migration of human bladder cancer cells via TGF-β1/Smad3-mediated epithelial-mesenchymal transition activation[J]. Journal of Cellular Biochemistry,2019,120(4):5118-5127. doi: 10.1002/jcb.27788
    [16] Zhang H H,Huang Z X,Zhong S Q,et al. MiR-21 inhibits autophagy and promotes malignant development in the bladder cancer T24 cell line[J]. International Journal of Oncology,2020,56(4):986-998.
    [17] Gubbiotti M A,Buraschi S,Kapoor A,et al. Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy[J]. Seminars in Cancer Biology,2020,62(1):1-8.
    [18] Li D,Jiao W,Liang Z,et al. Variation in energy metabolism arising from the effect of the tumor microenvironment on cell biological behaviors of bladder cancer cells and endothelial cells[J]. Bio Factors,2020,46(1):64-75. doi: 10.1002/biof.1568
    [19] Li X,Wei Z,Yu H,et al. Secretory autophagy-induced bladder tumour-derived extracellular vesicle secretion promotes angiogenesis by activating the TPX2-mediated phosphorylation of the AURKA-PI3K-AKT axis[J]. Cancer Letters,2021,523(12):10-28.
    [20] Lin J F,Lin Y C,Tsai T F,et al. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells[J]. Drug Design,Development and Therapy,2017,11(5):1517-1533.
    [21] Li K,Chen X,Liu C,et al. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells[J]. Biochemical and Biophysical Research Communications,2015,460(2):380-385. doi: 10.1016/j.bbrc.2015.03.042
    [22] Ojha R,Singh S K,Bhattacharyya S. JAK-mediated autophagy regulates stemness and cell survival in cisplatin resistant bladder cancer cells[J]. Biochimica Et Biophysica Acta,2016,1860(11):2484-2497. doi: 10.1016/j.bbagen.2016.07.021
    [23] Ojha R,Jha V,Singh S K. Gemcitabine and mitomycin induced autophagy regulates cancer stem cell pool in urothelial carcinoma cells[J]. Biochimica Et Biophysica Acta,2016,1863(2):347-359. doi: 10.1016/j.bbamcr.2015.12.002
    [24] Zhu J,Huang G,Hua X,et al. CD44s is a crucial ATG7 downstream regulator for stem-like property,invasion,and lung metastasis of human bladder cancer (BC) cells[J]. Oncogene,2019,38(17):3301-3315. doi: 10.1038/s41388-018-0664-7
    [25] Yamamoto K,Venida A,Yano J,et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I[J]. Nature,2020,581(7806):100-105. doi: 10.1038/s41586-020-2229-5
    [26] Alissafi T,Hatzioannou A,Mintzas K,et al. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells[J]. The Journal of Clinical Investigation,2018,128(9):3840-3852. doi: 10.1172/JCI120888
    [27] Zhu J,Li Y,Luo Y,et al. A feedback loop formed by ATG7/autophagy,FOXO3a/miR-145 and PD-L1 regulates stem-like properties and invasion in human bladder cancer[J]. Cancers,2019,11(3):1-19.
    [28] Yin Z,Li J,Kang L,et al. Epigallocatechin-3-gallate induces autophagy-related apoptosis associated with LC3B II and Beclin expression of bladder cancer cells[J]. Journal of Food Biochemistry,2021,45(6):1-8.
    [29] Zhang Y,He N,Zhou X,et al. Betulinic acid induces autophagy-dependent apoptosis via Bmi-1/ROS/AMPK-mTOR-ULK1 axis in human bladder cancer cells[J]. Aging,2021,13(17):21251-21267. doi: 10.18632/aging.203441
    [30] Berning L,Schlutermann D,Friedrich A,et al. Prodigiosin sensitizes sensitive and resistant urothelial carcinoma cells to cisplatin treatment[J]. Molecules,2021,26(5):1-17.
    [31] Hung S Y,Chen W F,Lee Y C,et al. Rhopaloic acid A induces apoptosis,autophagy and MAPK activation through ROS-mediated signaling in bladder cancer[J]. Phytomedicine:International Journal of Phytotherapy and Phytopharmacology,2021,92(11):1-15.
    [32] Jimenez-Guerrero R,Gasca J,Flores M L,et al. Obatoclax and paclitaxel synergistically induce apoptosis and overcome paclitaxel resistance in urothelial cancer cells[J]. Cancers,2018,10(12):1-17.
    [33] Jin Y Y,Tong S Q,Tong M. Erdafitinib exerts the anticancer effect on urothelial carcinoma via induction of authophagy[J]. Die Pharmazie,2020,75(5):195-197.
    [34] Yu G,Jia Z,Dou Z. miR-24-3p regulates bladder cancer cell proliferation,migration,invasion and autophagy by targeting DEDD[J]. Oncology Reports,2017,37(2):1123-1131. doi: 10.3892/or.2016.5326
    [35] Zeng L P,Hu Z M,Li K,et al. miR-222 attenuates cisplatin-induced cell death by targeting the PPP2R2A/Akt/mTOR Axis in bladder cancer cells[J]. Journal of Cellular and Molecular Medicine,2016,20(3):559-567. doi: 10.1111/jcmm.12760
    [36] Zhang Z,Jia J P,Zhang Y J,et al. Long noncoding RNA ADAMTS9-AS2 inhibits the proliferation,migration,and invasion in bladder tumor cells[J]. OncoTargets and Therapy,2020,13(7):7089-7100.
    [37] Shang C,Zhu Y L,Li Y Q,et al. Autophagy promotes oncolysis of an adenovirus expressing apoptin in human bladder cancer models[J]. Investigational New Drugs,2021,39(4):949-960. doi: 10.1007/s10637-021-01073-x
    [38] Zhao Z,Zhang P,Li W,et al. Pegylated recombinant human arginase 1 induces autophagy and apoptosis via the ROS-activated AKT/mTOR pathway in bladder cancer cells[J]. Oxidative Medicine and Cellular Longevity,2021,2021(3):1-13.
  • [1] 刘玉芹, 杨明莹, 王留芳, 夏斯亚, 李丹娜, 赵喜娟, 王娅.  膀胱癌患者报告结局量表的编制与信效度检验, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240727
    [2] 安义均, 余立丹, 赵美素, 马冬梅, 杨春花, 孔瑶.  膀胱癌溶酶体相关基因的预后模型构建与分析, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240510
    [3] 谢峻, 刘绍有, 施鸿金, 毛秋玉, 杨宏.  EZH2抑制剂与膀胱癌GC化疗药物联用增敏的作用研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231017
    [4] 张雪莎, 周杰, 李彩琳, 吴定宇, 彭芳.  美洲大蠊提取物对肝癌皮下移植瘤裸鼠自噬和侵袭转移的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231018
    [5] 张紫微, 郑甲林, 许晓宇, 王红.  二甲双胍通过AMPK/PPAR-γ通路诱导自噬抑制高糖对血管平滑肌细胞的增殖作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231026
    [6] 梁晨晨, 高建鹏.  MSCs通过调控AMPK/mTOR促进自噬改善NASH肝损伤, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230728
    [7] 金晓媚, 何杰艳, 施吉昌, 邢辉, 王洪, 张桔, 董莉娟, 黄丽花, 陈敏, 陈志娟, 陈会超.  大理白族自治州2018年HIV/AIDS病毒基因型和抗病毒治疗前耐药研究, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231123
    [8] 陈怡璇, 王琳, 夏秀宏, 彭在坤, 丁奕, 史润娇, 雷学芬.  自噬在肝细胞癌中的作用机制研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230416
    [9] 顾君, 何泽喜, 栾婷, 王海峰, 王剑松, 丁明霞.  外泌体长链非编码RNA在膀胱癌中的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220110
    [10] 严植, 郝金钢, 尚芸芸.  VI-RADS评分对膀胱癌精准治疗的价值, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220322
    [11] 刘永骏, 王颖, 杨眉, 殷娥高, 李婷, 董昭兴.  氢气水调控自噬对百草枯中毒大鼠肺纤维化的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210918
    [12] 孙文婧, 胡曼婷, 李娜, 葛菲, 陈文林, 刘洋.  乳腺癌内分泌治疗耐药及其逆转的研究进展, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210724
    [13] 杨灿, 巩宇航, 王海峰, 李海皓, 刘靖宇, 王伟, 王剑松, 左毅刚, 陈戬, 詹辉, 丁明霞.  单抗KMP1的体内抑制膀胱癌EJ细胞株成瘤的动物实验, 昆明医科大学学报.
    [14] 雷玉英, 高洁, 王饶祥, 钏莉雪, 郝金钢.  弥散加权成像在膀胱癌诊断的价值, 昆明医科大学学报.
    [15] 黄振华, 石鑫, 王辉涛, 张劲松, 王光, 郝金刚, 刘建和.  磁共振弥散加权成像在膀胱癌T分期的应用价值, 昆明医科大学学报.
    [16] 廉阳秧.  中晚期宫颈癌组织HIF-1α、Twist、MDR1的表达及意义, 昆明医科大学学报.
    [17] 王洋.  RNA干扰CCR7表达在肿瘤转移治疗中的作用, 昆明医科大学学报.
    [18] 曾红静.  蛋氨酸补偿代谢途径及蛋氨酸酶抗肿瘤研究进展, 昆明医科大学学报.
    [19] 马真.  改良型TAT-VP3融合蛋白对膀胱癌BIU-87细胞Bcl-2和Survivin表达的影响, 昆明医科大学学报.
    [20] 肌层浸润性膀胱癌的治疗策略, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3971
  • HTML全文浏览量:  2178
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-01
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2023-05-25

目录

    /

    返回文章
    返回