|
[1]
|
Chi A C,Day T A,Neville B W. Oral cavity and oropharyngeal squamous cell carcinoma-an update[J]. CA:A Cancer Journal for Clinicians,2015,65(5):401-421. doi: 10.3322/caac.21293
|
|
[2]
|
Romero-Garcia S,Lopez-Gonzalez J S,Báez-Viveros J L,et al. Tumor cell metabolism: an integral view[J]. Cancer Biol Ther,2011,12(11):939-948. doi: 10.4161/cbt.12.11.18140
|
|
[3]
|
Warburg O,Posener K,Negelein E. On the metabolism of carcinoma cells[J]. Biochemische Zeitschrift,1924,152:309-344.
|
|
[4]
|
Wang Y,Xia Y,Lu Z. Metabolic features of cancer cells[J]. Cancer Communications (London,England),2018,38(1):65. doi: 10.1186/s40880-018-0335-7
|
|
[5]
|
Ghanavat M,Shahrouzian M,Deris Zayeri Z,et al. Digging deeper through glucose metabolism and its regulators in cancer and metastasis[J]. Life Sci,2021,264:118603. doi: 10.1016/j.lfs.2020.118603
|
|
[6]
|
Somashekar B S,Kamarajan P,Danciu T,et al. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues[J]. Journal of Proteome Research,2011,10(11):5232-5241. doi: 10.1021/pr200800w
|
|
[7]
|
Boffetta P,Hashibe M. Alcohol and cancer[J]. The Lancet Oncology,2006,7(2):149-156. doi: 10.1016/S1470-2045(06)70577-0
|
|
[8]
|
Nguyen A, Kim A H, Kang M K, et al. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling [J]. International Journal of Molecular Sciences, 2022, 23(17): 9779.
|
|
[9]
|
Zhou X,Xue D,Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma[J]. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck,2022,44(1):89-103.
|
|
[10]
|
Robey R B,Hay N. Is AKT the “Warburg kinase”?-AKT-energy metabolism interactions and oncogenesis[J]. Seminars in cancer biology,2009,19(1):25-31. doi: 10.1016/j.semcancer.2008.11.010
|
|
[11]
|
Marquard F, Jücker M J B P. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer [J]. 2020, 172: 113729.
|
|
[12]
|
Raggi C,Taddei M L,Rae C,et al. Metabolic reprogramming in cholangiocarcinoma[J]. J Hepatol,2022,77(3):849-864. doi: 10.1016/j.jhep.2022.04.038
|
|
[13]
|
Tang Y C,Hsiao J R,Jiang S S,et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation[J]. Theranostics,2021,11(11):5232-5247. doi: 10.7150/thno.53417
|
|
[14]
|
Wang L W,Yu Y,Chen J,et al. Protein kinase D1 regulates the growth and metabolism of oral squamous carcinoma cells in tumor microenvironment[J]. West China Journal of Stomatology,2019,37(6):577-582.
|
|
[15]
|
Chen J,Cui B,Fan Y,et al. Protein kinase D1 regulates hypoxic metabolism through HIF-1 and glycolytic enzymes incancer cells[J]. Oncology Reports,2018,40(2):1073-1082.
|
|
[16]
|
Fu L,Pelicano H,Liu J,et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[J]. Cell,2002,111(1):41-50. doi: 10.1016/S0092-8674(02)00961-3
|
|
[17]
|
Zheng B,Larkin D W,Albrecht U,et al. The mPer2 gene encodes a functional component of the mammalian circadian clock[J]. Nature,1999,400(6740):169-173. doi: 10.1038/22118
|
|
[18]
|
Long W, Gong X, Yang Y, et al. Downregulation of PER2 promotes tumor progression by enhancing glycolysis via the phosphatidylinositol 3-kinase/Protein kinase B pathway in oral squamous cell carcinoma [J]. Journal of Oral and Maxillofacial Surgery, 2020, 78(10): 10.
|
|
[19]
|
Zheng M,Cao M X,Yu X H,et al. STAT3 promotes invasion and aerobic glycolysis of human oral squamous cell carcinoma via inhibiting foxO1[J]. Front Oncol,2019,9:1175. doi: 10.3389/fonc.2019.01175
|
|
[20]
|
Grimm M, Cetindis M, Lehmann M, et al. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? [J]. Journal of Translational Medicine, 2014, 12: 208.
|
|
[21]
|
Brizel D M,Schroeder T,Scher R L,et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer[J]. International Journal of Radiation Oncology Biology Physics,2001,51(2):349-353. doi: 10.1016/S0360-3016(01)01630-3
|
|
[22]
|
Wang Y,Zhang X,Zhang Y,et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma[J]. Cancer Biology & Therapy,2015,16(6):839-845.
|
|
[23]
|
Yang W,Xia Y,Hawke D,et al. PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis[J]. Cell,2014,158(5):1210.
|
|
[24]
|
Kurihara-shimomura M, Sasahira T, Nakashima C, et al. The multifarious functions of pyruvate kinase M2 in oral cancer cells [J]. International Journal of Molecular Sciences, 2018, 19(10): 2907.
|
|
[25]
|
Cai H, Li J, Zhang Y, et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition[J]. Frontiers in Oncology, 2019, 9: 1446.
|
|
[26]
|
Yuan C,Li Z,Wang Y,et al. Overexpression of metabolic markers PKM2 and LDH5 correlates with aggressive clinicopathological features and adverse patient prognosis in tongue cancer[J]. Histopathology,2014,65(5):595-605. doi: 10.1111/his.12441
|
|
[27]
|
Wigfield S M,Winter S C,Giatromanolaki A,et al. PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer[J]. British Journal of Cancer,2008,98(12):1975-1984. doi: 10.1038/sj.bjc.6604356
|
|
[28]
|
Pai S, Yadav V K, Kuo K T, et al. PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway[J]. International Journal of Molecular Sciences, 2021, 22(21): 11492.
|
|
[29]
|
Guo D,Tong Y,Jiang X,et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα[J]. Cell Metabolism,2022,34(9):1312-24.e6. doi: 10.1016/j.cmet.2022.08.002
|
|
[30]
|
Patra K C,Wang Q,Bhaskar P T,et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell,2013,24(2):213-228. doi: 10.1016/j.ccr.2013.06.014
|
|
[31]
|
Christison T, Wang J, Huang Y, et al. Profiling anionic polar metabolites in oral cancer using capillary ion chromatography and high resolution accurate mass spectrometry [J]. Abstracts of Papers of the American Chemical Society, 2015, 249: 49.
|
|
[32]
|
Wang L, Wang J, Shen Y, et al. Fructose-1, 6-bisphosphatase 2 inhibits oral squamous cell carcinoma tumorigenesis and glucose metabolism via downregulation of c-myc[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022.
|
|
[33]
|
Simoes-sousa S,Granja S,Pinheiro C,et al. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors[J]. Cell Cycle,2016,15(14):1865-1873. doi: 10.1080/15384101.2016.1188239
|
|
[34]
|
Nakazato K,Mogushi K,Kayamori K,et al. Glucose metabolism changes during the development and progression of oral tongue squamous cell carcinomas[J]. Oncology Letters,2019,18(2):1372-1380.
|
|
[35]
|
Gholami S,Chamorro-petronacci C,Pérez-sayáns M,et al. Immunoexpression profile of hypoxia-inducible factor (HIF) targets in potentially malignant and malignant oral lesions: a pilot study[J]. Journal of Applied Oral Science:Revista FOB,2023,31:e20220461. doi: 10.1590/1678-7757-2022-0461
|
|
[36]
|
Chang Y C, Chi L H, Chang W M, et al. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis [J]. Journal of Hematology & Oncology, 2017, 10(1): 11.
|
|
[37]
|
Zhang Y,Cai H,Liao Y,et al. Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell-like properties and the epithelial-mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway[J]. International Journal of Oncology,2020,57(3):743-755. doi: 10.3892/ijo.2020.5083
|
|
[38]
|
Nakashima C,Yamamoto K,Fujiwara-tani R,et al. Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma[J]. Cancer Science,2018,109(6):2036-2045. doi: 10.1111/cas.13594
|
|
[39]
|
Li Y J,Huang T H,Hsiao M,et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma[J]. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck,2016,38:E1075-E85.
|
|
[40]
|
Wilde L,Roche M,Domingo-vidal M,et al. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development[J]. Seminars in Oncology,2017,44(3):198-203. doi: 10.1053/j.seminoncol.2017.10.004
|
|
[41]
|
Muhammad S N H, Safuwan N A M, Yaacob N S, et al. Regulatory mechanism on anti-Glycolytic and anti-metastatic activities induced by strobilanthes crispus in breast cancer, in vitro [J]. Pharmaceuticals (Basel, Switzerland), 2023, 16(2): 153.
|
|
[42]
|
Bai R, Meng Y, Cui J. Therapeutic strategies targeting metabolic characteristics of cancer cells [J]. Critical Reviews in Oncology/Hematology, 2023, 104037.
|
|
[43]
|
Samuel S M,Varghese E,Satheesh N J,et al. Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,2023,164:114911.
|
|
[44]
|
Huang G, Chen S, Washio J, et al. Glycolysis-related gene analyses indicate that DEPDC1 promotes the malignant progression of oral squamous cell carcinoma via the WNT/β-catenin signaling pathway[J]. International Journal of Molecular Sciences, 2023, 24(3): 1992.
|
|
[45]
|
Liu X, Zhao T, Yuan Z, et Al. MIR600HG sponges miR-125a-5p to regulate glycometabolism and cisplatin resistance of oral squamous cell carcinoma cells via mediating RNF44 [J]. Cell Death Discovery, 2022, 8(1): 216.
|
|
[46]
|
Li M, Gao F, Zhao Q, et al. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing AKT-c-MYC signaling-mediated aerobic glycolysis [J]. Cell Death & Disease, 2020, 11(5): 381.
|
|
[47]
|
Wei J, Wu J, Xu W, et al. Salvanic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1 alpha signaling pathway [J]. Cell Death & Disease, 2018, 9: 599.
|
|
[48]
|
Wei J,Xie G,Ge S,et al. Metabolic transformation of DMBA-induced carcinogenesis and inhibitory effect of salvianolic acid B and breviscapine treatment[J]. Journal of Proteome Research,2012,11(2):1302-1316. doi: 10.1021/pr2009725
|
|
[49]
|
Lee N, Jang W J, Seo J H, et al. 2-Deoxy-d-Glucose-Induced Metabolic Alteration in Human Oral Squamous SCC15 Cells: Involvement of N-Glycosylation of Axl and Met [J]. Metabolites, 2019, 9(9): 3515-3524.
|
|
[50]
|
Lin C X,Tu C W,Ma Y K,et al. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma[J]. Food Science & Nutrition,2020,8(7):3515-3524.
|
|
[51]
|
Zhang G,Fu J,Su Y,et al. Opposite effects of garcinol on tumor energy metabolism in oral squamous cell carcinoma cells[J]. Nutrition and Cancer-an International Journal,2019,71(8):1403-1411. doi: 10.1080/01635581.2019.1607409
|
|
[52]
|
Sur S, Nakanishi H, Flaveny C, et al. Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract [J]. Cell Communication and Signaling, 2019, 17(1): 131.
|
|
[53]
|
Kawata M,Ogi K,Nishiyama K,et al. Additive effect of radiosensitization by 2-deoxy-D-glucose delays DNA repair kinetics and suppresses cell proliferation in oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine,2017,46(10):979-985.
|