留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糖酵解重编程在口腔鳞状细胞癌中的研究进展

李婷 郭维华

李婷, 郭维华. 糖酵解重编程在口腔鳞状细胞癌中的研究进展[J]. 昆明医科大学学报, 2023, 44(6): 155-161. doi: 10.12259/j.issn.2095-610X.S20230611
引用本文: 李婷, 郭维华. 糖酵解重编程在口腔鳞状细胞癌中的研究进展[J]. 昆明医科大学学报, 2023, 44(6): 155-161. doi: 10.12259/j.issn.2095-610X.S20230611
Ting LI, Wei-Hua GUO. Research Progress of Glycolytic Reprogramming in Oral Squamous Cell Carcinoma[J]. Journal of Kunming Medical University, 2023, 44(6): 155-161. doi: 10.12259/j.issn.2095-610X.S20230611
Citation: Ting LI, Wei-Hua GUO. Research Progress of Glycolytic Reprogramming in Oral Squamous Cell Carcinoma[J]. Journal of Kunming Medical University, 2023, 44(6): 155-161. doi: 10.12259/j.issn.2095-610X.S20230611

糖酵解重编程在口腔鳞状细胞癌中的研究进展

doi: 10.12259/j.issn.2095-610X.S20230611
基金项目: 国家自然科学基金资助项目(82270958,31971281);四川省创新人才项目(2022JDRC0043);四川大学华西口腔医院研究开发项目(RD-03-202106)
详细信息
    作者简介:

    李婷(1997~),女,山东临沂人,口腔医学硕士,主要从事口腔临床工作和细胞代谢与再生领域的研究

    通讯作者:

    郭维华,E-mail: guoweihua943019@163.com

  • 中图分类号: R780.1

Research Progress of Glycolytic Reprogramming in Oral Squamous Cell Carcinoma

  • 摘要: 口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)是口腔颌面部最常见的恶性肿瘤,发病率高且预后不佳。癌细胞通过糖酵解代谢重编程改变代谢方式,以支持其对ATP需求的增加。糖酵解重编程介导了包括口腔鳞状细胞癌在内的多系统肿瘤的发生发展,其中涉及多个信号通路和关键因子。总结OSCC中发生的糖酵解代谢改变、关键因子及临床诊治潜能,综述其在口腔鳞状细胞癌中的作用,以期为研究者提供新的研究方向和思路。
  • [1] Chi A C,Day T A,Neville B W. Oral cavity and oropharyngeal squamous cell carcinoma-an update[J]. CA:A Cancer Journal for Clinicians,2015,65(5):401-421. doi: 10.3322/caac.21293
    [2] Romero-Garcia S,Lopez-Gonzalez J S,Báez-Viveros J L,et al. Tumor cell metabolism: an integral view[J]. Cancer Biol Ther,2011,12(11):939-948. doi: 10.4161/cbt.12.11.18140
    [3] Warburg O,Posener K,Negelein E. On the metabolism of carcinoma cells[J]. Biochemische Zeitschrift,1924,152:309-344.
    [4] Wang Y,Xia Y,Lu Z. Metabolic features of cancer cells[J]. Cancer Communications (London,England),2018,38(1):65. doi: 10.1186/s40880-018-0335-7
    [5] Ghanavat M,Shahrouzian M,Deris Zayeri Z,et al. Digging deeper through glucose metabolism and its regulators in cancer and metastasis[J]. Life Sci,2021,264:118603. doi: 10.1016/j.lfs.2020.118603
    [6] Somashekar B S,Kamarajan P,Danciu T,et al. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues[J]. Journal of Proteome Research,2011,10(11):5232-5241. doi: 10.1021/pr200800w
    [7] Boffetta P,Hashibe M. Alcohol and cancer[J]. The Lancet Oncology,2006,7(2):149-156. doi: 10.1016/S1470-2045(06)70577-0
    [8] Nguyen A, Kim A H, Kang M K, et al. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling [J]. International Journal of Molecular Sciences, 2022, 23(17): 9779.
    [9] Zhou X,Xue D,Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma[J]. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck,2022,44(1):89-103.
    [10] Robey R B,Hay N. Is AKT the “Warburg kinase”?-AKT-energy metabolism interactions and oncogenesis[J]. Seminars in cancer biology,2009,19(1):25-31. doi: 10.1016/j.semcancer.2008.11.010
    [11] Marquard F, Jücker M J B P. PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer [J]. 2020, 172: 113729.
    [12] Raggi C,Taddei M L,Rae C,et al. Metabolic reprogramming in cholangiocarcinoma[J]. J Hepatol,2022,77(3):849-864. doi: 10.1016/j.jhep.2022.04.038
    [13] Tang Y C,Hsiao J R,Jiang S S,et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation[J]. Theranostics,2021,11(11):5232-5247. doi: 10.7150/thno.53417
    [14] Wang L W,Yu Y,Chen J,et al. Protein kinase D1 regulates the growth and metabolism of oral squamous carcinoma cells in tumor microenvironment[J]. West China Journal of Stomatology,2019,37(6):577-582.
    [15] Chen J,Cui B,Fan Y,et al. Protein kinase D1 regulates hypoxic metabolism through HIF-1 and glycolytic enzymes incancer cells[J]. Oncology Reports,2018,40(2):1073-1082.
    [16] Fu L,Pelicano H,Liu J,et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo[J]. Cell,2002,111(1):41-50. doi: 10.1016/S0092-8674(02)00961-3
    [17] Zheng B,Larkin D W,Albrecht U,et al. The mPer2 gene encodes a functional component of the mammalian circadian clock[J]. Nature,1999,400(6740):169-173. doi: 10.1038/22118
    [18] Long W, Gong X, Yang Y, et al. Downregulation of PER2 promotes tumor progression by enhancing glycolysis via the phosphatidylinositol 3-kinase/Protein kinase B pathway in oral squamous cell carcinoma [J]. Journal of Oral and Maxillofacial Surgery, 2020, 78(10): 10.
    [19] Zheng M,Cao M X,Yu X H,et al. STAT3 promotes invasion and aerobic glycolysis of human oral squamous cell carcinoma via inhibiting foxO1[J]. Front Oncol,2019,9:1175. doi: 10.3389/fonc.2019.01175
    [20] Grimm M, Cetindis M, Lehmann M, et al. Association of cancer metabolism-related proteins with oral carcinogenesis - indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? [J]. Journal of Translational Medicine, 2014, 12: 208.
    [21] Brizel D M,Schroeder T,Scher R L,et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer[J]. International Journal of Radiation Oncology Biology Physics,2001,51(2):349-353. doi: 10.1016/S0360-3016(01)01630-3
    [22] Wang Y,Zhang X,Zhang Y,et al. Overexpression of pyruvate kinase M2 associates with aggressive clinicopathological features and unfavorable prognosis in oral squamous cell carcinoma[J]. Cancer Biology & Therapy,2015,16(6):839-845.
    [23] Yang W,Xia Y,Hawke D,et al. PKM2 Phosphorylates Histone H3 and Promotes Gene Transcription and Tumorigenesis[J]. Cell,2014,158(5):1210.
    [24] Kurihara-shimomura M, Sasahira T, Nakashima C, et al. The multifarious functions of pyruvate kinase M2 in oral cancer cells [J]. International Journal of Molecular Sciences, 2018, 19(10): 2907.
    [25] Cai H, Li J, Zhang Y, et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition[J]. Frontiers in Oncology, 2019, 9: 1446.
    [26] Yuan C,Li Z,Wang Y,et al. Overexpression of metabolic markers PKM2 and LDH5 correlates with aggressive clinicopathological features and adverse patient prognosis in tongue cancer[J]. Histopathology,2014,65(5):595-605. doi: 10.1111/his.12441
    [27] Wigfield S M,Winter S C,Giatromanolaki A,et al. PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer[J]. British Journal of Cancer,2008,98(12):1975-1984. doi: 10.1038/sj.bjc.6604356
    [28] Pai S, Yadav V K, Kuo K T, et al. PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway[J]. International Journal of Molecular Sciences, 2021, 22(21): 11492.
    [29] Guo D,Tong Y,Jiang X,et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα[J]. Cell Metabolism,2022,34(9):1312-24.e6. doi: 10.1016/j.cmet.2022.08.002
    [30] Patra K C,Wang Q,Bhaskar P T,et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell,2013,24(2):213-228. doi: 10.1016/j.ccr.2013.06.014
    [31] Christison T, Wang J, Huang Y, et al. Profiling anionic polar metabolites in oral cancer using capillary ion chromatography and high resolution accurate mass spectrometry [J]. Abstracts of Papers of the American Chemical Society, 2015, 249: 49.
    [32] Wang L, Wang J, Shen Y, et al. Fructose-1, 6-bisphosphatase 2 inhibits oral squamous cell carcinoma tumorigenesis and glucose metabolism via downregulation of c-myc[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022.
    [33] Simoes-sousa S,Granja S,Pinheiro C,et al. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors[J]. Cell Cycle,2016,15(14):1865-1873. doi: 10.1080/15384101.2016.1188239
    [34] Nakazato K,Mogushi K,Kayamori K,et al. Glucose metabolism changes during the development and progression of oral tongue squamous cell carcinomas[J]. Oncology Letters,2019,18(2):1372-1380.
    [35] Gholami S,Chamorro-petronacci C,Pérez-sayáns M,et al. Immunoexpression profile of hypoxia-inducible factor (HIF) targets in potentially malignant and malignant oral lesions: a pilot study[J]. Journal of Applied Oral Science:Revista FOB,2023,31:e20220461. doi: 10.1590/1678-7757-2022-0461
    [36] Chang Y C, Chi L H, Chang W M, et al. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis [J]. Journal of Hematology & Oncology, 2017, 10(1): 11.
    [37] Zhang Y,Cai H,Liao Y,et al. Activation of PGK1 under hypoxic conditions promotes glycolysis and increases stem cell-like properties and the epithelial-mesenchymal transition in oral squamous cell carcinoma cells via the AKT signalling pathway[J]. International Journal of Oncology,2020,57(3):743-755. doi: 10.3892/ijo.2020.5083
    [38] Nakashima C,Yamamoto K,Fujiwara-tani R,et al. Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma[J]. Cancer Science,2018,109(6):2036-2045. doi: 10.1111/cas.13594
    [39] Li Y J,Huang T H,Hsiao M,et al. Suppression of fructose-bisphosphate aldolase C expression as a predictor of advanced oral squamous cell carcinoma[J]. Head and Neck-Journal for the Sciences and Specialties of the Head and Neck,2016,38:E1075-E85.
    [40] Wilde L,Roche M,Domingo-vidal M,et al. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development[J]. Seminars in Oncology,2017,44(3):198-203. doi: 10.1053/j.seminoncol.2017.10.004
    [41] Muhammad S N H, Safuwan N A M, Yaacob N S, et al. Regulatory mechanism on anti-Glycolytic and anti-metastatic activities induced by strobilanthes crispus in breast cancer, in vitro [J]. Pharmaceuticals (Basel, Switzerland), 2023, 16(2): 153.
    [42] Bai R, Meng Y, Cui J. Therapeutic strategies targeting metabolic characteristics of cancer cells [J]. Critical Reviews in Oncology/Hematology, 2023, 104037.
    [43] Samuel S M,Varghese E,Satheesh N J,et al. Metabolic heterogeneity in TNBCs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy[J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie,2023,164:114911.
    [44] Huang G, Chen S, Washio J, et al. Glycolysis-related gene analyses indicate that DEPDC1 promotes the malignant progression of oral squamous cell carcinoma via the WNT/β-catenin signaling pathway[J]. International Journal of Molecular Sciences, 2023, 24(3): 1992.
    [45] Liu X, Zhao T, Yuan Z, et Al. MIR600HG sponges miR-125a-5p to regulate glycometabolism and cisplatin resistance of oral squamous cell carcinoma cells via mediating RNF44 [J]. Cell Death Discovery, 2022, 8(1): 216.
    [46] Li M, Gao F, Zhao Q, et al. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing AKT-c-MYC signaling-mediated aerobic glycolysis [J]. Cell Death & Disease, 2020, 11(5): 381.
    [47] Wei J, Wu J, Xu W, et al. Salvanic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1 alpha signaling pathway [J]. Cell Death & Disease, 2018, 9: 599.
    [48] Wei J,Xie G,Ge S,et al. Metabolic transformation of DMBA-induced carcinogenesis and inhibitory effect of salvianolic acid B and breviscapine treatment[J]. Journal of Proteome Research,2012,11(2):1302-1316. doi: 10.1021/pr2009725
    [49] Lee N, Jang W J, Seo J H, et al. 2-Deoxy-d-Glucose-Induced Metabolic Alteration in Human Oral Squamous SCC15 Cells: Involvement of N-Glycosylation of Axl and Met [J]. Metabolites, 2019, 9(9): 3515-3524.
    [50] Lin C X,Tu C W,Ma Y K,et al. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma[J]. Food Science & Nutrition,2020,8(7):3515-3524.
    [51] Zhang G,Fu J,Su Y,et al. Opposite effects of garcinol on tumor energy metabolism in oral squamous cell carcinoma cells[J]. Nutrition and Cancer-an International Journal,2019,71(8):1403-1411. doi: 10.1080/01635581.2019.1607409
    [52] Sur S, Nakanishi H, Flaveny C, et al. Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract [J]. Cell Communication and Signaling, 2019, 17(1): 131.
    [53] Kawata M,Ogi K,Nishiyama K,et al. Additive effect of radiosensitization by 2-deoxy-D-glucose delays DNA repair kinetics and suppresses cell proliferation in oral squamous cell carcinoma[J]. Journal of Oral Pathology & Medicine,2017,46(10):979-985.
  • [1] 邓勇军, 陈倩, 邹建彬, 宫政, 刘焕鹏.  ZIC1基因过表达激活P53信号通路抑制胸膜间皮瘤细胞增殖, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20240405
    [2] 郭小兵, 李晓文, 李恒希, 曹艳, 李坪.  miR-212-3p靶向调控NAP1L1抑制胶质瘤细胞增殖、迁移和上皮-间充质转化, 昆明医科大学学报.
    [3] 李晨希, 查卓岑, 李娜, 罗琳, 杨扬, 陈文林.  三阳性乳腺癌的强化辅助治疗方案选择, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231020
    [4] 陆小华, 袁洪新.  BTLA、CTLA-4基因多态性与肝癌TACE联合靶向治疗疗效及预后相关性, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230927
    [5] 王惠, 曾文珺, 张海萍, 郭瑞威.  钙库操纵型钙通道Orai3分子对冠状动脉血管平滑肌细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230423
    [6] 梁彩红, 孟明耀, 李欣欣, 熊晶晶, 李檬, 刘梅, 侯宗柳, 黄永坤.  肠道菌群代谢物脱氧胆酸对人脐带间充质干细胞hUC-MSCs增殖及细胞周期的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20230402
    [7] 杨诗媛, 张昊, 胡图强.  扁塑藤素通过调节自噬对口腔鳞状细胞癌细胞CAL-27增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20231024
    [8] 王晓寒, 牟善茂, 郝翠芳, 任琳琳, 王敏, 赵彤.  富血小板血浆促进人子宫内膜间充质干细胞(EnMSCs)增殖的机制, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220126
    [9] 袁伟, 孟明耀, 李欣欣, 熊晶晶, 李檬, 曹佳, 刘梅, 侯宗柳, 黄永坤.  内毒素的量效和时效对人脐带间充质干细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20220928
    [10] 钱石兵, 孟明耀, 于鸿滨, 段开文, 李昌全, 夏志刚.  三七总皂苷对人根尖牙乳头干细胞增殖的影响, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20221018
    [11] 全宇航, 王忠慧, 李珊珊, 刘光顺.  七氟烷抑制宣威肺癌XWLC-05细胞生物学行为, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20211202
    [12] 殷顺会, 周建忠, 李自良.  Tiger17促进口腔黏膜成纤维细胞的增殖和迁移, 昆明医科大学学报. doi: 10.12259/j.issn.2095-610X.S20210823
    [13] 汤伟伟, 何永文NF-κB和TAB3在口腔鳞状细胞癌组织中的表达及临床意义, 昆明医科大学学报.
    [14] 胡正雄.  TGF-β2和geneX对BrdU标记骨髓间充质干细胞增殖与成骨分化的作用, 昆明医科大学学报.
    [15] 袁勇.  适度低氧微环境对体外培养脑胶质瘤干细胞生长的影响, 昆明医科大学学报.
    [16] 张健.  盐霉素对人骨肉瘤MG-63细胞体外增殖和凋亡的影响, 昆明医科大学学报.
    [17] 陈贤玉.  曲妥珠单抗1治疗HER-2过表达乳腺癌的研究进展, 昆明医科大学学报.
    [18] 赵瑜敏.  牙龈卟啉单胞菌对兔血管平滑肌细胞增殖和迁移的影响, 昆明医科大学学报.
    [19] 许克东.  Cytohesin-2在肝癌细胞株中的表达及调控Hep3B细胞增殖作用的研究, 昆明医科大学学报.
    [20] TRB3在同型半胱氨酸抑制内皮细胞增殖中的作用研究, 昆明医科大学学报.
  • 加载中
计量
  • 文章访问数:  3146
  • HTML全文浏览量:  1858
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 刊出日期:  2023-06-25

目录

    /

    返回文章
    返回