留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调节性T细胞在弥漫大B细胞淋巴瘤肿瘤微环境的作用机制研究进展

何君 辜学忠 林雅婷 李凡

何君, 辜学忠, 林雅婷, 李凡. 调节性T细胞在弥漫大B细胞淋巴瘤肿瘤微环境的作用机制研究进展[J]. 昆明医科大学学报, 2023, 44(6): 150-154. doi: 10.12259/j.issn.2095-610X.S20230607
引用本文: 何君, 辜学忠, 林雅婷, 李凡. 调节性T细胞在弥漫大B细胞淋巴瘤肿瘤微环境的作用机制研究进展[J]. 昆明医科大学学报, 2023, 44(6): 150-154. doi: 10.12259/j.issn.2095-610X.S20230607
Jun HE, Xuezhong GU, Yating LIN, Fan LI. Research Progress on the Mechanism of Regulatory T Cells in Tumor Microenvironment of Diffuse Large B-cell Lymphoma[J]. Journal of Kunming Medical University, 2023, 44(6): 150-154. doi: 10.12259/j.issn.2095-610X.S20230607
Citation: Jun HE, Xuezhong GU, Yating LIN, Fan LI. Research Progress on the Mechanism of Regulatory T Cells in Tumor Microenvironment of Diffuse Large B-cell Lymphoma[J]. Journal of Kunming Medical University, 2023, 44(6): 150-154. doi: 10.12259/j.issn.2095-610X.S20230607

调节性T细胞在弥漫大B细胞淋巴瘤肿瘤微环境的作用机制研究进展

doi: 10.12259/j.issn.2095-610X.S20230607
基金项目: 国家自然科学基金资助项目(81860030);云南省基础研究计划-昆明医科大学应用基础研究联合专项基金资助项目[2018FE001(-113) ];云南省临床医学中心开放项目(2020LCZXKF-XY02);云南省卫生健康委人才项目(D-2018018)
详细信息
    作者简介:

    何君(1994~),女,四川遂宁人,在读硕士研究生,主要从事血液系统肿瘤研究及临床工作

    通讯作者:

    辜学忠,E-mail:gxz76@126.com

  • 中图分类号: R551.2

Research Progress on the Mechanism of Regulatory T Cells in Tumor Microenvironment of Diffuse Large B-cell Lymphoma

  • 摘要: 弥漫大B细胞淋巴瘤是非霍奇金淋巴瘤中最常见的一种,目前CD20单克隆抗体联合化疗使其缓解率较前增加,但仍有部分人群疗效欠佳甚至耐药,仍需要开发新的药物提高缓解率。调节性T细胞作为免疫调节中发挥重要作用的细胞群体,其在弥漫大B细胞淋巴瘤肿瘤微环境中协调细胞和分子网络,介导局部免疫抑制状态,从而促进肿瘤细胞的增殖、迁移。据此有望靶向治疗弥漫大B细胞淋巴瘤。将对调节性T细胞在弥漫大B细胞淋巴瘤肿瘤微环境的作用机制作一综述。
  • [1] Liu Y,Zhang L,Wang B,et al. Requirement for POH1 in differentiation and maintenance of regulatory T cells[J]. Cell Death Differ,2019,26(4):751-762. doi: 10.1038/s41418-018-0162-z
    [2] Shin H J,Kim D Y,Chung J,et al. Prognostic impact of peripheral blood T-cell subsets at the time of diagnosis on survival in patients with diffuse large B-cell lymphoma[J]. Acta Haematol,2021,144(4):427-437. doi: 10.1159/000510912
    [3] Peng F,Qin Y,Mu S,et al. Prognostic role of regulatory T cells in lymphoma: A systematic review and meta-analysis[J]. J Cancer Res Clin Oncol,2020,146(12):3123-3135. doi: 10.1007/s00432-020-03398-1
    [4] Carreras J,Lopez-Guillermo A,Kikuti Y Y,et al. High TNFRSF14 and low BTLA are associated with poor prognosis in Follicular Lymphoma and in Diffuse Large B-cell Lymphoma transformation[J]. J Clin Exp Hematop,2019,59(1):1-16. doi: 10.3960/jslrt.19003
    [5] Jiménez-Cortegana C,Palazón-Carrión N,Martin Garcia-Sancho A,et al. Circulating myeloid-derived suppressor cells and regulatory T cells as immunological biomarkers in refractory/relapsed diffuse large B-cell lymphoma: translational results from the R2-GDP-GOTEL trial[J]. J Immunother Cancer,2021,9(6):e002323. doi: 10.1136/jitc-2020-002323
    [6] Xu T,Chai J,Wang K,et al. Tumor immune microenvironment components and checkpoint molecules in anaplastic variant of diffuse large B-cell lymphoma[J]. Front Oncol,2021,11:638154. doi: 10.3389/fonc.2021.638154
    [7] Saleh R,Elkord E. FoxP3+ T regulatory cells in cancer: Prognostic biomarkers and therapeutic targets[J]. Cancer Lett,2020,490:174-185. doi: 10.1016/j.canlet.2020.07.022
    [8] Stirm K,Leary P,Bertram K,et al. Tumor cell-derived IL-10 promotes cell-autonomous growth and immune escape in diffuse large B-cell lymphoma[J]. Oncoimmunology,2021,10(1):2003533. doi: 10.1080/2162402X.2021.2003533
    [9] Najafi M,Farhood B,Mortezaee K. Contribution of regulatory T cells to cancer: A review[J]. J Cell Physiol,2019,234(6):7983-7993. doi: 10.1002/jcp.27553
    [10] Lainé A,Labiad O,Hernandez-Vargas H,et al. Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation[J]. Nat Commun,2021,12(1):6228. doi: 10.1038/s41467-021-26352-2
    [11] Arima H,Nishikori M,Otsuka Y,et al. B cells with aberrant activation of Notch1 signaling promote Treg and Th2 cell-dominant T-cell responses via IL-33[J]. Blood Adv,2018,2(18):2282-2295. doi: 10.1182/bloodadvances.2018019919
    [12] Whiteside TL. Human regulatory T cells (Treg) and their response to cancer[J]. Expert Rev Precis Med Drug Dev,2019,4(4):215-228. doi: 10.1080/23808993.2019.1634471
    [13] Feng P,Yang Q,Luo L,et al. The kinase PDK1 regulates regulatory T cell survival via controlling redox homeostasis[J]. Theranostics,2021,11(19):9503-9518. doi: 10.7150/thno.63992
    [14] Okuzono Y,Muraki Y,Sato S. TNFR2 pathways are fully active in cancer regulatory T cells[J]. Biosci Biotechnol Biochem,2022,86(3):351-361. doi: 10.1093/bbb/zbab226
    [15] Dehghani M,Shokrgozar N,Ramzi M,et al. The impact of selenium on regulatory T cell frequency and immune checkpoint receptor expression in patients with diffuse large B cell lymphoma (DLBCL)[J]. Cancer Immunol Immunother,2021,70(10):2961-2969. doi: 10.1007/s00262-021-02889-5
    [16] Göschl L,Scheinecker C,Bonelli M. Treg cells in autoimmunity: from identification to Treg-based therapies[J]. Semin Immunopathol,2019,41(3):301-314. doi: 10.1007/s00281-019-00741-8
    [17] Chen Y,Li M,Cao J,et al. CTLA-4 promotes lymphoma progression through tumor stem cell enrichment and immunosuppression[J]. Open Life Sci,2021,16(1):909-919. doi: 10.1515/biol-2021-0094
    [18] Zhong W,Liu X,Zhu Z,et al. High levels of Tim-3+Foxp3+Treg cells in the tumor microenvironment is a prognostic indicator of poor survival of diffuse large B cell lymphoma patients[J]. Int Immunopharmacol,2021,96:107662. doi: 10.1016/j.intimp.2021.107662
    [19] 刘紫嫣,张健,胡雅彬,等. 滤泡调节性T细胞在病毒感染与疫苗免疫中的作用及机制研究进展[J]. 中华实验和临床病毒学杂志,2021,35(1):116-120. doi: 10.3760/cma.j.cn112866-20200924-00254
    [20] Dehghani M,Kalani M,Golmoghaddam H,et al. Aberrant peripheral blood CD4+ CD25+ FOXP3+ regulatory T cells/T helper-17 number is associated with the outcome of patients with lymphoma[J]. Cancer Immunol Immunother,2020,69(9):1917-1928. doi: 10.1007/s00262-020-02591-y
    [21] Lozano T,Conde E,Martín-Otal C,et al. TCR-induced FOXP3 expression by CD8+ T cells impairs their anti-tumor activity[J]. Cancer Lett,2022,528:45-58. doi: 10.1016/j.canlet.2021.12.030
    [22] Lužnik Z,Anchouche S,Dana R,et al. Regulatory T cells in angiogenesis[J]. J Immunol,2020,205(10):2557-2565. doi: 10.4049/jimmunol.2000574
    [23] Cioroianu A I,Stinga P I,Sticlaru L,et al. Tumor microenvironment in diffuse large B-cell lymphoma: Role and prognosis[J]. Anal Cell Pathol (Amst),2019,2019:8586354.
    [24] Shen R,Xu P P,Wang N,et al. Influence of oncogenic mutations and tumor microenvironment alterations on extranodal invasion in diffuse large B-cell lymphoma[J]. Clin Transl Med,2020,10(7):e221.
    [25] van Bruggen J A C,Martens A W J,Tonino S H,et al. Overcoming the hurdles of autologous T-cell-based therapies in B-cell non-hodgkin lymphoma[J]. Cancers (Basel),2020,12(12):3837. doi: 10.3390/cancers12123837
    [26] 包芳,万文丽,朱明霞,等. 初发弥漫大B细胞淋巴瘤外周血Treg绝对数减少与不良预后的相关性[J]. 中国实验血液学杂志,2021,29(1):91-97. doi: 10.19746/j.cnki.issn1009-2137.2021.01.015
    [27] Chang C,Chen Y P,Medeiros L J,et al. Higher infiltration of intratumoral CD25+ FOXP3+ lymphocytes correlates with a favorable prognosis in patients with diffuse large B-cell lymphoma[J]. Leuk Lymphoma,2021,62(1):76-85. doi: 10.1080/10428194.2020.1817438
    [28] Gao R,Shi G P,Wang J. Functional diversities of regulatory T cells in the context of cancer immunotherapy[J]. Front Immunol,2022,13:833667. doi: 10.3389/fimmu.2022.833667
    [29] Jorapur A,Marshall LA,Jacobson S,et al. EBV+ tumors exploit tumor cell-intrinsic and -extrinsic mechanisms to produce regulatory T cell-recruiting chemokines CCL17 and CCL22[J]. PLoS Pathog,2022,18(1):e1010200. doi: 10.1371/journal.ppat.1010200
    [30] Beheshti S A,Shamsasenjan K,Ahmadi M,et al. CAR Treg: A new approach in the treatment of autoimmune diseases[J]. Int Immunopharmacol,2022,102:108409. doi: 10.1016/j.intimp.2021.108409
    [31] Wagner J C,Tang Q. CAR-tregs as a strategy for inducing graft tolerance[J]. Curr Transplant Rep,2020,7(3):205-214. doi: 10.1007/s40472-020-00285-z
    [32] Rana J,Biswas M. Regulatory T cell therapy:Current and future design perspectivs[J]. Cell Immunol,2020,356:104193. doi: 10.1016/j.cellimm.2020.104193
  • [1] 王燕, 丁荣, 张吕玲, 王若花, 赵晓玲, 马娜.  输血治疗联合放化疗在结直肠癌患者中的疗效及对肿瘤标志物和T淋巴细胞水平的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220809
    [2] 赵琨, 肖云, 杨纯, 严志凌, 董敏娜, 向柄全, 肖茗耀.  白细胞介素-4在脂多糖诱导急性肺损伤模型中的保护作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220805
    [3] 刘国懿, 赵清青, 武妍, 李姗姗, 钟莲梅, 耿嘉.  葛根素抑制小鼠实验性自身免疫性脑脊髓炎的作用, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210401
    [4] 谢巍, 赵川, 王容, 王文平, 涂宏.  慢性乙型肝炎患者外周血T淋巴细胞程序性死亡受体1表达与HBV-DNA水平的相关性, 昆明医科大学学报.
    [5] 余朝军, 赵迁浩, 赵宁辉.  低氧微环境对脑胶质瘤细胞增殖、凋亡及HIF-1α表达的影响, 昆明医科大学学报.
    [6] 齐潇, 钟兆铭, 孙传政.  肿瘤相关中性粒细胞与肿瘤发生发展的研究进展, 昆明医科大学学报.
    [7] 黄瑛, 许昆静, 普冬, 李晓菲, 陈海云, 武彦, 王丽华, 李文明, 罗云, 何花.  输入性登革热不同型别与T淋巴细胞亚群的相关性, 昆明医科大学学报.
    [8] 龙俊君, 李兰.  CD4~+CD25~+Treg细胞对角膜移植免疫排斥反应的影响, 昆明医科大学学报.
    [9] 黄颖, 刘熠晗, 黎承平, 武坤, 曾云.  IL-17、IL-23在接受利妥昔单抗治疗的B细胞非霍奇金淋巴瘤患者中的表达, 昆明医科大学学报.
    [10] 黄颖, 刘熠晗, 黎承平, 武坤, 曾云.  IL-17、IL-23在接受利妥昔单抗治疗的B细胞非霍奇金淋巴瘤患者中的表达, 昆明医科大学学报.
    [11] 聂波.  结外NK/T细胞淋巴瘤鼻型34例临床分析, 昆明医科大学学报.
    [12] 任朝凤.  调节性T细胞培养及输入慢性阻塞性肺病大鼠后免疫细胞变化, 昆明医科大学学报.
    [13] 江艳.  调节性T细胞与老年性骨质疏松的关系, 昆明医科大学学报.
    [14] 杜凯.  3种胶质瘤细胞株(U87、U251及T98G)体外趋化组织细胞淋巴瘤细胞(U937)的实验研究, 昆明医科大学学报.
    [15] 路萍.  白血病患者化疗前后调节性T细胞的表达与微小残留白血病的关系, 昆明医科大学学报.
    [16] 袁勇.  适度低氧微环境对体外培养脑胶质瘤干细胞生长的影响, 昆明医科大学学报.
    [17] 詹辉.  CD3+T淋巴细胞在膀胱癌肿瘤上皮与癌旁尿路上皮中的分布差异研究, 昆明医科大学学报.
    [18] 江超武.  25例鼻型结外NK/T细胞淋巴瘤CT表现及临床误诊原因分析, 昆明医科大学学报.
    [19] 小儿传染性单核细胞增多症患者外周血CD45RO+、CD45RA+T淋巴细胞亚群表达的研究, 昆明医科大学学报.
    [20] 黄颖.  人脐带间充质干细胞对再生障碍性贫血患者T细胞相关因子调节的体外研究, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  2979
  • HTML全文浏览量:  2132
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-15
  • 网络出版日期:  2023-06-16
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回